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1. Introduction. In the 90s, Dhillon and Parlett devised a new algorithm (Mul-
tiple Relatively Robust Representations, MRRR) for computing numerically orthog-
onal eigenvectors of a symmetric tridiagonal matrix T with O(n2) cost [10, 12, 13,
14, 15]. This algorithm was tested on a large and challenging set of matrices and
has been incorporated into LAPACK version 3.0 as routine stegr. The algorithm is
described, in the detail we need here, in Section 2. For a more detailed description
see also [6]. An example of MRRR in action is given in Section 3.

In 2003, one of us (Vömel) came to Berkeley to assist in the modification of stegr
to compute a subset of k eigenpairs with O(kn) operations. When testing stegr on
more and more challenging matrices, he discovered cases of failure.

Investigation of these cases brought to light assumptions made in stegr that
hold in exact arithmetic and in the majority of cases in finite precision arithmetic but
can fail. These assumptions, why they are reasonable, and how they can fail, are the
subject of Section 4.

In Section 5, we propose and analyze various remedies for the aforementioned
shortcomings and show how to incorporate them into MRRR. We also look at the
cost of these modifications. We select as most suitable an approach that is based on
small random perturbations and introduces artificial roundoff effects. This approach
preserves the complexity of the original algorithm.

2. The algorithm of Multiple Relatively Robust Representations. The
MRRR algorithm [10, 12, 13, 14, 15] is a sophisticated variant of inverse iteration [9].
It addressed the challenge of computing numerically orthogonal eigenvectors of a
symmetric tridiagonal matrix T ∈ Rn×n for eigenvalues that are very close to each
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other. The difficulty of this task is that each computed eigenvector tends to be
corrupted by components from its neighbors, leading to non-orthogonal vectors.

One way to overcome this obstacle is to achieve highly accurate eigenpairs satis-
fying

‖(T − λiI)vi‖ = O(nε|λi|);(2.1)

the eigenpairs have a relatively small residual norm with respect to |λi|. For a small
eigenvalue λ, this is a much stronger demand on accuracy then the common condition

‖(T − λiI)vi‖ = O(nε‖T ‖).(2.2)

(Throughout this paper, ε denotes the unit roundoff.)

2.1. Relatively Robust Representations. The first contribution of MRRR is
the observation that for most shifts σ, the standard triangular factorization T −σI =
LDLT , L unit bidiagonal, D diagonal, exists and has the property that small relative
changes in the nontrivial entries of L and D cause small relative changes in each small
eigenvalue of LDLT (despite possible element growth in the factorization). This is in
sharp contrast to the entries in T −σI which have this property only in special cases,
see [1]. We call (L, D) a Relatively Robust Representation (RRR) when it determines
a subset Γ of the eigenvalues to high relative accuracy Armed with an RRR, we can
then compute an approximate eigenvalue to high relative accuracy. This can be done
by bisection for a single eigenvalue λ with O(n) work, yielding λ̂ satisfying

|λ − λ̂| ≤ Knε|λ̂|,(2.3)

where K is a modest constant independent of T and λ. Moreover, when the matrix is
definite, then dqds may be used to compute all eigenvalues to this accuracy in O(n2)
operations.

2.2. The FP vector. The second innovative feature of MRRR is based on the
fact that, for an accurate approximate eigenvalue λ̂, it is possible to find the index r
of the largest component of the true wanted eigenvector v using a double factorization

(LDLT − λ̂I) = L+D+LT
+ = U−D−UT

−(2.4)

with O(n) work. This was discovered in the mid 1990’s independently by Godunov
and by Fernando, see [12] and the references therein. From

sin2 6 (er, v) = 1 − cos2 6 (er, v) = 1 − v2(r),(2.5)

we see that er, the r-th column of the identity, cannot be a bad approximation to the
true eigenvector. The algorithm solves

(LDLT − λ̂I)z = erγr, z(r) = 1,(2.6)

with a normalization factor γr and γ−1
r = [(LDLT − λ̂I)−1]rr. An eigenvector expan-

sion [12] shows that

‖(LDLT − λ̂I)z‖2

‖z‖2
=

|γr|
‖z‖2

≤ |λ − λ̂|
|v(r)| .(2.7)
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In particular, if r is chosen such that |v(r)| ≥ 1/
√

n, then an upper bound on (2.7)

is
√

n |λ − λ̂|. Now (2.7) together (2.3) with yields (2.1), a relatively small residual
norm. In [12], the resulting z from (2.6) is called the FP vector, FP for Fernando and
Parlett. The reward for the relatively small residual norm of the FP vector is revealed
by the classical gap theorem, often attributed to Davis and Kahan, see [12]. It shows
that

| sin 6 (z, v)| ≤ ‖LDLT z − zλ̂‖2

‖z‖2 gap(λ̂)
≤ |λ − λ̂|

‖v‖∞ gap(λ̂)
,(2.8)

where gap(λ̂) = min
{

|λ̂ − µ| : λ 6= µ, µ ∈ spectrum(LDLT )
}

. By (2.3), we thus ob-

tain

| sin 6 (z, v)| ≤ Knε|λ̂|
‖v‖∞ gap(λ̂)

=
Knε

‖v‖∞relgap(λ̂)
,(2.9)

defining the relative gap, relgap(λ̂). Thus, when λ̂ and gap(λ̂) are of not too different
size, the angle between the FP vector and the eigenvector is O(nε).

