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Abstract
A simple checkpoint-free fault-tolerant scheme for parallel iterative

methods is given. Assuming that when one processor fails, all its data
is lost and the system is recovered with a new processor, this scheme
computes a new approximate solution from the data of the non-failed
system. The iterative method is then restarted from this new vector. The
main advantage of this technique over standard checkpoint is that there
is no extra computation added in the iterative solver. In particular, if no
failure occurs, the fault-tolerant application is the same as the original
application. The main drawback is that the convergence after failure of
the method is no longer the same as the original method. In this paper,
we present this recovery technique as well as some implementations of
checkpoints in iterative methods. Finally, experiments are presented to
compare the two techniques. The fault tolerant MPI library is the FT-MPI
library. Iterative linear solvers and iterative eigensolvers are considered.
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1 Introduction

Among the most remarkable features of the ongoing computational revolution
in science is the ease with which the aspirations of domain researchers have
overtaken and outstripped the explosive growth in computing power described
by Moore's law. The unquenchable desire of scientists to run ever larger simu-
lations and analyze ever larger data sets is fueling an escalation in the size of
supercomputing clusters from hundreds, to thousands, and even tens of thou-
sands of processors. Unfortunately, the struggle to design systems that can
scale up in this way also exposes the current limits of our understanding of
how to e�ciently translate such increases in aggregate computing resources into
corresponding increases in scienti�c productivity.

One increasingly urgent aspect of this knowledge gap lies in the critical area
of reliability and fault tolerance. Even making some generous assumptions (e.g.
that the reliability of a single-processor system is several years), it is clear that
as the processor count in high end clusters grows into the thousands, the mean
time to failure (MTTF) will drop from a few days to a few hours, or less. The
type of 100,000-processor machines projected in the next few years can expect
experience a processor failure almost hourly. Although today's architectures
are robust enough to incur process failures without su�ering complete system
failure, at this scale and failure rate, the only technique available to application
developers for providing fault tolerance within the current parallel programming
model \checkpoint/restart" has performance and conceptual limitations that
makes it inadequate to the future needs of large scale simulation and modeling
community who will use these systems.

To ful�ll these needs a new message passing library has been created called
FT-MPI [6, 8]. FT-MPI enables an implementer to create fault tolerant algo-
rithms while providing the maximum of freedom to the user. Based on this
library, it becomes possible to create more and more fault-tolerant algorithms
and software without the need for specialized hardware; thus providing the
numerical analyst the ability to explore a new area for implementation and
development.

In order that applications survive faults, we design the following model. The
recovery process for the application is made of three phases:

• Phase I : recover a correct computational environment,

• Phase II : recover the statistic data lost,

• Phase III: recover the dynamic data lost.

Phase I is the need to recover a correct MPI environment. In this paper, the
recovered environment has the same number of processors as the failed one. This
is the task of the FT-MPI library. Phase II consists in recovering the static data
lost. By static data, we mean for example the matrix, the right-hand side, the
preconditioner. This represents data that is computed once in the initialization
phase of the application and is unchanged after. Phase III consists in recovering
the dynamic data, this is the data that changes during the algorithm.
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In this paper we mainly discuss the Phase III. Previous solutions to recover
the dynamic data were based on checkpointing. Checkpointing is a way to
provide fault tolerant applications that requires additional time and memory
(or disk, or processors). In Section 3, we explain how to implement checkpoints
e�ciently in some iterative solvers. The particular checkpoint technique we con-
sider in the experiments is named diskless checkpointing [11], and is particularly
suited when there is a low MTTF. This technique is explained in Section 3.1.

Checkpoints involve global operations with large size data and their overhead
is directly proportional to the number of nodes involved in the application. For
iterative methods it is all the more bothering that their bottleneck regarding
scalability is mostly in the computation of the scalar products essentially because
this is a global operation [15, §12.2]. Adding checkpoints to an iterative method
is just getting worse this problem. Even though the checkpoints of the dynamical
variable would have scaled, it is still an additional cost to the application itself.
For most computing systems today, applications are not that likely to encounter
a failure and thus many users prefer to take their chance. The mode is to run
the application without checkpoint and if a failure occurs restart the application
from scratch. To solve both of these issues it is necessary to �nd a way to operate
Phase III without any signi�cant overhead in the original application.

Our primary concern is the iterative methods to solve the linear system
Ax = b. Parts of the vectors are stored on each of the processors. A failure of
one of the processors results in the lost of all the data stored in its memory (local
data). Therefore when a failure occurs, a part of our approximate solution is
lost. Assuming that no checkpoint of the dynamic variables has been performed
and a failure occurs, what can be done? At this point, the local data of the
approximate solution before failure x(old) is lost on a processor. Being positive,
we prefer say that the approximate solution before failure x(old) is still known
on all the processors but one. Thus our idea is to restore a new approximate
solution from this data. This is done by solving the local equation associated
with the failed processor. In the sequel, Ai,j represents the sub-matrix which
rows are stored on processor i and with column indexes corresponding to the
rows stored on the processor j, xj is the local part of the vector x stored on the
processor j. If processor f fails then we propose to construct a new approximate
solution x(new) via

x
(new)
j = x

(old)
j for j 6= f

x
(new)
f = A−1

f,f (bf −
∑
j 6=f

Af,jx
(old)
j ) (1)

providing Af,f is of full rank. (We assume that we use exact arithmetic in this
discussion.) If x(old) was the exact solution of the system, Equation (1) con-
structs then x

(new)
f = x

(old)
f ; the recovery of x is exact. In general the failure

happens when x(old) is an approximate solution, in which case x
(new)
f is not

exactly x
(old)
f . After this recovery step, the iterative methods is restarted from

x(new). The goal of Section 4 is to explain this technique and give some theoret-
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ical results about it. This method is sometimes referred as lossy algorithm (as
opposed to loss-less for the checkpoint method), the reason is that the dynamic
data of the failed processor (e.g x

(old)
f ) is lost and is not recovered, we recover

x
(new)
f an approximation of it. In Section 4.3, we also explain how Equation (1)

can be generalized for eigensolvers. In Section 5, we present some experimental
results that compares the lossy method with checkpoint method.

