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Abstract. Gene expression microarray data can be used for the assembly of ge-
netic co-expression network graphs. Using mRNA samples obtained from recom-
binant inbred Mus musculus strains, it is possible to integrate allelic variation with
molecular and higher-order phenotypes. The depth of quantitative genetic anal-
ysis of microarray data can be vastly enhanced utilizing this mouse resource in
combination with powerful computational algorithms, platforms and data reposi-
tories. The resulting network graphs transect many levels of biological scale. This
approach is illustrated with the extraction of cliques of putatively co-regulated
genes and their annotation using gene ontology analysis and cis-regulatory ele-
ment discovery. The causal basis for co-regulation is detected through the use of
quantitative trait locus mapping.

1 Introduction

The purpose of this paper is to describe novel research combining

– emergent computational algorithms,
– high performance platforms and implementations,
– complex trait analysis and genetic mapping, and
– integrative tools for data repository and exploration.

In this effort we employ huge datasets extracted from a panel of recombinant inbred
(RI) strains that were produced by crossing two fully-sequenced strains of C57BL/6J
and DBA/2J mice [45]. The essential feature of these isogenic RI strains is that they are
a genetic mapping panel. They can therefore be used to convert associative networks
into causal networks. This is done by finding those polymorphic genes that actually
produce natural endogenous variation in gene networks [4]. In this regard, RI strains
differ fundamentally from standard inbred strains, knockout strains, transgenic lines
and mutants. This approach, termed quantitative trait locus (QTL) mapping, is usually
limited to a single continuously distributed trait such as brain weight or neuron number
[34], or a behavioral trait such as open-field activity [26]. In this paper, however, we
map regulators of entire networks, clusters, and cliques [20].
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We employ combinatorial algorithms and graph theory to reduce the high dimen-
sionality of this megavariate data. Advances in clique finding algorithms generate highly-
distilled gene sets, which we interpret using novel, integrative bioinformatics resources.
See Figure 1. Tools of choice include GeneKeyDB [31], WebQTL [41] and GOTM [46].
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Figure 1. A process overview.

2 QTL Mapping

Experimental Design. Microarrays provide an extraordinary efficient tool with which
to obtain very large numbers of quantitative assays from tissue samples. For example,
using the Affymetrix M430 arrays one can obtain approximately 45,000 measurements
of relative mRNA abundance from a whole tissue such as the brain or from a single cell
population, such as hematopoietic stem cells. In much of our recent work we have used
the Affymetrix U74Av2 array to estimate the abundance of 12,422 transcripts from the
mouse brain. The design of our experiments is quite simple. We extract mRNA from
three litter-mate mice of the same strain and sex, pool the mRNA, and hybridize the
sample to the microarray. We do this three times for each strain and sex (independent
biological replicates). There is no intentional experimental manipulation of the animals
or strains of mice. The essential feature to note in our experimental design is that the
isogenic strains of mice that we study are all related yet genetically unique from one
another.

RI Strains. These related strains of mice collectively form what is called a “mapping
panel.” The strain set that we use is called the BXD mapping panel because all of the
32 strains originate from the same two original progenitor strains: C57BL/6J (the B
strain) and DBA/2J (the D strain). The 32 derivative BXD strains are genetic mosaics
of the two parental strains. If one were to pick one of the 32 strains at random and
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examine a piece of one particular chromosome, there would be an approximately 0.5
probability of that piece having descended down through the generations from the B
or the D parental strain. If one looked at the same part of a particular chromosome
in all 32 strains one would end up with a vector of genotypes. For example, the tip
of chromosome 1 of BXD strains number 11 through 16 might read BDBBDD. Thus
there are 232 or 4.29 × 109 possible combinations of these vectors of genotypes. The
chromosomes of individual BXD strains actually consist of very long stretches of B-
type or D-type chromosomes. The average stretch is almost 50 million base pairs long.
The entire set of 32 BXD strains incorporate sufficient recombinations between the
parental chromosomes to encode a total of about 2 11 locations across the mouse the
genome. This means that in a best case one can only specific locations to about 1.27 ×
106 bp. 1.27 million bp will typically contain 17 genes. (Of course, the locations of
these recombinations is a close to a random Poisson process.)