2.3. The representation tree and the differential qd algorithm. The third
new idea of the MRRR algorithm is to use multiple representations in order to achieve
large relative gaps. By large we mean larger than a threshold, usually 1.e − 3. If the
relative gaps of a group of eigenvalues are too small, then they can be increased by
shifting the origin close to one end of the group. Furthermore, the procedure can be
repeated for clusters within clusters of close eigenvalues. The tool for computing the
various RRRs is the stationary differential qd algorithm. It has the property that tiny
relative changes to the input (L, D) and the output (L+, D+) with LDLT − σI =
L+D+LT

+ give an exact relation. The MRRR procedure for computing eigenpairs is
best represented by a rooted tree. Each node of the graph is a pair consisting of
a representation (L, D) and a subset Γ of the wanted eigenvalues for which it is an
RRR. The root node of this representation tree is the initial representation that is an
RRR for all the wanted eigenvalues, each leaf corresponds to a singleton, a (shifted)
eigenvalue whose relative separation from its neighbor exceeds a given threshold.

2.4. Twisted factorizations. Another ingredient of the MRRR algorithm is
the way the FP vector is computed. One uses a twisted factorization to solve (2.6) as
follows. With the multipliers from (2.4), let

Nr =



























1
L+(1) 1

. .
. .

L+(r − 2) 1
L+(r − 1) 1 U−(r)

1 U−(r + 1)
1 .

. .
. U−(n − 1)

1



























,

and, with the pivots from (2.4) and γr from (2.6), define

∆r = diag(D+(1), . . . , D+(r − 1), γr, D−(r + 1), . . . , D−(n)).
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Then the twisted factorization at λ̂ (with twist index r) is given by

LDLT − λ̂I = Nr∆rN
T
r .(2.10)

Since Nrer = er and ∆rer = γrer, the solution of (2.6) is equivalent to solving

NT
r z = er, z(r) = 1.(2.11)

The great attraction of using this equation is that z can be computed solely with
multiplications, no additions or subtractions are necessary. By (2.11), we obtain

z(i) =

{

−L+(i)z(i + 1) , i = r − 1, . . . , 1,
−U−(i − 1)z(i − 1) , i = r + 1, . . . , n.

(2.12)

This procedure together with the use of the differential qd algorithms, permits the
error analysis that shows that roundoff does not spoil the overall procedure [15].

2.5. Putting it all together: the MRRR algorithm. Combining all the
ideas from the previous sections, we obtain the following algorithm:

Algorithm 1 The MRRR algorithm.
for the current level of the representation tree do

for each eigenvalue with a large relative gap do

Compute an approximation that is good to high relative accuracy.
Compute its FP vector.

end for

for each of the remaining groups of eigenvalues do

Choose shift σ close to the outside of the group.
Compute new RRR L+D+LT

+
= LDLT − σI.

Refine the eigenvalues.
end for

Proceed to the next level of the representation tree.
end for

3. The MRRR algorithm in practice. In [17], Wilkinson introduced two
classes of symmetric tridiagonal matrices W+

2m+1 and W−
2m+1 for positive integers m.

W+
2m+1 is more interesting for our purposes. It is defined as

W+
2m+1 = tridiag





1 1 . . . 1 1
m m − 1 . . . 0 . . . m − 1 m

1 1 . . . 1 1





We want to to illustrate the action of MRRR on W+
21. The algorithm first computes a

shift σ so that T −σI becomes definite, then all eigenvalues of the root representation
LDLT = T − σI are computed by dqds. In Table 3.1 we show the eigenvalues of W+

21

and of the root representation whose shift is σ = 10.746194215443904, a computed
upper bound on the largest eigenvalue of T (hence LDLT is negative definite). The
relative gaps are with respect to the root representation.