The study is dedicated to single failure at a time. Theoretically it is not
an issue to generalize the results to multiple failures at a time. Some hints
addressing this problem are given in Section 4.2.

2 Description of the FT-MPI Library From the

User Level

Although MPI [14] is currently the de-facto standard system used to build high
performance applications for both clusters and dedicated MPP systems, it is not
without its problems. Initially MPI was designed to allow for very high e�ciency
and thus performance on a number of early 1990s MPPs, that at the time had
limited OS runtime support. This led to the current MPI design of a static pro-
cess model. While this model was possible to implement for MPP vendors, easy
to program for, and more importantly something that could be agreed upon by
a standard committee. The second version of MPI standard known as MPI-2 [7]
did include some support for dynamic process control, although this was limited
to the creation of new MPI process groups with separate communicators. These
new processes could not be merged with previously existing communicators to
form intracommunicators needed for a seamless single application model and
were limited to a special set of extended collectives (group) communications.

The MPI static process model su�ces for small numbers of distributed nodes
within the currently emerging masses of clusters and several hundred nodes of
dedicated MPPs. Beyond these sizes the mean time between failures (MTBF)
starts becoming a factor. As attempts to build the next generation Peta-
op
systems advance, this situation will only become more adverse as individual
node reliability becomes outweighed by orders of magnitude.

The aim of FT-MPI is to build a fault tolerant MPI implementation that
can survive failures, while o�ering the application developer a range of recovery
options other than just returning to some previous checkpointed state.

Current semantics of MPI indicate that a failure of a MPI process or com-
munication causes all communicators associated with them to become invalid.
As the standard provides no method to reinstate them (and it is unclear if we
can even free them), we are left with the problem that this causes the commu-
nicator MPI COMM WORLD itself to become invalid and thus the entire MPI
application will grid to a halt.

For more about how to get an application fault tolerant with the FT-MPI
library, we refer to [6].
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3 Description of the Iterative MethodsWith Check-

point

For a complete description of iterative methods we refer the reader to [1]. In
the paper we use the same notations Our discussion will focus on the GM-
RES method [12] but there is no di�culty in generalizing to the other iterative
methods described in [1].

3.1 Diskless Checkpoint-Restart Technique

In order to recover the data from any of the processors while maintaining a low
overhead in the storage, we are using a checksum approach to checkpointing.
The information of the computing processors is saved in case of a failure. The
information is encoded in the following way: if there is n processors for each of
whom we want to save the vector xk (for simplicity, we assume that the size of xk

is the same on all the processors), then the checkpoint unit stores the checksum
xn+1 such that xn+1 =

∑
i=1,...,n xi. If processor f fails, we can restore xf via

xf = xn+1 −
∑

i=1,...,n;i 6=f xi. The arithmetic used for the operations + and −
can either be binary or 
oating-point arithmetic. (However note that, if the

oating-point arithmetic is used, then one has to be aware that the recovered
data is not the same as the initial one due to round-o� errors; in particular,
one shall expect important error if coe�cients in the vector of x di�ers by
large order of magnitude.) Our checkpoints are diskless, in the sense that the
checkpoint is stored in memory of a processor and not on a disk. To achieve
this, an additional processor is added to the environment. It will be referred as
the checkpoint processor and its role is to store the checksum. The checkpoint
processor can be viewed as a disk but with low latency and high bandwidth
since it is located in the network of processors. For more information, we refer
the reader to [11], where a special interest is given on how to deal simultaneous
failures.

We will describe how we perform a recovery and only concentrate on the
vector quantities. The scalar quantities (e.g. the number of iterations,...) are
trivial to restore in case of a failure.

3.2 Classi�cation of Checkpointing Strategies

To perform the checkpoint, we will classify the algorithms in di�erent categories.
But �rst of all, we need to classify the variables of the algorithm. The goal of
this classi�cation is to de�ne which variables in memory need to be stored once
(static, e.g. the system matrix A, the right-hand side b, or the preconditioner
P ), which variables are changing along the iterations (dynamic, e.g. the ap-
proximate solution x), which variables can be computed (using mathematical
equivalence) after a failure rather than checkpointed (e.g. obtaining the residual
via r = b − Ax might be faster than via a checkpoint), which variables can be
recomputed in case of a rollback but it is worth to save in order to save time
(e.g. a scalar product is expensive to compute, easy to store and its value is the
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same on all the processors thus it makes sense to store those values in an array
on all the processors, at recovery time, we provide those values to the failed
processor, this avoids to recompute those values during the roll back).

Based on this classi�cation of the variables, we give two di�erent strategies
of checkpointing. The �rst one, chkpt R, is suited for GMRES with restart
and Conjugate Gradient (e.g.), the other, chkpt F, is suited for Full GMRES
and Arnoldi (e.g.). In the experimental part (Section 5), both categories (i.e.
GMRES with restart and Arnoldi method) are represented and compared with
the lossy approach.