Unlike other recombinant cross progeny used for QTL analysis, all of the BXD
strains are fully inbred. To make these recombinant inbred (RI) strains, full siblings
were mated successively for 20 generations to produce each of the 32 strains. This
has been an expensive process which has led to several strain sets available to the re-
search community by commercial suppliers (The Jackson Laboratory, www.jax.org) or
the originating laboratory. Making fully RI strains from a breeding cross between the
C57BL/6J and DBA/2J parental strains has taken about eight years. These strains have
been used for over 20 years for the detection of QTLs in a wide range of phenotypes
[39]. An additional 45 strains have been generated recently [35].

Finding The Genetic Regulatory Locus. There are numerous genetic polymorphisms
(allelic variants) that exist between the two parental strains. As an illustrative example,
consider two alleles of a gene coding for a product that is absolutely required to deposit
pigmentation in the hair and eye. Further let us assume that these two alleles act as a
digital switch: the B allele inherited from C57BL/6J is the active form and the D allele
inherited from DBA/2J is the inactive form.

In the D-state, the mice are albinos; in the B-state, they are normally pigmented.
The vector of this phenotype across the strains might look like this PWWWWP (P, pig-
mented; W, white) for strains 11 through 16. A simple comparison of this vector of
phenotypes to the vector of genotypes on the tip of chromosome 1 (BDBBDD) clearly
rules out this location since the vectors do not match particularly well. A vector of
genotypes on chromosome 7 at 77 million based pairs (Mb), however, is a perfect fit:
BDDDDB. Depending on the coding convention that we use, this will give either a cor-
relation of 1 or -1. This is the central concept of mapping simple one-gene (monogenic)
traits to discover one or more genotype vectors (markers) that have tight quantitative
associations with the phenotype vectors across a large mapping panel. Recall however
that our particular 32 strain genotype vector only provides enough resolution to get us
down to a genetic neighborhood containing about 17 genes. We call this a genetic locus
(or sometimes a gene locus), although we have to remember that we cannot yet assert
which gene in this locus is actually the pigmentation switch.

Up to this point we have considered a trait that can be easily dichotomized. The vast
majority of traits in which we are interested, however, are spread continuously over a
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broad range of values that often approximates a Gaussian distribution. These traits are
frequently controlled by more than a single genetic locus. Furthermore, environmental
factors typically introduce a complementary non-genetic source of variance to a trait
measured across a genetically diverse group of individuals. Consider, for example, body
weight. This is a classic example of a complex highly variable population trait that is due
to a multifactorial admixture of genetic factors, environmental factors, and interactions
between genes and environment. Even a trait such as the amount of mRNA expressed
in the brains of mice and measured using microarrays is a very complex trait. We refer
the interested reader to our previous work [20, 42] for more information on this subject.
The abundance of mRNA is influenced by rates of transcription, rates of splicing and
degradation, stages of the circadian cycle and a variety of other environmental factors.
Many of these influences on transcript abundance exert their effects via the actions of
other genes. QTL mapping of mRNA abundance allows one to detect these genetic
sources of variation in gene expression[15,20, 37, 42].

3 Computational Methods

A Clique-Centric Approach. Current high-throughput molecular assays generate im-
mense numbers of phenotypic values. Billions of individual hypotheses can be tested
from a single BXD RI transcriptome profiling experiment. QTL mapping, however,
tends to be highly focused on small sets of traits and genes. Many public users of our
data resources approach the data with specific questions of particular gene-gene and/or
gene-phenotype relationships [19]. These high-dimensional data sets are best under-
stood when the correlated phenotypes are determined and analyzed simultaneously.
Data reduction via automated extraction of co-regulated gene sets from transcriptome
QTL data is a challenge. Given the need to analyze efficiently tens of thousands of genes
and traits, it is essential to develop tools to extract and characterize large aggregates of
genes, QTLs, and highly variable traits.

There are advantages to placing our work in a graph-theoretic framework. This rep-
resentation is known to be appropriate for probing and determining the structure of
biological networks including the extraction of evolutionarily conserved modules of
co-expressed genes. See, for example, [5, 8, 33]. A major computational bottleneck in
our efforts to identify sets of putatively co-regulated genes is the search for cliques, a
classic graph-theoretic problem. Here a gene is denoted by a vertex, and a co-expression
value is represented by the weight placed on an edge joining a pair of vertices. Clique is
widely known for its application in a variety of combinatorial settings, a great number
of which are relevant to computational molecular biology. See, for example, [38]. A
considerable amount of effort has been devoted to solving clique efficiently. An excel-
lent survey can be found in [14].