MRRR uses a threshold to decide which relative gaps are large enough, currently
1.E − 3. (That is, eigenvalues that agree to fewer than three digits are declared
relatively isolated.) The last column of Table 3.1 shows that the relative gaps of the
first nine eigenvalues exceed the threshold and thus are singletons for the algorithm.
The corresponding FP vectors are computed immediately. The remaining eigenvalues
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Index λi(T ) λi(LDLT ) |λi+1 − λi| |λi+1 − λi|/|λi|
1 -1.125441522119984 -11.87163573756389 1.379 0.116
2 0.253805817096679 -10.49238839834723 0.694 0.066
3 0.947534367529293 -9.79865984791461 0.842 0.086
4 1.789321352695081 -8.95687286274882 0.341 0.038
5 2.130209219362507 -8.61598499608140 0.831 0.096
6 2.961058884185726 -7.78513533125818 0.082 0.011
7 3.043099292578824 -7.70309492286509 0.953 0.124
8 3.996048201383624 -6.75014601406028 8.306E-3 1.230E-3
9 4.004354023440857 -6.74184019200305 0.995 0.148

10 4.999782477742902 -5.74641173770100 4.619E-4 8.039E-5

11 5.000244425001912 -5.74594979044199 1.000 0.174
12 6.000217522257097 -4.74597669318681 1.651E-5 3.479E-6

13 6.000234031584167 -4.74596018385974 1.004 0.211
14 7.003951798616375 -3.74224241682753 4.109E-7 1.100E-7

15 7.003952209528675 -3.74224200591523 1.035 0.277
16 8.038941115814273 -2.70725309962963 7.015E-9 2.591E-9

17 8.038941122829025 -2.70725309261488 1.172 0.433
18 9.210678647304919 -1.53551556813899 5.641E-11 3.673E-11

19 9.210678647361332 -1.53551556808257 1.535 0.100
20 10.746194182903322 -3.25405817949E-8 7.160E-14 2.200E-6

21 10.746194182903393 -3.25405101953E-8
Table 3.1

Eigenvalues, right gaps, and relative right gaps of the negative definite root representation of W+

21
.

come in pairs which are well isolated from each other. For each of these pairs, the
algorithm finds a close shift, computes a new RRR, LDLT − τI = L+D+LT

+, and
refines the eigenvalues of that new RRR. In Table 3.2, we show these refined local
eigenvalues with respect to their new RRRs. Note that the relative gaps inside the
pairs have been significantly improved over those of the root representation (they
are all of order 1) because |λ2i+1 − λ2i| ≈ |λ2i|, i = 5, . . . , 10. With respect to the
appropriate representation, each eigenvalue is now a singleton. In Figure 3.1, we show
the representation tree associated to these computations.

Index local λ (L+D+LT

+
) |λi+1 − λi|/|λi| τ (shift of new RRR)

10 -4.619472590129691E-4 1.0 -5.745949790441989
11 -1.821136708729214E-15
12 -1.6509327074115723E-5 1.0 -4.745960183859731
13 -5.239123482043716E-15
14 -4.109123007352570E-7 1.0 -3.742242005915228
15 -3.071368719442505E-17
16 -7.014749992198161E-9 1.0 -2.7072530926148803
17 -6.432284272916864E-17
18 -5.641544663900284E-11 1.0 -1.5355155680825696
19 -1.932676195102966E-15
20 -7.159957809285440E-14 1.0 -3.25405101953065E-8
21 -9.193866613291496E-23

Table 3.2

Eigenvalues and relative right gaps of the respective children of the root representation of W+

21
.

The last column shows the (incremental) shift τ of the respective representation with respect to the
shift of the root representation.

4. Fallible assumptions. In this section, we show how MRRR can fail. Our
illustrations use (large) Wilkinson and glued Wilkinson matrices. By a glued (sym-
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Leaves (singletons)

Root representation

{11} {21}{20}{10} {19}{18}

{1,...,21}

{5 }{4 }{3 }{2 } {20,21}{18,19}{16,17}{14,15}{12,13}{10,11}

{17}{16}{15}{14}{13}{12}

{1 } {9 }{8 }{7 }{6}

Fig. 3.1. The representation tree for W+

21
. Square boxes correspond to singletons, boxes with

round corners correspond to eigenvalue groups for which an individual representation is needed to
improve relative gaps.

metric tridiagonal) matrix, we denote a matrix

T (γ) =







T1

. . .

Tp






+ γ

p−1
∑

i=1

viv
T
i ,

where vi is a vector with only two nonzero entries of size 1 in the positions corre-
sponding to the last row of Ti and the first row of Ti+1 in T , where T1, . . . , Tp are
symmetric tridiagonal matrices.

4.1. Finding large relative gaps. Assumption 4.1. By suitable shifting,
at least one eigenvalue in a tight cluster of eigenvalues of an unreduced symmetric
tridiagonal matrix can be given a relative gap exceeding any given threshold.