We note that checkpoint strategy can be derived to recover the static data
(matrix, right-hand side, preconditioner) in Phase II (instead of a disk I/O e.g).

3.3 Full GMRES - Arnoldi Method (Eigenvalue Computa-
tion), An Example of Checkpointing at Each Iteration

In Full GMRES and Arnoldi methods, in order to perform iteration k, we need
the knowledge of k vectors. This means basically that at each iteration a vector
is constructed that is mandatory to continue the method, thus this vector has
to be checkpointed. Full GMRES and Arnoldi method therefore have a very
simple checkpoint strategy: each time a vector is computed, it is checkpointed.
This strategy is called chkpt F.

3.4 Conjugate Gradient Method and GMRES with Restart,
an Example of Checkpointing with Rollback

The common point of CG and GMRES with restart is that, in both methods,
the iteration k can be computed from the knowledge of only a constant number
of vectors (independent of k).

For example in CG, to perform the iteration k, we need to know three vectors:
xk−1, pk−1 and rk−1. This means that the vectors created at iteration k− 2 are
useless for the iteration k. (In practice, the CG implementation simply overrides
those vectors by the new ones.) In this case, it makes sense to checkpoint all the
vectors of a given iteration only from times to times. If a failure happens then
we restart the computation from the last checkpointed version of those vectors.
This is called a roll back and in case of a failure some of the computations have
to be redone. It is clear that the rate of checkpoint has to be chosen carefully.
In the one hand, distant checkpoints require roll back to a state long time ago
and thus a large amount of computation have to be redone. In the other hand,
close checkpoints imply a consequent overhead due to the large number of global
communication introduced.

To know the optimum rate of checkpoints, we propose the following model.
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Let us call:

Tchkpt the time taken to make a checkpoint,
TMTTF the mean time to failure

(the failure rate is assumed an exponential distribution),
Titer the time for an iteration (or any unit time step of the code),
Titer · k the time between two checkpoints,
Titer · N the time for a code without fault-tolerance and correct execution.

Given these de�nitions, we can write

Ttotal = N ∗ Titer + Tchkpt ∗ bN/kc+
∑

for all the failures
Trecover

which means that the total time is the sum of the time to perform the N
iterations, the time to perform the checkpoints every k iterations and the time
to perform the recovery of the encountered failures.

The time to perform the recovery of all the failures is given by the number
of failure (Ttotal/TMTTF) times the mean time to perform a recovery. The mean
time to perform a recovery is the time of a checkpoint (Tchkpt) plus the time of
the rollback, Trollback. Thus we can write

Ttotal = N ∗ Titer + Tchkpt ∗ N/k + Ttotal/TMTTF(Tchkpt + Trollback)).

Taking into account that the distribution of failure is exponential of param-
eter TMTTF, the distribution for a failure that happened between 0 and kTiter
is:

1
TMTTF(1− e−kTiter/TMTTF)

e−t/TMTTF ,

for t between 0 and kTiter; and 0 elsewhere. The mean of this law, Trollback, is
given by

Trollback = TMTTF(1−
kxe−kx

1− e−kx
) where x =

Titer
TMTTF

.

Note that if kx is close to 0 then a good approximation for Trollback is kTiter/2
which means that the failures happens statistically in the middle of the check-
point interval. The interpretation is the following: if kx is close to 0 (i.e. kTiter
is negligible against TMTTF), then the exponential distribution of parameter TMTTF
on 0 and kTiter is close to a uniform distribution, distribution for which the
mean is kTiter/2. When kx increases, the mean of the distribution deviates
from kTiter/2 and gets smaller.

Returning back to the expression of the total time we can write

Ttotal =
N ∗ Titer + Tchkpt ∗ N/k

kxe−kx

1−e−kx − Tchkpt
TMTTF

. (2)

Our goal is to minimize the total time Ttotal with respect to the parameter
k. For the sake of simplicity we linearize the exponentials around kx = 0, we
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obtain
Ttotal =

N ∗ Titer + Tchkpt ∗ N/k

1− Tchkpt
TMTTF − kTiter

2TMTTF

the minimum is obtained for

k =
√

Tchkpt(2TMTTF − Tchkpt)
Titer

−
Tchkpt
Titer

.

Giving the optimal time between two checkpoints

k · Titer =
√

Tchkpt(2TMTTF − Tchkpt)− Tchkpt. (3)

If TMTTF >> T 2
chkpt, then

k · Titer ∼
√
2TMTTF · Tchkpt. (4)

The same formula as in [9].
In order to assess the validity of Formula (3) and Formula (4), we present

an experimental simulation in Figure 1. Here are the characteristics of the
simulation: Titer and Tchkpt are assumed constant along the iteration (this is
the case for CG, but not GMRES). In our model, N is set to 1500, Titer is set
to 1ut (unit of time), Tchkpt=Titer and TMTTF = 50ut. The time to recover the
MPI environment is set to 0 and the time to recover the data is the time to
perform one checkpoint; we are mostly interested in the e�ect of the roll back.