In the context of microarray analysis, our approach can be viewed as a form of clus-
tering. A wealth of clustering approaches has been proposed. See [11–13, 28, 29] to list
just a few. Here the usual goal is to partition vertices into disjoint subsets, so that the
genes that correspond to the vertices within each subset display some measure of ho-
mogeneity. An advantage clique holds over most traditional clustering methods is that
cliques need not be disjoint. A vertex can reside in more than one (maximum or maxi-
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mal) clique, just as a gene product can be involved in more than one regulatory network.
There are recent clustering techniques, for example those employing factor analysis
[6], that do not require exclusive cluster membership for single genes. Unfortunately,
these tend to produce biologically uninterpretable factors without the incorporation of
prior biological information [27]. Clique makes no such demand. Another advantage of
clique is the purity of the categories it generates. There is considerable interest in solv-
ing the dense k-subgraph problem [23]. Here the focus is on a cluster’s edge density,
also referred to as clustering coefficient, curvature, and even cliquishness [36, 44]. In
this respect, clique is the “gold standard.” A cluster’s edge density is maximized with
clique by definition.

The inputs to clique are an undirected graph G with n vertices, and a parameter
k ≤ n. The question asked is whether G contains a clique of size k, that is, a subgraph
isomorphic to Kk, the complete graph on k vertices. The importance of K k lies in the
fact that each and every pair of its vertices is joined by an edge. Subgraph isomorphism,
clique in particular, is NP-complete. From this it follows that there is no known algo-
rithm for deciding clique that runs in time polynomial in the size of the input. One
could of course solve clique by generating and checking all

(
n
k

)
candidate solutions.

But this brute force approach requires O(nk) time, and is thus prohibitively slow, even
for problem instances of only modest size.
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Figure 2. The clique-centric toolkit, and its use in microarray analysis.

Our methods are employed as illustrated in Figure 2. We shall concentrate our dis-
cussion on the classic maximum clique problem. Of course we also must handle the
related problem of generating all maximal cliques once a suitable threshold has been
chosen, which is itself often a function of maximum clique size. There are a variety
of other issues dealing with pre- and post-processing. Although we do not explicitly
deal with them in the present paper, they are for the most part quite easily handled and
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are dwarfed by the computational complexity of the fundamental clique problem at the
heart of our method.

Fixed-Parameter Tractability. The origins of fixed parameter tractability can be
traced at least as far back as the work done to show, via the Graph Minor Theorem,
that a variety of parameterized problems are tractable when the relevant input parame-
ter is fixed. See, for example, [24, 25]. Formally, a problem is FPT if it has an algorithm
that runs in O(f(k)nc), where n is the problem size, k is the input parameter, and c is a
constant independent of both n and k [21]. Unfortunately, clique is not FPT unless the
W hierarchy collapses. (The W hierarchy, whose lowest level is FPT, can be viewed as
a fixed-parameter analog of the polynomial hierarchy, whose lowest level is P .) Thus
we focus instead on clique’s complementary dual, the vertex cover problem. Consider
G, the complement of G. (G has the same vertex set as G, but edges present in G are
absent in G and vice versa.) As with clique, the inputs to vertex cover are an undirected
graph G with n vertices, and a parameter k ≤ n. The question now asked is whether
G contains a set C of k vertices that covers every edge in G, where an edge is said
to be covered if either or both of its endpoints are in C. Like clique, vertex cover is
NP-complete. Unlike clique, however, vertex cover is also FPT. The crucial observa-
tion here is this: a vertex cover of size k in G turns out to be exactly the complement of
a clique of size n − k in G. Thus, we search for a minimum vertex cover in G, thereby
finding the desired maximum clique in G. Currently, the fastest known vertex cover
algorithm runs in O(1.2852k + kn) time [18]. Contrast this with O(nk). The requisite
exponential growth (assuming P �= NP) is therefore reduced to a mere additive term.

Kernelization, Branching, Parallelization and Load Balancing. The initial goal is
to reduce an arbitrary input instance down to a relatively small computational kernel,
then decomposing it so that an efficient, systematic search can be conducted. Attain-
ing a kernel whose size is quadratic in k is relatively straightforward [16]. Ensuring a
kernel whose size is linear in k has until recently required much more powerful and
considerably slower methods that rely on linear programming relaxation [30, 32].