In exact arithmetic, the eigenvalues of an unreduced symmetric tridiagonal matrix
are simple. Thus, a shift to either end of a cluster of close eigenvalues yields a local
eigenvalue that is (nearly) zero and a relative gap of (almost) ∞. So at least one local
eigenvalue becomes a singleton.

When working in finite precision with roundoff, we expect that a tight cluster,
however close in exact arithmetic, will be computed with differences exceeding ελi. By
shifting close to the end of a cluster, we can expect the relative gaps to become large
enough. A typical example was shown in Table 3.2. For example, an incremental shift
of -3.25E-8 from the root representation to the RRR for eigenvalues 20, 21 increased
the relative gap of eigenvalue 20 to 1 since |λ21−λ20| ≈ |λ20|. For matrices with tighter
clusters, more steps of shifting and gradual refinement of the eigenvalues might be
needed to increase the relative separation.

In the following experiment, we look at the second-smallest cluster of a matrix T
obtained from five copies of W+

201 glued together by
√

ε. According to the strategy of
finding large relative gaps, we refine the extremal eigenvalues of the cluster to high
accuracy. Then we compute LDLT factorizations at both ends of the cluster and
choose the end with the smaller element growth for the representation. If the code
performed as usual, by shifting closer and closer to the cluster, we would see for a
certain shift the cluster splitting up into subgroups and singletons. Instead, we see a
refinement of the eigenvalues of the cluster down to the underflow threshold without
being able to find subclusters. In terms of the representation tree, this corresponds
to a long chain and had not been observed in former tests. In Table 4.1, we show
for some parts of the chain the extremal eigenvalues of the cluster together with the
corresponding depth of the representation tree. An explanation of this phenomenon
is given in Section 4.3.
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Index Level 1 Level 2 Level 10 Level 21
6 1.0524021997591E-13 -7.6189638190266E-30 3.83337214181111E-149 1.14585459648E-312
7 1.0524021997591E-13 -7.6189638190266E-30 3.83337214181111E-149 1.14585459649E-312
8 1.0524021997591E-13 -7.6189638190266E-30 3.83337214181111E-149 1.14585459651E-312
9 1.0524021997591E-13 -7.6189638190266E-30 3.83337214181111E-149 1.14585459653E-312

10 1.0524021997591E-13 -7.6189638190266E-30 3.83337214181111E-149 1.14585459654E-312
Table 4.1

(Local) eigenvalues of the second-smallest cluster of the glued matrix T by representation tree
level. (We define the root representation as Level 0 and increase the level number when descending
in the tree from a parent to a child.)

4.2. Finding an RRR. Assumption 4.2. It is always possible to find an RRR
close enough to one (or both) ends of a tight cluster to yield a singleton eigenvalue.
This statement differs from Assumption 4.1 by bringing in the property that the
representation should be relatively robust.

In exact arithmetic, the triangular factorization of a matrix T − σI = LDLT

exists for all but a finite set of shifts σ, the so-called Ritz values of T . Each Ritz value
is the eigenvalue of a leading principal submatrix. The element growth, that is ‖D‖,
is bounded except in a very small interval around these Ritz values.

It can be shown that the even-indexed eigenvalues of the Wilkinson matrices
W+

2m+1 are also Ritz values. In fact, they are the eigenvalues of the leading (and
trailing) m × m submatrix, see [17]. This implies that an LDLT factorization with
such a shift will break down, or in other words: an RRR with such a shift does
not exist. Luckily, for the simple Wilkinson matrices, it is usually not necessary to
choose such a shift for a representation. For the well isolated eigenvalues at the lower
end of the spectrum, one need not shift close to any Ritz value in order to obtain
large relative gaps between the eigenvalues. At the upper end of the spectrum, the
eigenvalues come in pairs consisting of two eigenvalues, the smaller having an even
and the larger and odd index. In this case, one need not shift close to the left (Ritz-)
eigenvalue, a shift to the right of the pair is excellent.

In order to find an RRR, the MRRR algorithm first factors at both ends of the
cluster and monitors the element growth. If the element growth at one end is small,
it is chosen as origin for the RRR. Otherwise, the shift backs off from the ends and
tries again. The benefit from backing off is the possibility of smaller element growth,
the danger is to obtain an RRR whose eigenvalues have small relative gaps.

In our experiment, we consider again the second-smallest cluster of five copies of
W+

201 glued together by
√

ε. As seen in Table 4.1, the glue does not change the finite
precision approximation of the true eigenvalues. Thus, in limited precision, we face an
eigenvalue/Ritz value of multiplicity five. A representation in a small neighborhood
cannot exist. Normally, we would back off enough to ensure modest element growth.
However, since the clustered eigenvalues have zero gaps, backing off is pointless. Even
if we found an RRR, it would not be suitable for the algorithm. Note that the problem
does not occur in the (unglued) matrix but only in the glued case for a reason that
will be explained in Section 4.3.

