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ABSTRACT 
Biological networks can be broken down into modules, groups of 
interacting molecules. To uncover these functional modules and 
study their evolution, our research groups are developing graph-
theory based strategies for the analysis of gene expression data. 
We are looking for groups of completely connected subgraphs 
(e.g. cliques) in which corresponding members have the same 
combination of protein domains in co-expression networks. The 
common pattern shown by a group of similar cliques is a 
“network motif” that may be reused multiple times within 
organisms. We have developed algorithms for constructing gene 
co-expression networks labeled with corresponding protein 
sequence domain combinations, and then detected recurring 
network motifs with similar protein domain memberships within 
these labeled networks. The statistical significance of detected 
network motifs is evaluated by comparing results with those from 
randomized networks. Also the biological relevance of network 
motifs is evaluated for shared Gene Ontology annotations on 
biological processes. We applied our approach to the malaria 
transcriptome and found many network motifs with three, four, or 
five members. Many predicted network motifs were further 
supported by their existence in yeast protein interaction networks. 
These results illustrate a new strategy for studying the modularity 
of biological networks by integrating different types of data and 
cross-species comparisons. A full description of results is 
available at http://mouse.ornl.gov/~xpv/camda04/.   

Categories and Subject Descriptors 
G.2.2 [Graph Theory]: graph algorithms; J.3 [Life and Medical 
Sciences]: Biology and genetics 

General Terms 
Algorithms, Experimentation, Theory 

 

Keywords 
Graph Algorithms, Microarray Analysis, Clustering, Network 
Motif, Gene Expression, Protein Domain, Protein Interaction, 
Data Integration 

1. INTRODUCTION 
Gene expression microarrays provide a revolutionary approach 
for measuring the mRNA levels of thousands of genes at the same 
time. Systematic analysis of genome-wide expression profiles 
across multiple conditions, together with integration with other 
kinds of data, should help give us insight into biological 
networks. Functionally related genes could be clustered together 
based on similar expression profiles. Additional information such 
as Gene Ontology (GO) can be exploited to help further 
biological interpretation if the target organism is well studied such 
as yeast, mouse and human, but this data is often not sufficient in 
other important organisms. Even so, general clustering algorithms 
produce clusters of relatively large size, making it difficult to test 
the cluster of interest using wet-lab experiments. In addition, 
general clustering algorithms do not provide reasonably detailed 
information about the relationship among genes in a cluster, such 
as if some genes directly interact with each other and how. This 
makes it even more difficult for individual researchers to verify 
the predictions experimentally. 

Additional independent information is needed to break big 
clusters into smaller ones and thereby provide more detailed 
insights into relationships among genes within subclusters. 
Protein sequence information is a good candidate. Proteins can be 
decomposed into protein domains, both the units of protein 
function and evolution. More importantly, there is considerable 
evidence that biological systems build various functional units by 
reusing protein domains with different combinations [10]. This 
feature enables us to attempt to decode the common mechanisms 
used in biological systems through studying protein domains.  

Duplication and divergence is an important factor in the evolution 
of genomes and biological complexity. Duplicated genes can 
retain or change their interaction partners.  They may, over time, 
replace interaction partners, but the duplicated gene might still 
interact directly or indirectly with a partner having similar 
characteristics to the original partner. Multiple instances of 
MAP3K-MAP2K-MAPK three-tiered cascades constitute a well 
studied example [3]. It is still unknown whether it is a general 
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principle in biology that different genes form instances of 
common patterns such as in MAPK pathways.  

In this study, we developed novel algorithms to decompose the 
clusters of genes into smaller ones by integrating protein domain 
information into the clustering algorithm. Our algorithm is able to 
provide more detailed information about relationships among 
members of clusters, as the predicted clusters could serve as basic 
functional modules in larger systems. In addition, we provide 
evidence that some similar function units are temporally regulated 
differently at the transcriptional level. To gain further confidence, 
our approach is able to integrate additional information, such as 
protein interaction data from different species. Yeast is a good 
source because rich information has been already collected. 