For each time interval checkpoint k, we perform nb experiments=60 exper-
iments and we report the mean time to solution for those sample with the blue
curve. First of all, note that for those value of Titer and Tchkpt, there is clearly
an optimal value of checkpoint. We then plot the two models corresponding to
Formula (3) and Formula (4). We see that the black curves corresponding to
Formula (3) are closer to the blue curve, the experimental curve, than the red,
corresponding to Formula (4) is. This was expected since the black curve takes
into account second order term in Tchkpt while the red curve does not. If the
ratio is kept reasonably large enough TMTTF/Tchkpt, we see that the Formula 4 is
accurate enough to have a good estimation of the minimum, the Formula 2, for
itself, is fully representative of the experiments.

For GMRES with restart m, to compute the vector vk+1 at iteration k, we
need k[m] + 1 vectors. The checkpointing strategy we choose is to checkpoint
the data when k = 0 (at the restart). In this case, we just have one vector
to checkpoint (the approximate solution x) per m iterations. This strategy
is called chkpt R. Note that if the size of the restart is long relative to the
mean time between failure of the machine (then the method becomes closer
to Full GMRES), it might be more advantageous to checkpoint GMRES with
restart as Full GMRES (at every iteration) in order to avoid long roll back (see
Section 3.3).
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Figure 1: Comparison of the models for the checkpoint/rollback optimization
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4 The Lossy Approach

The lossy approach with Block Jacobi step is de�ned by Equation (1). The
lossy approach is strongly connected to the Block Jacobi algorithm. Indeed, a
failure step with the lossy approach is a step of the Block Jacobi algorithm on
the failed processor. Related work is by Engelmann and Geist [5], they propose
to use the Block Jacobi itself as a scalable algorithm to failure. In fact the Block
Jacobi step can be performed for the recovery but this can be embedded in any
solver. Thus the user is free to use the iterative solver he wants. In particular
one can choose one of the Krylov methods that are known to be more robust
than the Block Jacobi method. On a related note, this is the work of Jacobi
himself, during the time when computation were doing by hand. Gauss [10,
p.321] states that the method was extremely tolerant to errors.

In the next section, we discuss about the convergence we shall expect after
a recovery. In the Section 4.2 we give some issues about the lossy approach and
how to tackle them away.

4.1 Quality of the New Approximate Solution Given by
the Lossy Approach

The lossy approach implies that the iterations are di�erent after a failure and
recovery than from a run without failure. (This is directly opposed to the
checkpoint strategy where the recovery provides the lost data.) In this section,
we give some hints to describe whether the convergence (in term of iterations)
will occur at the same iteration between failed and non-failed versions or that
we should expect a long delay before the convergence of the lossy approach.
Surprisingly enough, failures even enhance the convergence in some cases.

To quantify the convergence property of the lossy approach, we focus on the
size of the residual norm \jump" made during the recovery and the speed of
convergence after the recovery.

Since the lossy approach is nothing more than a step of Block-Jacobi-like
method, a part of the theory of stationary iterative methods applies and we can
prove that

‖x(new) − x∗‖ ≤

1 + ‖A−1
ff ‖

2 ∑
j 6=f

‖Afj‖2
1/2

‖(x(old)
j − x∗j )‖ (5)

‖r(new)‖ ≤

1 + ‖A−1
ff ‖

2 ∑
j 6=f

‖Ajf‖2
1/2

· ‖r(old)‖ (6)

As a result of these inequalities we can clearly quantify the jump of the residual
norm after a recovery; the new residual norm is close to the previous one if
(‖A−1

ff ‖2
∑

j 6=f ‖Ajf‖2‖)1/2 is small compared to 1 (or at least of the same or-
der). This assumes that the diagonal block is not ill-conditioned and the norm
of the extra-diagonal blocks is small relative to the norm of diagonal blocks.
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The residual norm of the approximate solution is not the only thing that
matters in an iterative solver. The iterative solver computes other information
in other vectors, losing those vectors and restarting from the new approximate
solution could theoretically lead to some delay in the convergence. This problem
is the same problem as the one induced by any restart in an iterative method.
In a general manner, the lossy approach will perform well if the convergence
behavior of the method is linear or sub-linear. Thus the lossy approach is jus-
ti�ed in all the restarted method (in particular GMRES with restart) provided
the \jump" of the residual norm (controlled by Equation (6)) is not too high.

GMRES with restart has the potential to stagnate during the iteration. We
can view this as: along the restarts, GMRES �nds a �xed point for itself. This
�xed point can be described by its spectral properties. If the failure occurs
during stagnation, the lossy approach computes another vector with the same
quality in term of residual norm (Equation (5) and (6)) but this purges the
vector from its bad spectral properties. In our experiments (see Table 3 and
Table 4), we often observe that GMRES with restart with failure and the lossy
approach performs better in term of number of iterations than the non-failed
approach.

4.2 Remarks About the Lossy Approach

Block Jacobi preconditioner
The main cost of the recovery step in Phase III is to perform the LU factorization
of the local matrix. However it is worth to note that if the preconditioner used
is a Block Jacobi preconditioner those factors are available from step II and
thus the recovery of x can be done to the price of a preconditioner step and a
matrix-vector product.

What about a singular diagonal block Ai,i?
If the matrix A is nonsingular (which is assumed), we can extract rows from the
column block A:,i such that these rows form a nonsingular square block. Thus
in theory, this is not an issue; however in practice, we only focused to matrix
with nonsingular (and even well-conditioned) diagonal block. Once more in the
case of a Block Jacobi preconditioner, this property is assumed and thus the
lossy approach �ts well.