4.3. Why glued matrices are difficult for MRRR. Table 4.1 of Section 4.1
shows that the eigenvalues of the glued matrix are equal to working accuracy despite
roundoff error. The following simple model can provide a good intuition of the phe-
nomenon: Suppose that the glue connecting the copies were zero but the algorithm
’was not aware of it’, that is, treated it as a non-splitting matrix. Then, for all shifts,
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there would be five equal computed eigenvalues. So, in practice, if there are eigen-
values for which the glue parameter has a negligible effect, then the algorithm will
fail. This is exactly what happens in this case. In fact, it can be shown that the
magnitude of the effect of the glue on eigenvalues is tied to top and bottom entries
of the corresponding eigenvectors. As an intuitive argument, we remind the reader of
Theorem 4.3 for the case of two glued matrices that plays an important role in the
Divide & Conquer algorithm [2, 3, 7], a complete analysis of glued matrices is out of
the scope of this paper, we refer to [16].

Theorem 4.3. Let T1 = Q1Λ1Q
T
1 , T2 = Q2Λ2Q

T
2 and define

D =

[

Λ1 0
0 Λ2

]

, u =

[

QT
1 0

0 QT
2

]

v =

[

last column of QT
1

first column of QT
2

]

.

Let u only have nonzero entries, then the eigenvalues of T are the solutions of the
secular equation

det(I + γ(D − λ)−1uuT ) = 1 + γuT (D − λ)−1u = 1 + γ
n

∑

i=1

u2
i

di − λ
= 0.(4.1)

It is well known that when ui is exactly zero, then di is an eigenvalue of the glued
matrix. Likewise, when ui is tiny (as in the case of the top and bottom entry of the
second eigenvector of W+

201), the effect of the glue on the separation of the eigenvalues
is negligible. Thus, for these glued matrices, the special structure can defeat the
normal effects of rounding errors.

4.4. Computing the FP vector. Assumption 4.4. Let the eigenvalue ap-
proximation λ̂ have high relative accuracy. By starting inverse iteration according to
(2.6) with er, r being the largest component of the true eigenvector, we are guaranteed
that the FP vector has a small angle to the true eigenvector according to (2.9). The
FP vector solves (2.11) and can be computed by (2.12).

This is very satisfactory and correct in exact arithmetic. In finite precision arith-
metic, we might not be able to accurately solve (2.6) (or (2.11)) by (2.12). Although
we obtain a vector with small residual, we need not obtain the true FP vector which
is guaranteed to have a small angle to the true eigenvector. The culprit is underflow
as we now explain.

The eigenvectors of the largest eigenvalue pair of a Wilkinson matrix W+
2m+1, m

sufficiently large, provide examples. Both eigenvectors have their ’essential’ nonzero
part concentrated at the top and the bottom and decay rapidly towards the middle.
This decay commonly causes MRRR (and other methods as well) to return the bi-
sectors instead of the true eigenvectors, see the example of MATLAB in Figures 4.1
and 4.2.

These bisectors are perfectly satisfactory from the point of view of numerically
small residual norms and numerical orthogonality. Moreover, the true eigenvectors
can be obtained as the sum and the difference of the two bisectors.

We now look at the execution of (2.12) on the two largest eigenpairs of W+
201.

The largest entries of the true eigenvectors are at the first and last position. When
executing (2.12), underflow must occur for large enough m (and in particular occurs
for m = 201), which sets the rest of the vector to zero, yielding the bisector instead
of the FP vector.

The danger is that MRRR might choose the same twist index for both vectors,
yielding the same bisector. In exact arithmetic, there are are two maximal entries
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Fig. 4.1. Eigenvector 200 of W+

201
as

computed by MATLAB.
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Fig. 4.2. Eigenvector 201 of W+

201
as

computed by MATLAB.

in the true eigenvectors, and all would be well if the code chose the twist indices at
opposite ends. However, currently there is no mechanism in the MRRR algorithm
that guarantees this.

In summary, the FP vector in exact arithmetic is always a good approximation
to the true eigenvector. However, in the face of underflow, the computed vector will
not satisfy (2.6) and its angle to the true eigenvector will not be small. Furthermore,
MRRR is not guaranteed to produce orthogonal vectors.

5. Modifications to MRRR. This section sketches possible modifications to
MRRR and discusses their principal features.

Section 5.1 essentially invokes the earlier LAPACK routine stein, based on inverse
iteration with Modified Gram-Schmidt orthogonalization. We apply it only to very
tight clusters on which MRRR has failed (as seen in Section 4).

Section 5.2 covers Parlett’s submatrix method which is very efficient but is appli-
cable only for clusters that are well isolated.