2. MATERIALS AND METHODS 
Figure 1. Schematic of Network Motif 2.1 Co-expression Networks 

In a co-expression network, the genes are represented by vertices 
(nodes). An unweighted and undirected edge (connection) is 
placed between two genes if they are co-expressed, measured by 
having a correlation higher than some specified threshold. The 
malaria transcriptome [2] was downloaded from the CAMDA04 
website (http://www.camda.duke.edu/camda04/datasets/) and the 
Complete Dataset was used in this study.  For ORFs represented 
by multiple oligonucleotides on the DNA microarray, the 
expression ratios were averaged. All Cy5/Cy3 ratio intensities 
were log2 transformed, and gene pairwise correlation coefficients 
were calculated using the standard Pearson method. Correlation 
coefficients between pairs of genes computed with fewer than 33 
of 46 timepoints (approximately 75%) were discarded. Based on a 
selected cutoff value, the calculated correlation matrix was 
converted into a binary symmetric matrix of the same size. An 
entry in this matrix was set to 1 if the corresponding correlation 
coefficient was greater than or equal to the cutoff value, otherwise 
the entry was set to 0. Rows (columns) with all-zero entries were 
deleted from the binary matrix, corresponding to the elimination 
of isolated vertices in the graph associated with such a matrix. 

2.2 Protein Domain Annotation 
Plasmodium falciparum protein sequences and GO annotations 
were downloaded from PlasmoDB (http://plasmodb.org). To get 
protein domain annotations, all protein sequences were searched 
against Pfam HMM library (Release 14.0, global, ls mode, Pfam-
A HMMs with a total of 7459 families) using hmmpfam with 
trusted cutoffs. The HMM library was downloaded from Pfam 
website (http://www.sanger.ac.uk/Software/Pfam). HMMER 2.3.2 
was downloaded from http://hmmer.wustl.edu. The computation 
was done on the OIT Cluster of 32 nodes of SInRG project 
(http://icl.cs.utk.edu/sinrg/index.html). 

2.3 Network Motif Discovery 
The concept of “network motifs” was first proposed by Alon’s 
group in studying various real world networks including 
biological networks [8, 11]. Network motifs were defined as 
patterns of interactions recurring more frequently in a network 
than in randomized networks. Here we extended the concept of 
network motif to labeled graphs by studying patterns of vertex 
labels (Figure 1). As shown in Figure 1A, a hypothetical network 
motif might be a clique of three genes. These genes are highly co-
expressed as required by the correlation cutoff to create an edge. 
In addition, each gene has its own characteristic protein domain 