What about a matrix-free method?
The lossy approach needs to know the diagonal block corresponding to the failed
processor. In some matrix-free method, those blocks are known; when they are
not, the lossy approach will not work. An idea is to apply the global matrix-
vector product to solve iteratively the local system (with restriction operators).
Since the space in which we are working is smaller than the size of the initial
matrix, the iterative solve should converge faster (than redoing the whole run).

What about multiple failures on a single instance ?
This is not a theoretical issue. If processors i and j fail, a lots of options are
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available. Basically we have to solve the following system(
Ai,i Ai,j

Aj,i Aj,j

)
.

This can be done via any iterative method (GMRES), Block Jacobi steps, direct
solve, whatever.

Restriction on the iterative method used
An important requirement of this recovery technique is to know the approxi-
mate solution x at each step of the iterative methods. This is true for most of
the iterative methods (the stationary iterative methods, Conjugate Gradient,
Orthomin, GCR, BiCGStab,...) but not all. For example, in the Full GMRES
method, the approximate solution is computed only at the end of the algorithm.
In this latter example, we use the following trick (see [1] for the notation). The
solution x(k) at step k is implicitly known via the formula:

x(k) = x(0) + (v(1), . . . , v(k))y(k), (7)

where the quantities y(k) is a small vector that can be computed from the
data of any non-failed processors and the vectors x(0), v(1),...,v(k) are classically
distributed among the processors. From Equation (7), if a failure occurs on the
processor f , the local part of x(k) can be computed at this time on all the non-
failed processor. Thus the lossy approach can also be used without modifying
the generic algorithm (x computed at convergence only).

4.3 Generalization to Eigenvalue Computation

We believe that the concepts presented in the lossy algorithm for solving systems
of linear equations could be applied to other methods as well. In this section,
we move from the linear solves to the eigencomputation. We use the Arnoldi
algorithm as described in [13, §7.5] and will take the same notation. For the
sake of the simplicity, we suppose in this description that the blocksize of the
method is 1 and that we are looking for the largest eigenvalue of the matrix A.
(In the experimental Section 5, we take more complex case.) The lossy approach
for the Arnoldi method is de�ned as follows. If the processor f fails at iteration
nf , Phase III is:

1. for each non failed processor, compute the largest eigenvalue λ(Ritz) and
the associated eigenvector w(Ritz) of H(nf ),

2. for each non failed processor, k, compute its local part of the Ritz vector:
v
(Ritz)
k = (v(1)k , . . . , v

(nf )
k )w(Ritz),

3. the failed processor sets its local part of the Ritz vector to 0: v
(Ritz)
f = 0,

4. x = Av(Ritz) − v(Ritz)λ(Ritz),

5. the failed processor performs the local solve xf = (Af,f − Iλ(Ritz)) xf
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6. the new vector x is an approximation of the eigenvector associated to the
largest eigenvalue, then the Arnoldi method can be restarted with x as
starting vector.

5 Experimental Results

Experiments are performed on the boba Linux cluster at The University of Ten-
nessee composed of 64 dual processors Intel Xeon at 2.40 GHz with Myrinet
interconnect. We use the double precision 
oating-point arithmetic. The MPI
library used is FT-MPI. Test matrices are from The University of Florida sparse
matrix collection [4]. We have chosen the matrices among the largest unsym-
metric matrices available in the collection.

The experiments we report are simulations of what we aim in the sense that
we aim machines with thousands of processors while we are working with tens
of processors. However we want to make clear that the simulation stops there.
The failure of one process is a real failure. It is simulated in the experiments by
a forced exit in the process designed to fail. The software developed is ready
to be used on a real large-scale system.

We recall that the recovery is performed in three phases: Phase I: recover of
the MPI environment, Phase II: recover of the static data and Phase III: recover
of the variable data. Even though the subject of the paper is neither Phase I
nor Phase II, we give some clues here on what are our actual implementation
choices.

Phase I is based on FT-MPI, we used the classical approach described in
Section 2.

To recover the matrix A and the right-hand side b, we have chosen to perform
a disk I/O. Since the matrix is stored in a �le, this is a rather natural solution.
We have changed the original storage format of the matrices. They are not
stored on the Harwell Boeing compressed sparse column format but we rather
preprocess them to a compressed sparse row format. Doing this, each processor
need access a contiguous part of the �le in disk. At the �rst reading of the
matrix (initialization of the code), we store in an array the pointers where each
processor starts to read the �le (we use the C routine ftell), this part of
the initialization is sequential. We spread these pointers on all the processors.
If a failure occurs, at Phase II of the recovery, we �rst recover the pointer
corresponding to the restarted processor and then we access the data in this
huge �le as if we had one small �le for the failed processor (we use the C routine
fseek). Another solution would have been to perform a diskless checkpoint of
the matrix at the initialization. This solution is currently an option of the code
we have, it performs similarly to a disk I/O for what we have observed. We will
not discuss this subject in this paper; it will be an interesting subject only with
a larger number of processors. If there is a preconditioner (static data) then our
choice is to recompute the lost LU factors (no checkpoint neither).

For the lossy approach, the local solve is done via UMFPACK Version 4.3 [3].
The default parameters are used. We give two sets of results, �rst, in Section 5.1,
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we go in detail through a given matrix, in particular we justify some technical
choices made in the code; then in Section 5.2, we present our main results.

5.1 Justi�cations of some choices

In this section, we study: (a) whether we shall perform the checksum either in

oating-point arithmetic or in binary arithmetic; (b) whether it is advantageous
to save the scalar product during the algorithm.