Both these methods can be used as fall-back for the MRRR algorithm on a difficult
cluster. However, such a cluster might only be relatively isolated from neighboring
clusters and not well separated by an absolute gap. Then the orthogonality among
the two clusters cannot be guaranteed without additional work. For this purpose, we
discuss the Rayleigh-Ritz projection in Section 5.3.

In the worst case, all these modifications will lead to an algorithm that costs
O(nk2) operations, for a cluster of size k. In Section 5.4, we describe Dhillon’s
elegant proposal to simply get rid of these difficult cases by small componentwise
relative random perturbation of the root of the representation. This approach does
not sacrifice the O(n2) complexity of the original MRRR algorithm.

5.1. Selective inverse iteration with Modified-Gram-Schmidt orthogo-

nalization. In this section, we take a look at inverse iteration with Modified Gram-
Schmidt orthogonalization [5, 8, 9], available in LAPACK’s stein. Its efficiency prob-
lems with matrices from analysis of molecules prompted the research that led to the
development of the MRRR algorithm. It is interesting that stein can cope with the
very tight glued clusters and thus complement stegr in this respect.

Given a set of eigenvalues ordered by increasing value, the procedure is as fol-
lows. First, if an eigenvalue is too close to its left neighbor, it is perturbed by a small
relative amount. Then one step of inverse iteration with a random right-hand side is
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performed. The resulting vector is kept orthogonal to all previously computed eigen-
vectors that belong to eigenvalues within distance ORTOL of the current eigenvalue.
(The choice of the parameter ORTOL = 10−3||T ||1 determines the level of numerical
orthogonality.) The vector obtained is scaled and used as new right-hand side until
the iteration converges. However, it is the orthogonalisation feature that makes stein
inefficient.

Thus, we could use stein as backup for the case when MRRR cannot achieve
relative separation for a cluster. However, this modification would destroy the claim
that MRRR has O(n2) complexity in the worst cases. While inverse iteration itself
costs only O(nk) operations, the total cost of the algorithm is dominated by the
orthogonalization of a computed vector to all previously found eigenvectors, yielding
an O(nk2) algorithm.

5.2. The submatrix method. In this section, we sketch briefly the ideas be-
hind the submatrix method as a means of obtaining an orthogonal basis for the sub-
space defined by a tight isolated cluster. For more details, we refer the reader to [11].

The envelope vector of an invariant subspace of the (symmetric) matrix T is
defined by the property that its j-th entry is the maximal j − th entry over all unit
vectors in the subspace. For a tight isolated cluster of k eigenvalues, the envelope has
k hills separated by k − 1 valleys. The method chooses k submatrices of T with two
properties:

• Each submatrix has a simple eigenvalue in the cluster interval whose nor-
malized eigenvector has very small first and last entries (except for the first
entry of the submatrix at the top and the last entry of the submatrix at the
bottom).

• The indices of each submatrix overlap, at worst, the indices of its adjacent
neighbors.

The respective k (small) eigenvectors of these k submatrices, when padded appropri-
ately with zeros, form a distinguished basis for the subspace. When the cluster is
well isolated, these basis vectors are numerically orthogonal and have a small residual
norm (with respect to T ). Otherwise, they might be not quite orthogonal (but, by
construction, are guaranteed to be linearly independent). Suitable linear combina-
tions are needed to form the eigenvectors of T . We show how to do that in the next
section.

The main attraction of the submatrix method is that by construction, each sub-
matrix has exactly one eigenvalue in the interval spanned by the cluster, thus in terms
of the submatrix, we have to compute the eigenvector of an isolated eigenvalue which
is an easy task.

Typically, the submatrix method is an O(nk) process. However, its limitation
is that the tight cluster needs to be isolated. Some large glued Wilkinson matrices
produce small tight clusters that are not well isolated, an example is shown in the
next section. We could not find a modification of the submatrix method that did not
spoil its complexity in that case.

5.3. Rayleigh-Ritz projections and how to couple MRRR with selective

inverse iteration. In the previous sections, we have seen how to obtain numerically
orthogonal vectors spanning the approximate invariant subspace of a tight cluster.
These basis vectors will be (automatically) orthogonal to other eigenvectors belonging
to eigenvectors outside the cluster, provided that the cluster is isolated. However,
when the the (absolute) gaps on either side of the tight cluster are not large enough,
orthogonality cannot be guaranteed. For this reason, neither inverse iteration nor the
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submatrix method alone can provide a fall-back solution for tight clusters on which
the MRRR algorithm fails.