information as reflected in its label. Figure 1B shows 7 
hypothetical genes in a co-expression network forming three 
distinct instances of the network motif as described in Figure 1A. 
In each of the instances, three genes are highly correlated with 
each other as indicated by the edges, and their protein domain 
information maps one-to-one to the specified network motif. 
Among the three instances, instances II and III share at least one 
gene (here two genes) and we say these two instances are 
“overlapping”. On the other hand, instance I does not share any 
genes with instance II, so these two are “non-overlapping”. 
Instances I and III form another pair of non-overlapping instances. 
In general, we insist that in a network motif of size k (k = 3 in the 
above example) every pair of vertices is joined by an edge, that is, 
the network motif forms a clique.  
Starting from the above calculated P. falciparum co-expression 
network, we converted it into a labeled graph whose vertices 
(genes) were labeled with their corresponding annotated Pfam 
protein domain information. The clique-based clustering 
algorithm of [6] was applied to this labeled co-expression network 
to search for patterns of highly co-expressed genes or network 
motifs (Figure 1). For a specified k, we scanned all k-vertex 
cliques and grouped all cliques found based on the protein domain 
information. Within a group of cliques, protein domain 
information in each clique can match one-to-one against protein 
domain information of genes in any other clique. These groups of 
cliques are called “putative network motifs”. Next, a parameter f 
specifying the minimum number of mutual non-overlapping 
instances in a network motif was used to trim the list of putative 
network motifs. Only putative network motifs having at least f 
non-overlapping instances were kept as network motifs. 
To account for the abundance of different domains in the whole 
genome, we further assessed the statistical significance of each 
detected network motif by comparison to randomized networks. 
Starting from the real co-expression network, we generated a 
randomized network by randomly permuting the domain labels of 
all genes while leaving the connection structure of the graph 
untouched, and then ran the same network motif detection 
procedure on the resulting randomized network. This process was 
repeated 1,000 times. The fraction of times the same network 
motif was found in the randomized networks was defined as the 
p-value for the network motif. 
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Matching of protein domain information between two genes can 
be classified into many possible levels, but here we propose only 
domain matching levels A and B. Level A requires that two 
proteins have the exact same type of domain, the same number of 
each type of domain and all domains in the same order in the 
respective protein sequences from N-terminal to C-terminal. 
Domain matching level A tries to ensure that the two proteins are 
fully comparable in terms of domain architecture. Domain 
matching level B only requires the same type of domain, with no 
constraints on the number and the order of domains in the 
proteins. At this level, the domain duplication and domain 
shuffling during evolution are taken into consideration while 
ensuring that the basic functions of each protein are comparable. 
The network motif detection procedure was run separately using 
different domain matching levels. 

2.4 Protein Interaction Networks 
A yeast protein interaction dataset was downloaded from the 
BIND website (http://www.blueprint.org/bind/bind.php). In the 
protein interaction network, genes are again vertices (nodes). An 
un-weighted and undirected edge (connection) is placed between 
two genes if there is a documented interaction between these two 
genes. Since the topologies of most protein complexes are 
unknown at this time, we converted protein complexes into binary 
interactions using the “matrix” model, which put edges between 
all possible pairs of genes in the same protein complex. The use 
of the matrix model facilitates searching for possible instances of 
network motifs found in co-expression networks in protein 
complexes. Yeast GO annotations were downloaded from SGD 
(http://www.yeastgenome.org/). 
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Table 1. Summary of the number of putative network 
motifs detected. 
 

Domain matching level A 

 k = 3 k = 4 k = 5 k = 6 

f = 2 88, 25 18, 11 6, 5 1, 1 

f = 3 3, 2 0, 0 0, 0 0, 0 

Domain matching level B 

  k = 3 k = 4 k = 5 k = 6 

f = 2 197, 53 87, 29 32, 17 9, 6 

f = 3 17, 13 6, 6 0, 0 0, 0 

f = 4 5, 5 0, 0 0, 0 0, 0 
.5 Data Visualization 
etected network motifs are presented on the web using ALIVE 

http://mouse.ornl.gov/alive). Expression plots were drawn using 
 (http://www.r-project.org). 

. RESULTS 

.1 Co-expression Networks 
o convert a correlation matrix into a corresponding co-
xpression network, a suitable cutoff value for the correlation 
oefficient must be chosen. Based on the previous reports that 
iological networks, including co-expression networks, follow a 
cale-free distribution of connectivities [1, 7], we chose a cutoff 
alue which gave fewer vertices with higher degree 
connectivity). Plots of the degree distribution for graphs 
enerated under a series of cutoff values suggest that a correlation 
utoff value of 0.95 is appropriate (Figure 2).  

his value was surprisingly higher than our expectation. We 
ompared the distribution of correlation coefficients of this 
ataset with those of several cell/life cycle gene expression 
atasets and found the distribution of correlations in this dataset 
howed a characteristic bimodal-like shape while others had bell-
ike shape (data not shown). One of the possible reasons is that 
he majority of genes in this dataset exhibit periodicity [2]. Within 
his data set and others, we observed that genes which exhibit 
eriodicity tend to shift the distribution toward higher 
orrelations. We further verified that 2,124 of 2,292 (about 93%) 
f unique ORFs in the co-expression network (R ≥ 0.95) are in the 
verview Dataset of 2,714 ORFs that were selected based on 

heir strong periodic behavior (about 78%). 