The matrix, A, we consider in this section is cage14. It is of order n =
1, 505, 785 with nnz = 27, 130, 349 nonzero elements. The run is performed on
32 computing processors (which means 33 for the checkpoint algorithm since
there is an additional checkpoint processor in the con�guration). The right-
hand side is b = Ax∗ where x∗ is the vector with all ones. The iteration
stops when the iterative method has found an approximate solution x such
that ‖b−Ax‖/‖b‖· tol, where tol= 10−6. The method we study is GMRES(30)
without preconditioner and without failure it converges in 13 iterations and lasts
15.47s (Cf. Table 1).

The experiments consists in the same run but with the failure at iteration 10
of the processor #0, the recovery mode is chkpt R. In this case (see Section 3.4),
the chkpt R algorithm performs checkpoints at each restart. Since the failure
(iteration 10) is far before the �rst restart (iteration 30), the only checkpoint
made is done at iteration 0. Thus, when the failure occurs at iteration 10, the
algorithm has to rollback to the last checkpoint, that is to rollback to iteration
0. And then it performs the 13 iterations necessary to converge. Thus the 23
iterations for the chkpt R algorithm reported in Table 1 comes with no surprise.
In this particular case, the Full GMRES algorithm and the GMRES(30) algo-
rithm are the identical. The choice of chkpt R in this case is not appropriate
and one shall certainly have performed checkpoint of the vectors at each iter-
ations (chkpt F) in order to have no rollback at the failure. (see Section 5 for
a con�rmation). This example is good to stress out that the optimization of
the number of checkpoint versus the roll back (discussed in Section 3.4) is an
important issue, in most of the cases this problem can be anticipated.

In Table 1, we present the results obtained where # iters represents the
number of iterations for the algorithm to converge and TWall the time to solution
(in seconds). The detailed timing of the recovery will be discussed in the next
section.

We compare three variants of the chkpt R algorithm explained in Section 3.3:
the �rst uses the double-precision arithmetic, the second uses the binary arith-
metic and the third uses double-precision arithmetic in which we recompute the
scalar products at the roll back.

1. At our scale of problems, reusing the scalar products seems not to have a
large e�ect in the overall time. We expect that this e�ect shall be more
important when the size of the problem gets larger or when the roll back
is more important. In the sequel the code we present do not recompute
the scalar products.
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2. Using either binary arithmetic or double-precision arithmetic seems not
to be a big issue. Both provide the same timing results and the errors
due to the 
oating-point arithmetic are not damaging. In the sequel, the
checkpoints are made using the binary arithmetic.

matrix n nnz tol # procs nf nnzf

cage14 1, 505, 785 27, 130, 349 10−6 32 47, 056 414, 240
method recovery iterf # iters TWall

GMRES(30) no 13 15.47
chkpt R double-precision 10 23 28.66
chkpt R double-precision - dot recomputed 10 23 28.92
chkpt R binary 10 23 28.80

Table 1: Comparison of three variants of the checkpoint fault-tolerant algo-
rithms chkpt R, times are given in seconds

5.2 Experiments with Unsymmetric Matrices

In Table 3, we give the main results of our experiments. In the following, we
�rst go through the di�erent parameters and explain their consistency among
the di�erent matrices tested then we are drawing the conclusions of the table.

Eight matrices are tested and the results for a given matrix are given in the
Table 2 (GMRES(30) with Block Jacobi preconditioner), Table 3 (GMRES(30)
without preconditioner) and Table 4 (Arnoldi Method).

For each of the matrices, we give the name, the order (n), the number of
nonzero elements (nnz), the tolerance (tol) and the number of computational
processors (# procs). We are considering that only one failure happen in the
experiments, and for the sake of comparison between the methods, it happens
always on the same processor and at the same iteration. For the local matrix
of the failed processor we give its order(nf ) and its number of nonzero elements
(nnzf ). These two numbers are representative of the amount of work that we
would need to accomplish during a recovery step. The load balancing among
the processors is done by setting ni = n/ (# procs). For our matrices, this
proves to equilibrate well nnzi. The iterative solver is stopped at iteration
i if: ‖b − Axi‖2 ≤ ‖ri‖2·tol. Regarding the Arnoldi method, de�ning x

(k)
i ,

the approximate solution of unit norm of the kth eigenvector, and λ
(k)
i , the

approximate value for the kth eigenvalue, λ
(k)
i = (x(k)

i )T Ax
(k)
i , the eigensolver

is stopped at iteration i if: ‖Axi − xiλi‖2 ≤ |λi|·tol. Note that if the algorithm
uses checkpoints the number of processors used is # procs +1 whereas for the
lossy variant it is # procs.

For the di�erent matrices and the di�erent iterative methods, we test the
three recovery modes explained in Section 3.1 and 4 (chkpt R, chkpt F or lossy).
For the sake of comparison, we also provides the information for the scheme
without failure (with or without checkpoint).
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The iteration where the failure occurs is iterf , we set it at (roughly) the half
of the number of iterations for the scheme without failure, or we set two values
one at the �rst third, the other at the second third. The LU factors of the
block diagonals of the initial matrices used in the Block Jacobi preconditioner
are computed via UMFPACK Version 4.3 [3].