A possible solution is the following post-processing step whenever the MRRR
algorithm fails to resolve a tight non-isolated cluster and resorts to a special method
to compute a subspace basis. After all eigenvectors have been computed, we can group
together those of the tight cluster and all those belonging to eigenvalues which are
close to it so that the enlarged set has gaps greater than ORTOL to the rest of the
spectrum. (Here, we choose the parameter ORTOL in the same way as in Section 5.1.)
Then, the Rayleigh-Ritz-values and -vector give us the best approximation from that
subspace. The Ritz vectors are orthogonal among themselves and the orthogonality
to the eigenvectors of the rest of the spectrum is governed in the same way as for
stein, see Section 5.1.

Specifically, let Zk be the matrix whose k normalized linearly independent column
vectors zi, 1 ≤ i ≤ k span the enlarged subspace. Furthermore, let

||Tzi − λ̂izi|| = O(nε||T ||), ∀i ∈ {1, . . . , k} .

Define the matrix A = (aij) ∈ Rk×k by

aij =
λi + λj

2
(zi, zj),

and the matrix B = (bij) ∈ Rk×k by bij = (zi, zj).
If Λ holds the (generalized) eigenvalues and the columns of G hold the correspond-

ing generalized eigenvectors of the pencil (A, B), AG = BGΛ, then Rayleigh-Ritz
theory states that

(Λ, ZkG) = arg min
(Λ̂,Ẑ)

||T Ẑ − ẐΛ̂||F .

In practice, the need for the post-processing step of computing Ritz approxima-
tions from a subspace does not occur very often. This is very fortunate since a cost
analysis reveals that for a cluster of size k, it has O(nk2) costs.

Next, we give an example where the post-processing is needed. We consider a
matrix T obtained from five copies of W+

201 glued together by
√

ε. Originally, the
largest eigenvalue pair of the matrix W+

201 is very close to 100.74619418290335. By
gluing 5 copies of the matrix together, we obtain a cluster of 10 eigenvalues that,
at Level 1 of the representation tree (where we shift close to the right side of the
cluster), that splits up into two (tight) clusters of four eigenvalues each and a (not
quite so tight) cluster of two in the middle. (The relative gaps between eigenvalues
999 and 1000 and eigenvalues 1001 and 1002 are both large enough to pass MRRR’s
threshold test.) This is shown in Table 5.1. In order to show that the eigenvalues
belong to different clusters and thus to different representations, we separate them at
the cluster boundaries by a horizontal line. Since the two eigenvalues in the middle
cluster have large relative gaps between themselves, the corresponding eigenvectors
can be immediately computed by MRRR. However, the algorithm is not able to refine
the two outer clusters any more, so it chooses representations closer and closer to the
cluster ends without detecting large enough relative gaps in the eigenvalues which
keep decreasing towards the roundoff level. Recall the behavior observed in Section 4
and documented in Table 4.1. We can cure this situation in each cluster individually
by applying inverse iteration with modified Gram Schmidt orthogonalization on each
group of eigenvalues as described in Section 5.1.
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Index Level 1 Level 2 Level 10
996 -3.841845502299982E-17 3.2287628082475236E-32 1.4072142703872178E-152
997 -3.841845502299985E-17 3.2287628082475225E-32 1.4072142703872178E-152
998 -3.841845502299985E-17 3.2287628082475225E-32 1.4072142703872178E-152
999 -3.841845502299985E-17 3.2287628082475225E-32 1.4072142703872178E-152

1000 -3.827326426940154E-17
1001 -6.336625249605947E-22
1002 -3.680255591970263E-21 -1.1612364990015818E-36 6.952868336216883E-157
1003 -3.680255591970262E-21 -1.1612364990015825E-36 6.952868336216888E-157
1004 -3.680255591970262E-21 -1.1612364990015825E-36 6.952868336216888E-157
1005 -3.680255591970262E-21 -1.1612364990015825E-36 6.952868336216888E-157

Table 5.1

The largest (local) eigenvalues of the glued matrix T by representation tree level.

However, this procedure will only produce vectors that are orthogonal to the other
three vectors within their cluster of four, mutual orthogonality within the cluster
of ten eigenvalues of T is not guaranteed and indeed not given. However, the ten
vectors are linearly independent and provide a good basis for the invariant subspace.
By computing the orthogonal Ritz basis, we obtain orthogonal vectors with small
residuals. In Table 5.2, we display the computed eigenvalues of T and the Ritz values
from the post-processing process.

Index Eigenvalues Ritz-values
996 100.74619418290335 100.74619418290335
997 100.74619418290335 100.74619418290337
998 100.74619418290335 100.74619418290337
999 100.74619418290335 100.74619418290341

1000 100.74619418290335 100.74619418290344
1001 100.74619418290335 100.74619418290345
1002 100.74619420089603 100.74619420089599
1003 100.74619420089603 100.74619420089603
1004 100.74619420089603 100.74619420089604
1005 100.74619420089603 100.74619420089614

Table 5.2

The largest eigenvalues of the glued matrix T and the corresponding Ritz values computed in
the post-processing step.