.2 Prediction of Network Motifs 
sing a series of values for parameters k and f, we found a 
umber of putative network motifs under different domain 
atching levels (Table 1). As shown in Table 1, both increasing 

, the size of network motifs and f, the minimum number of non-
verlapping instances, decrease the number of network motifs 
etected (first number in each cell). The majority of putative 
etwork motifs have p-values less than 0.05. 



Figure 4. Instances found in yeast protein interaction 
network for network motif shown in Figure 3. 

Furthermore, the biological relevance of the putative network 
motifs was evaluated by the number of genes within an instance 
that share the same GO annotation in a biological process 
category. This is based on the assumption that genes in the same 
instance of a network motif should share the same biological 
process if they are indeed functionally related. Although the GO 
annotations on malaria genes are relatively limited, we can still 
observe that genes with GO annotations in the same motif 
instance do share similar terms. We also used the functional gene 
groups as provided in [2] to check the similarity of functions of 
genes in the same instances, and this gave similar results. 

Figure 3A shows a putative network motif detected under domain 
matching level A, k = 6 and f = 2. This motif consists of six 
highly co-expressed genes. Three of six genes have the same 
domain combination as two domains ordered from N-terminal to 
C-terminal, DEAD/DEAH box helicase (PF00270) and Helicase 
conserved C-terminal domain (PF00271). These genes are 
involved in RNA metabolism as suggested by their domain 
information. One of the six genes has three WD domains, G-beta 
repeats (PF00400), one has a Brix domain (PF04427) and the last 
one has GTPase of unknown function (PF01926). The protein 
domain functions suggest that this network motif is involved in 
ribosome biogenesis [5, 9]. Figure 3B shows the P. falciparum 
genes form various instances of the network motifs under 
different combinations of genes. (Genes are colored in the same 
way as in Figure 3A to indicate their corresponding domain 
information.) Only 5 of 13 genes were assigned with functional 
group annotation and all of these five genes were in Cytoplasmic 
Translation Machinery functional group [2]. Only 3 of the 13 
genes have GO annotations. Significantly, these three genes are a 
subset of the group of five and they all were assigned with the 
same GO terms as RNA metabolism (GO:16070), nucleobase, 
nucleoside, nucleotide and nucleic acid metabolism (GO:6139), 
cell growth and/or maintenance (GO:8151) and metabolism 
(GO:8152). These GO annotations are very broad, but agree with 
the more specific hypothesis that these genes are related to 
ribosome biogenesis. 

3.3 Confirmation of Prediction by Yeast 
Protein Interactions 

Figure 3. An example of putative network motif 
detected. 

One of the advantages of treating protein domains as functional 
units of proteins and labeling genes with their protein domain 
information is the flexibility of doing cross-species comparisons. 
To gain further confidence in our predictions, we used yeast 
protein interaction data that includes rich protein complex 
information, and searched for instances of putative malaria 
network motifs. The second number in each cell of Table 1 shows 
the number of malaria network motifs having instances in yeast 
protein interaction network. We can see that more malaria 
network motifs were supported by yeast interaction data as the 
parameters became more stringent.  

Figure 4 shows the instances formed by different combinations of 
27 genes detected in the yeast protein interaction network for the 
malaria network motif shown in Figure 3 (note the domain 
coloring is slightly varied). Forty-five protein complexes stored in 
the BIND database have at least two members belonging to this 
group of 27 genes. This strongly suggests that these gene products 
directly interact with each other under different conditions in 
various ways. One extreme example is that protein complex 
11635 contains six genes forming an exact instance of the 
predicted network motif. The two largest groups of genes sharing 
a common GO annotation in this group of 27 genes are a group of 
9 genes annotated as ribosomal large subunit assembly and 
maintenance (GO:27) and the other 8 genes as 35S primary 
transcript processing (GO:6365). These two groups totally cover 
13 out of 27 genes. All of the evidence above suggests that this 
particular network motif represents a core interaction unit for 
various protein complexes involving cytoplasmic translation, or 
even more specifically as ribosome biogenesis. All of the 
involved malaria genes without any annotation could be annotated 
as such. The strength of our strategy is both to cluster functionally 
related genes and to provide more detailed information about 
relationships among these genes by integrating information from 
multiple orthogonal sources. 