Then we give the results: the number of iterations to converge (# iters),
the time to solution (TWall), the time of the checkpoint (Tchkpt), the time lost
in the rollback (TRollback: for the chkpt F method, there is no roll back; for
the chkpt R method, there is a roll back; for the lossy approach if this time
is positive, the method with failure performs more iterations than without and
this quantify the time spent in those iterations, this time is negative when the
Block Jacobi step of the lossy approach improves the convergence), the time for
the recovery (TRecov: it is the maximum time among all the processors of the
di�erence between the time when the code enter the recovery routine and the
time when the code exit it), the time for Phase I of the recovery (TI: this is
the time that it takes to the system and the FT-MPI library to provide a new
MPI environment, we typically measure it on one of the non faulty processors),
the time for Phase II of the recovery (TII,A,b: the time to do the I/O to recover
A and b; and if needed TII,P : the time to compute the preconditioner, we
measure them on the restarted processor) and �nally the time for Phase III of
the recovery (TIII: the time to recover a value on the restarted processor for x,
it is measured on the restarted processor). All the time are given in seconds.

For all the experiments, we shall have the following identities (in theory):

TWall = TWall(lossy) + Tchkpt + TRollback + TRecov,

TRecov = TI + TII,A,b + TII,P + TIII.

Whereas the checkpoints for the strategy chkpt R are not signi�cant, they
are more signi�cant for chkpt F. For example for Arnoldi method and cage12,
the checkpoint represents up to 8.7% of the method.

For a given number of processors, we observe that the time for Phase I
(recovery of a correct MPI environment) is constant. It is in fact almost pro-
portional to the number of processors used: 0.60s for 8 processors, 1.10s for 16
and 2.00s for 32. The use of ftell and fseek in the I/O have tackles away the
I/O problem. At this point, recover the static data (Phase II) is of the same
order of magnitude as Phase I and Phase III. Phase III consists in the recover of
x, it is either the time to do the inverse checkpoint or to solve the local problem.

In case of a failure, TI and TII shall be the same whether we use the check-
point or the lossy variant. The time to recover will only di�er from TIII . Note
that if the preconditioner used is Block Jacobi (Table 2) then for the lossy
algorithm, Phase III is almost free. The burden of the computation of the
factorization of the local matrix is migrated in Phase II (TII,P ).

Even though, those problems are still toys problems of small size, it is im-
portant to note that both fault-tolerant techniques (checkpoint and lossy) have
reached their initial goal. The number of iterations (resp. time for solution) for
these variants with a fault is signi�cantly smaller than the double of the number
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of iterations (resp. time for solution) for this variant without a fault. Therefore
there are much better than the trivial fault-tolerant algorithm that consists in
retrying the job from the beginning in the event of failure.

Since we lose part of the convergence theory of the initial method, the main
fear with the lossy algorithm is to obtain a results that do not converge at
all. As claimed in Section 4, we note that, for GMRES(30), the best number of
iterations is given for the failed lossy algorithm not the algorithm without failure
(four cases on �ve). So indeed, the lossy recovery improves the convergence. For
Arnoldi, the lossy recovery performs more iterations than the original algorithm,
but this remains reasonable.

We see from the table that the lossy and the checkpoint algorithm compare
fairly in term of time and even though when one is better than the other the
results are pretty closed.

One trend is however clear. Regarding Block Jacobi preconditioned GM-
RES with restart, the checkpoint versions (chkpt R and chkpt F) perform more
iterations (due to the roll back) as the original algorithm (for chkpt R at least),
have some checkpoint overhead and have the same recover cost as the lossy al-
gorithm. Thus, as long as, the lossy algorithm performs a less or equal number
of iterations as the original algorithm (which is always the case in Table 3), it
is faster.

Conclusions

The lossy technique (at least on the form presented in this paper) is intended
to work on matrices where a Block Jacobi preconditioner is appropriate. In this
paper, only matrices that satisfy this property are presented and, from our ex-
perience, and with no improvements of the technique, it does not generalize to
other matrices. The lossy algorithm has its risks. Albeit Equation (5) and (6),
the success of the lossy algorithm is hard to predict (in particular the speed of
convergence after the recovery). The robust solution is at this point checkpoint-
ing. Regarding performance point of view, we have seen that the checkpointing
algorithm performs well and that, for the size of problem we consider (less than
32 processors), by carefully adapting the checkpoint algorithm to the iterative
methods, the overhead is acceptable.

A major advantage of the lossy algorithm resides in the fact that it enables
fault tolerance with no overhead when there is no failure. We think that at
this stage of early beginning of the implementation of the fault tolerance in end
user codes it might be a convincing argument for the user. A consequence is
that this method can be plugged as an external library to any existing software
without modi�cations of the code. Another advantage of the lossy algorithm is
that, for a sparse matrix, Phase III of the recovery only involves a few number
of processors.
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GMRES(30) with Block Jacobi preconditioner
matrix n nnz tol # procs nf nnzf

fidap035 19, 716 218, 308 10−6 8 2, 465 26, 848
recovery iterf # iters TWall TChkpt TRollback TRecov TI TII,A,b TII,P TIII
lossy no 353 7.38

chkpt R no 353 7.40 0.02
lossy 150 348 7.95 0.72 0.60 0.04 0.04 0.01

chkpt R 150 353 7.96 0.02 none 0.71 0.60 0.04 0.04 0.00

matrix n nnz tol # procs nf nnzf

af23560 23, 560 484, 256 10−6 8 2, 945 59, 841
recovery iterf # iters TWall TChkpt TRollback TRecov TI TII,A,b TII,P TIII
lossy no 52 3.23

chkpt R no 52 3.23 0.00
lossy 30 51 4.30 1.08 0.62 0.09 0.32 0.02

chkpt R 30 52 4.29 0.00 none 1.06 0.63 0.09 0.32 0.00

matrix n nnz tol # procs nf nnzf

stomach 213, 360 3, 021, 648 10−10 16 13, 335 185, 541
recovery iterf # iters TWall TChkpt TRollback TRecov TI TII,A,b TII,P TIII
lossy no 18 7.98

chkpt F no 18 8.43 0.52
chkpt R no 18 8.15 0.00
lossy 10 18 14.11 5.50 1.05 0.33 3.61 0.35

chkpt F 10 18 13.65 0.52 5.19 1.10 0.33 3.61 0.13
chkpt R 10 28 16.00 0.00 2.29 5.15 1.11 0.33 3.61 0.01