5.4. Small relative perturbations of the root representation. In Sec-
tion 5.1, we presented inverse iteration with Modified Gram-Schmidt orthogonaliza-
tion as one remedy for tight clusters arising from gluing. Two key factors for that
algorithm’s success are

• The perturbation of an eigenvalue by a small (relative) amount to separate
it from the rest of the spectrum.

• The choice of a random right-hand side for the inverse iteration.
As mentioned, the important drawback of the approach is its repeated use of reothog-
onalization that increases its complexity.

Dhillon had the clever idea to perturb the elements of the root representation by
a (relatively) small amount in order to achieve eigenvalue separation and break up
the tight clusters. After having found an LDLT factorization of T (with appropriate
shift), he suggests using

d̂i = di ∗ (1 + µikε), 1 ≤ i ≤ n,(5.1)
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l̂j = lj ∗ (1 + νjkε), 1 ≤ j ≤ n,(5.2)

where k is a small number, say 4, and µi, νj ∈ [−1, 1] are chosen at random from a
uniform distribution. The size of the perturbation is at the same level as the errors
in the differential qd algorithms.
We have verified by experiments that this technique works very well and will show an
example below. The rationale for our approach is as follows.

• Symmetric tridiagonal matrices do not necessarily define their eigenvalues
to high relative accuracy. A result of Demmel and Kahan [4] states that
bidiagonal matrices always do. As long as k from (5.1) and (5.2) is small
enough, the eigenvalues of the root representation are perturbed only by a
relatively small amount. For this reason, we apply the perturbation to the
root representation and not the matrix T itself.

• So far, all our tests indicate that no other representations need to be per-
turbed. Thus, MRRR computes the eigenvalues of the perturbed root repre-
sentation L̂D̂L̂T instead of the computed LDLT factorization of T .

• In order to reproduce numerical results, we advocate the use of a pseudo-
random generator with fixed seed.

In brief, we introduce artificial roundoff into the root representation since machine
roundoff might not come to rescue.

In the following, we study the effect of random perturbations on the second-
smallest cluster of a matrix T obtained from five copies of W+

201 glued together by√
ε. As seen in Section 4, this matrix is a counterexample to the basic assumptions

of MRRR. Table 4.1 showed a refinement of the eigenvalues of the cluster up to the
underflow threshold without being able to find subclusters. This behavior will be
compared to the use of MRRR on a perturbed root representation with k = 4 in (5.1)
and (5.2). We remark that the respective children at Level 1 of the unperturbed and
the perturbed root representation have (slightly) different shifts. For this reason the
local eigenvalues appear very different. However, for MRRR, we note that the child of
the perturbed representation has (local) eigenvalues with large relative gaps; see the
right-most column of Table 5.3. Hence we can compute the corresponding eigenvectors
immediately with guaranteed numerical orthogonality. The relative changes in the
eigenvalues of the root representation (Level 0) are of order O(nε), n = 1005 in this
case.

LDLT (unperturbed root) L̂D̂L̂T (perturbed root)
Index Level 0 Level 1 Level 0 Level 1

6 0.2538058170966395 1.052402199759149E-13 0.2538058170965921 -6.243561316319056E-13
7 0.2538058170966395 1.052402199759149E-13 0.2538058170966135 -6.028454790143962E-13
8 0.2538058170966395 1.052402199759149E-13 0.2538058170966301 -5.862486570542836E-13
9 0.2538058170966395 1.052402199759149E-13 0.2538058170966449 -5.714964747742379E-13

10 0.2538058170966395 1.052402199759149E-13 0.2538058170966671 -5.492735741423265E-13
Table 5.3

Investigation of the second-smallest cluster of eigenvalues of the matrix T obtained from five
copies of W+

201
glued together by

√
ε, see also Table 4.1. Shown are the unshifted eigenvalues of

the (unperturbed) root representation LDLT and its perturbed counterpart L̂D̂L̂T . Furthermore, we
display the eigenvalues of the representation of the corresponding child clusters that belong to level 1
of the respective representation trees.

In conclusion, random perturbations of the root representation work well in prac-
tice. The perturbations are made by default, not just in difficult cases which might
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be hard to recognize a priori. In all our tests, we have yet to find a case where the
perturbed clusters are not broken up quickly.

6. Summary and conclusions. The MRRR algorithm is based on very rea-
sonable assumptions that are theoretically sound and hold in the majority of cases in
finite precision arithmetic. In this paper, we have shown very subtle and non-obvious
difficulties that can lead to failures. We have illustrated and explained these failures
by examples. Furthermore, we have proposed and evaluated possible remedies. These
will be adopted for an update of the current LAPACK 3.0 version of stegr.
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