Rest of graph

… …

…

A crown of width 3

Rest of graph

… …

…

A crown of width 1

Figure 3. Sample crown decompositions.

In [1], we introduced and analyzed
a new technique, termed crown reduc-
tion. A crown is an ordered pair (I, H)
of subsets of vertices from G that sat-
isfies the following criteria: (1) I �= ∅
is an independent set of G, (2) H =
N(I), and (3) there exists a match-
ing M on the edges connecting I and
H such that all elements of H are
matched. H is called the head of the
crown. The width of the crown is |H |.
This notion is depicted in Figure 3.

Theorem[1] Any graph G can be decomposed into a crown (I, H) for which H con-
tains a minimum-size vertex cover of G and so that |H | ≤ 3k. Moreover, the decompo-
sition can be accomplished in O(n

5
2 ) time.
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The problem now becomes one of exploring the kernel efficiently. A branching pro-
cess is carried out using a binary search tree. Internal nodes represent choices; leaves
denote candidate solutions. Subtrees spawned off at each level can be explored in par-
allel. The best results have generally been obtained with minimal intervention, in the
extreme case launching secure shells (SSHs) [2]. To maintain scalability as datasets
grow in size and as more machines are brought on line, some form of dynamic load
balancing is generally required. We have implemented such a scheme using sockets and
process-independent forking. Results on 32-64 processors in the context of motif dis-
covery are reported in [7]. Large-scale testing using immense genomic and proteomic
datasets are reported in [3].

4 Sample Computational Results

We are now able to solve real, non-synthetic instances of clique on graphs whose ver-
tices number in the thousands. (Just imagine a straightforward O(nk) algorithm on
problems of that size!)

Figure 4. A clique intersection graph
for a large microarray dataset.

To illustrate, we recently
solved a problem on Mus mus-
culus neurogenetic microar-
ray data with 12,422 vertices
(probe-sets). With expression
values normalized to [0,1] and
the threshold set at 0.5, the
clique we returned (via vertex
cover) denoted a set of 369
genes that appear experimen-
tally to be co-regulated. This
took a few days to solve even
with our best current meth-
ods. Yet solving it at all was
probably unthinkable just a
short time ago. After iterat-
ing across several threshold
choices, a value of .85 was se-
lected for detailed study. For
this graph, G, the maximum
clique size is 17. Because it
is difficult to visualize G, we
employ a clique intersection graph, CG, as follows. Each maximal clique of size 15 or
more in G is represented by a vertex in CG. An edge connects a pair of vertices in CG if
and only if the intersection of the corresponding cliques in G contains at least 13 mem-
bers. CG is depicted in Figure 4, with vertices representing cliques of size 15 (in green),
cliques of size 16 (in black) and cliques of size 17 (in red). One rather surprising result
is that the gene found most often across large maximal cliques is Veli3 (aka Lin7c). This



8 Baldwin, Chesler, Kirov, Langston, Snoddy, Williams and Zhang

appears not to be due to some so-called “housekeeping” function, but instead because
the relatively unstudied Veli3 is in fact central to neurological function [10, 17].

5 Cliques of Highly Correlated Transcripts and Behavioral
Phenotypes

We can infer that co-expression of genes in mice of common genetic background is due
to a shared regulatory mechanism, because the correlation is between trait means from
different lines of mice, rather than from within an experimental group. Clique mem-
bership alone does not tell us anything about the basis of common genetic regulation.
By combining clique data with QTL analysis, the regulatory loci underlying the shared
genetic mediation of gene expression can be identified. This allows us to determine the
impact of genetic variability in gene expression on other biological processes. Using the
afore-mentioned stringent correlation threshold of 0.85, the most highly connected tran-
script identified was that of Veli3. One maximal clique of seventeen highly-associated
transcript abundances includes several nuclear proteins. A single principal component
of these transcripts accounts for 95% of the total genetic sample variance.

Figure 5. Multiple QTL mapping analysis. In the
upper left triangle, a pseudo-color plot shows the
likelihood ratio statistic for each two-locus inter-
action. In the lower right triangle, a likelihood ratio
statistic is depicted for the full two-locus model,
which fits additive effects for each pair of loci and
their interaction. Significance was assessed by
genome-wide permutation analysis.