Table 2: Comparison of the checkpoint fault-tolerant algorithm and the lossy
fault-tolerant algorithm, times are given in seconds
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GMRES(30) (no preconditioner)
matrix n nnz tol # procs nf nnzf

stomach 213, 360 3, 021, 648 10−10 16 13, 335 185, 541
recovery iterf # iters TWall TChkpt TRollback TRecov TI TII,A,b TIII
lossy no 385 38.89

chkpt R no 385 41.04 1.92
lossy 100 372 42.38 −1.56 5.38 1.03 0.33 3.91

chkpt R 100 395 45.49 1.92 2.40 1.68 1.02 0.32 0.20
lossy 200 374 42.44 −1.32 5.46 1.02 0.33 3.83

chkpt R 200 395 47.34 1.92 3.60 1.83 1.02 0.33 0.20

matrix n nnz tol # procs nf nnzf

cage14 1, 505, 785 27, 130, 349 10−6 32 47, 056 414, 240
recovery iterf # iters TWall TChkpt TRollback TRecov TI TII,A,b TIII
lossy no 13 15.47

chkpt F no 13 16.88 1.50
chkpt R no 13 15.49 0.02
lossy 10 14 21.36 6.35 2.20 1.56 1.64

chkpt F 10 13 22.92 1.50 5.51 2.20 1.73 1.39
chkpt R 10 23 28.80 0.02 7.12 4.80 2.20 1.50 0.24

Table 3: Comparison of the checkpoint fault-tolerant algorithm and the lossy
fault-tolerant algorithm, times are given in seconds
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Arnoldi Method
matrix n nnz tol ne bs # procs nf nnzf

fidap035 19, 716 218, 308 10−6 3 3 8 2, 465 26, 848
recovery iterf # iters TWall TChkpt TRecov TI TII,A,b TIII
lossy no 69 2.32

chkpt F no 69 2.51 0.19
lossy 35 83 3.02 0.88 0.60 0.03 0.20

chkpt F 35 69 3.69 0.19 0.88 0.61 0.04 0.23

matrix n nnz tol ne bs # procs nf nnzf

torso1 116, 158 8, 516, 500 10−6 4 4 16 7, 260 425, 766
recovery iterf # iters TWall TChkpt TRecov TI TII,A,b TIII
lossy no 60 16.35

chkpt F no 60 17.28 0.92
lossy 35 77 23.92 3.46 1.08 0.58 1.30

chkpt F 35 60 21.28 0.92 2.90 1.08 0.56 0.33

matrix n nnz tol ne bs # procs nf nnzf

cage12 130, 228 2, 032, 536 10−2 5 5 8 16, 279 162, 766
recovery iterf # iters TWall TChkpt TRecov TI TII,A,b TIII
lossy no 120 24.28

chkpt F no 120 24.33 0.10
lossy 65 146 36.02 11.55 0.60 0.22 10.43

chkpt F 65 120 26.31 0.10 1.44 0.90 0.22 0.31

matrix n nnz tol ne bs # procs nf nnzf

cage13 445, 315 7, 479, 343 10−6 1 1 32 13, 917 112, 831
recovery iterf # iters TWall TChkpt TRecov TI TII TIII
lossy no 63 44.11

chkpt F no 63 47.97 3.86
lossy 30 73 54.89 2.72 2.25 0.19 0.48

chkpt F 30 63 50.15 3.86 2.84 2.06 0.18 0.38

Table 4: Comparison of the checkpoint fault-tolerant algorithm and the lossy
fault-tolerant algorithm, times are given in seconds
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In this paper, we only have focused on the single failure at a time problem
(either for the checkpoint or for the lossy approach). However our codes are
able to deal with any number failures provided they occur separately (after a
failure, Phase III has to be �nished before another failure is allowed to happen).
Generalization to deal with multiple failures at the same time is theoretically
not an issue. Also note that current work of second and third authors is actively
dealing with this issue for the checkpoint algorithms [2].

For the lossy approach, in the case where we are not using a Block Jacobi
preconditioner (or for multiple failures at a time), the local solve is performed
via UMFPACK Version 4.3 [3]. This is a sparse direct solver. Another idea
is certainly to perform the local solve via an iterative method. When multiple
failures occur simultaneously, this alternative is interesting. Also note that using
an iterative method enables to play with the stopping criterion, if the failure
occurs while the error is at a given level, it makes sense to solve the local system
only at this level. Using a direct solver, the local solve are always done to full
accuracy.

We have observed that performing a Block Jacobi step between two GMRES
cycles often ameliorates the speed of convergence (in our case always). This
con�rms recent works that propose hybrid scheme (like Block Jacobi/GMRES)
to cure the stagnation of GMRES with restart.
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