3.4 Prediction of Complementary Functional 
Units 
A network motif represents a specific combination of individual 
protein domains, and this combination can carry out a special 
function shared by individual instances as relatively independent 
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subsystems. We hypothesized that individual instances of a 
network motif could function in different locations and times, 
dependent upon regulation. The malaria time series data enables 
us to test this hypothesis by examining the temporal expression 
profiles of instances of network motifs. Figure 5 shows such an 
example network motif detected with parameter values at domain 
matching level B, k = 3 and f = 2. This network motif represents a 
combination of three independent domains, AhpC/TSA family 
(PF00578), protein kinase domain (PF00069) and Calcineurin-
like phosphoesterase (PF00149) (Figure 5A). Six P. falciparum 
genes form two independent instances of this network motif 
(Figure 5B). The AhpC/TSA family contains Peroxiredoxins 
(Prxs), a ubiquitous family of antioxidant enzymes and Prxs can 
be regulated by phosphorylation [12]. The paired kinase and 
phosphatase may reflect that these two Prxs are tightly controlled 
through phosphorylation and dephosphorylation. Of striking 
interest is that apparently these six genes all have similar 
expression profiles and the only major difference is the timing. 
There is a phase difference between two instances while all three 
genes within each of two instances have the same expression 
profiles. When these expression profiles are compared with 
morphological data [2], we would conclude that one instance 
(PF08_0131, PFD0865c, PFA0390w) functions at trophozoite 
stage and another (PF14_0142, PFC0775c, PFL0725w) at 
schizont stage based on their peak expression values. Having 
instances in yeast protein interaction data provide further support 
that these genes do interact directly (Figure 5D). It is worth 
mentioning that none of these genes were assigned to a functional 
group [2] and these six genes share very broad GO annotations 
such as cell growth and/or maintenance (GO:8151) and 
metabolism (GO:8152). 

4. DISCUSSION 
With the rapid development of high-throughput methods such as 
microarrays in recent years, massive amounts of experimental 
data have been collected for different species under various 
conditions. New computational approaches are needed to analyze 
these data in an integrative way and provide more reliable results 
with finer resolution for experimental verification. Here we 

propose a new strategy to analyze gene expression data by 
integrating a diversity of additional information, such as primary 
sequence information and protein interaction data. As 
demonstrated, our approach can easily make use of cross-species 
information.  

The strategy of integrating protein domain information into 
expression data analysis was based on our hypothesis that 
genes/proteins form relatively independent functional modules. 
Gene expressions in these modules will be well coordinated 
because of selective forces or functional constraints. The possible 
origins of these modules are gene duplication and reuse of protein 
domains. This then implies that these modules might form some 
common patterns at protein domain level that we can observe in 
experimental data. Our predictions can easily lead back to 
experimental verification and elucidation by examining other data 
in light of these presumptive network motifs, including studies of 
networks under other conditions. Several things can be done to 
refine the analyses.  For example, we might be able to combine 
these motifs together in specific subset of conditions toward 
building up larger interacting network components. We should be 
able to loosen the strict requirements for exact cliques for motifs 
of interest, as evolution will not always preserve exact co-
expression matches and not all members of a motif will duplicate. 
The general approach that we have begun to outline here, we 
believe, can become a useful tool to ask a number of other 
interesting research questions about how networks work in the 
present time and how they arose to work that way over 
evolutionary time. 

Figure 5. Instances of a network motif showing different 
expression profiles. 
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