No single QTL can be
found for the members of
this clique, but a multiple
QTL mapping analysis reveals
an interacting pair of loci
on chromosomes 12 and X,
at markers D12Mit46 (29.163
Mb) and DXMit117 (110.670
Mb). See Figure 5, which
shows the results from a
search for pairs of genetic loci
that modulate expression of
a clique. Chromosomes 12,
19 and X are shown. Likeli-
hood ratio statistics for mul-
tiple QTL models are plot-
ted on the pseudo-color scale.
The upper left triangle shows
fit results for an interaction
model, and the lower right tri-
angle shows fit results for a
model containing both addi-
tive and interaction effects of
the two loci. The joint model
including markers on 12 and X is significant (p < .05) by permutation analysis. A ‘D’
allele at both loci results in low levels of the phenotype and a ‘B’ allele at both loci re-
sults in a high level of the phenotype. The chromosome 12 locus is the physical location
of two clique members: B Cell Receptor associated protein Bcap29, and myelin tran-
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scription factor 1-like protein, Myt1l. An interesting functional and positional candidate
at the Chr X locus is Integral membrane protein 1, Itm1. While this is not a member of
the clique we are analyzing here, it does frequently co-occur along with Veli3 in many
maximal cliques.

In addition to tens of thousands of transcript traits, we have assembled a database
of over 600 organismic phenotypes, including many morphometric traits. An under-
standing of the genetic control of these phenotypes can help explain their evolution. In
the present example, we have found the previously mentioned clique to associate with
behavioral and metabolic phenotypes. This clique correlates with both midbrain iron
levels, and locomotor behavior. Interestingly, one of the clique members, Gs2na (GS2
nuclear autoantigen), that at 46.048 Mb on chromosome 12 is a little too far afield to be
a positional QTL candidate gene, is a striatin family member and the negative correla-
tion we observe between clique expression and locomotor behavior is consistent with
literature reports of locomotor impairment associated with decreased levels of striatin
[9]. At this point research becomes hypothesis driven; indeed, the result of this collab-
orative analysis is a simple testable hypothesis, extracted from many billions of data
relations. We are now in the process of evaluating the hypothesis that genetic variation
in iron metabolism influences expression of the Veli3 clique members in the brain and
consequently affects locomotor activity.

6 Integrative Genomic Data Mining

GeneKeyDB. High-throughput, high-volume data like these gene expression data from
genetically-variant mice should be examined in a biological context. The subsets of
interesting genes must be analyzed, in part, by using existing information that describe
the role these genes play in biological processes. When computing and navigating these
data in terms of graphs and networks, we need to have a way to manipulate various
kinds of metadata about sets of genes and gene products.

We have developed several such tools for genes and gene products that are discov-
ered from the clique and QTL data analysis. Most gene-centered data resources that are
generally available for retrieving metadata about genes are displayed and manipulated
in a one-gene-at-a-time format (e.g., Entrez Gene). We have developed a lightweight
data mining environment that allows the automated integration of various types of data
about sets of genes. This environment is called GeneKeyDB. This system includes meta-
data from GenBank, Entrez Gene, Ensembl, and several other well-established biologi-
cal databases. GeneKeyDB uses a relational database backend to facilitate interactions
between tools and data. Among other functions, GeneKeyDB automatically converts
the different database identifiers from these different databases. It can, for example,
start with GenBank cDNA identifiers, locate the “sequence feature” information from
genome sequence data entries, and assist in retrieving sequences for detailed analyses.
GeneKeyDB can also obtain various kinds of homologs, functional annotation, or other
attributes of genes and gene products. Furthermore, it serves as a repository for results
that are created by our computational tools.

We have devised two types of computational analyses that are supported by the
underlying GeneKeyDB system.
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GoTreeMachine. Gene Ontology (GO) produces structured, precisely defined, com-
mon, controlled vocabulary for describing the roles of genes and gene products [22]. GO
has been used frequently in the functional profiling of high-throughput data. We have
developed a web-based tool, GOTM, for the analysis and visualization of sets of genes
using Gene Ontology hierarchies [46]. Besides being a stand-alone functional profiling
tool, GOTM can work with other computational tools for gene set centered integrated
analysis. GOTM has been employed in various ways in this effort. This includes We-
bQTL’s use of GOTM to narrow down candidate gene lists and generate functional
profiles for genes in a relevance network or genes correlated to complex phenotypes.

Figure 6. A relevant clique containing Veli3.

We use ontology analysis to eval-
uate the functional significance of the
cliques found by our graph algorithms,
and prioritize the cliques for further
study. Figure 6 depicts a clique of size
eight that was detected within the gene
co-expression network constructed us-
ing the microarray data from the RI
mouse lines. The five green vertices
denote genes that belong to the GO
functional category of “DNA binding.”
The red vertices denote genes that ei-
ther have no annotation or are anno-
tated as function “unknown.” If we ran-
domly pick five genes from all anno-
tated genes on the microarray, the expected frequency of genes in the category “DNA
binding” is only 0.9. The chance of finding all five genes in the category “DNA bind-
ing” is p = 0.00051 as calculated by the hypergeometric test implemented in GOTM.
Out of the 5227 maximal cliques we generated, ontology analysis has detected a total
of 342 of them that are significantly enriched in one or more GO categories (p < 0.01).
The clique shown in Figure 6 has a p value less than 0.001, and is one of several we are
studying. Note the presence of the gene Veli3.

Batch Sequence Analysis. We are also deploying integrative methods that attempt
to predict cis-Regulatory Elements (CREs) in the upstream regions from sets of genes
that are putatively co-regulated. These CREs are thought to be the DNA sites to which
protein regulatory transcription factors preferentially bind in promoters or enhancers
and exert regulatory control of gene expression. We are combining a number of analyses
to look at sets of CREs that are found in a subset of genes that seems to show strong
co-regulation and are consistent with the clique and QTL data.

We have assembled a pipeline, BSA, that can retrieve the sequence data for the tar-
get genes and their orthologous counterparts in other chordate organisms. This pipeline
carries out a number of processes that enable us to use both co-regulated gene sets
and phylogenetic footprinting in an integrated pipeline to identify putative CREs. An
important advantage of the pipeline is its ability to define the evolutionarily conserved
non-coding sequences, which are thought to contain most of the CREs [43]. This should
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substantially reduce the noise levels. BSA can be carried out in a high throughput, auto-
mated process because of the underlying GeneKeyDB infrastructure. BSA is routinely
using both MEME and MAST as part of the sequence analysis, but other motif finding
and searching methods are under development. A set of CRE motifs can be found in
cliques or other interesting subsets of genes with motif searches (like MEME). We can
then use MAST or similar searching tools to take those sets of putative CRES to do
a global search for all possible targets in a database that contains promoter sequences
from all human, mouse, and rat genes. The latter step could help define new genes that
are targets of a gene regulatory network that were not initially identified. The BSA
pipeline stores its results in the GeneKeyDB relational database.

7 Summary and Directions for Future Research

Our current work demonstrates the use of clique to extract signal from large genetic
correlation matrices. We also employ genome-scale tools to interpret the shared molec-
ular function, biological process, cellular localization and sequence motifs of clique
members. Despite what has been accomplished in the BXD lines, the size of existing
RI strain sets limits the power and resolution of this technique. The Complex Trait Con-
sortium plans to expand this set with the development of a 1024 RI strain panel [40]. The
creation of this resource will greatly increase the depth of our analysis. The breadth of
the analysis can be expanded almost indefinitely. Although the work we have described
here has been restricted to the analysis of gene expresssion microarray phenotypes, any
attribute of these strains that can be measured can in principle be incorporated into
the genetic correlation matrix. We already have a wealth of data on micro- and macro-
scale biological phenotypes ranging from cellular responses to behavior. Novel high-
throughput molecular phenotypes will greatly expand this collection. To accomodate
such vast increases in data dimensionality, we are currently in the process of porting
our codes to supercomputers at Oak Ridge National Laboratory (ORNL). These are
difficult tasks indeed, given the many novel features of our algorithms. Great care is
required to manage processor and memory resources. Load balancing can be especially
problematic [7]. Initial targets include a 256-node SGI Altix and a 256-node Cray X1.
In the longer term, we aim to employ the tremendously more powerful machines now
under construction and awarded to ORNL in the recent competition to build the Na-
tion’s next leadership class computing facility for science. We believe that with our
algorithms and these platforms we can solve problem instances previously considered
hopelessly out of reach.
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