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Abstract. The performance of the MPI’s collective communications is
critical in most MPI-based applications. A general algorithm for a given
collective communication operation may not give good performance on
all systems due to the differences in architectures, network parameters
and the buffering of the underlying MPI implementation. Hence, col-
lective communications have to be tuned for the system on which they
will be executed. In order to determine the optimum parameters of col-
lective communications on a given system in a time-efficient manner,
the collective communications need to be modeled efficiently. In this pa-
per, we discuss the modeling of the collective communications based on
communication schedules. We compare the accuracy of our models for
the broadcast collective communication algorithms with the previously
developed MagPIe model. We find that our approach based on commu-
nication schedules are more accurate especially for algorithms based on
unbalanced tree topologies.

1 Introduction

In our previous work [6,17], we built efficient algorithms for different MPI [16,
1] collective communications and selected the best collective algorithm and seg-
ment size for a given {collective communication, number of processors, message
size} tuple by performing actual experiments with the different algorithms and
for different values of message sizes. The approach follows the strategy that is
used in efforts like ATLAS [18] for matrix operations and FFTW [7] for Fast
Fourier Transforms. The tuned collective communication operations were com-
pared with various native vendor MPI implementations. The use of the tuned
collective communications resulted in the range of 30% to 650% improvement in
performance over the native MPI implementations. The tuning system uses point
to point communication routines provided by the underlying MPI implementa-
tion. The tuned system acts as a separate library and invokes the native MPI
functions via the profiling interface. It does not take advantage of any lower-level
communications such as hardware-level broadcasting.

* This work was supported by the US Department of Energy through contract
numberDE-FG02-99ER25378.



Although efficient, conducting the actual set of experiments to determine the
optimum parameters of collective communications for a given system was found
to be time-consuming due to the exhaustive nature of the testing. As a first step,
the best buffer size for a given algorithm for a given number of processors was
determined by evaluating the performance of the algorithm for different buffer
sizes. In the second phase, the best algorithm for a given message size was chosen
by repeating the first phase with a known set of algorithms and choosing the
algorithm that gave the best result. In the third phase, the first and second
phases were repeated for different number of processors. The large number of
buffer sizes and the large number of processors significantly increased the time
for conducting the above experiments.

In order to reduce the time for running the actual set of experiments, the col-
lective communications have to be modeled effectively. In this paper, we discuss
the various techniques for modeling the collective communications. The reduc-
tion of time for conducting actual experiments is achieved at 3 levels. In the
first level, limited number of {collective communications, number of processors,
message size} tuple combinations is explored. In the second level, the number
of {algorithm, segment size} combinations for a given {collective communica-
tion, number of processors, message size} tuple is reduced. In the third level, the
time needed for running an experiment for a single {collective communications,
number of processors, message size, algorithm, segment size} tuple is reduced by
modeling the actual experiment.

In Section 2, we discuss related work. In Section 3, we give a brief overview
of our previous work regarding the automatic tuning of the collective communi-
cations. We illustrate the automatic tuning with the broadcast communication.
The results in Section 3 reiterate the usefulness of the automatic tuning ap-
proach. These results were obtained by conducting the actual experiments with
all possible input parameters. In Section 4, we describe three techniques needed
for reducing the large number of actual experiments. In Section 5, we present
some conclusions. Finally in Section 6, we outline the future direction of our
research.

2 Related Work

There have been number of efforts towards optimizing MPI collective commu-
nications. The work by Bruck et. al. [4] optimizes collective communications on
LAN networks by providing extensions to operating system kernels. The work
by Banikazemi et. al [3] dynamically derives optimal broadcast trees based on
the network link parameters. ECO [15] and the work by Karonis et. al [10] derive
multi-layer broadcast trees by studying the topology of the underlying networks
and are especially suitable for heterogeneous Network of Workstations(HNOWSs)
and Computation Grids. Most of the above mentioned work does not possess ro-
bust models that predict the completion time of the broadcast operation. Our
work discusses and validates the simulation models for broadcast.



The work that most closely relates to our effort is MagPle [14,11,12]. Mag-
Ple is intended for optimizing collective communications for clustered wide area
systems. The MagPIe models for collective communications are mathematical
formulas that predict the cost of collective communications. The mathematical
formulas are based on point to point communication parameters measured using
the parameterized LogP model [13] which in turn is based on the LogP model
[5]. In our work, we identify some of the problems associated with the parameter-
ized LogP model for point to point communications and the MagPIe models for
collective communications. We propose efficient substitutes for both the models
and compare the efficiency of our models with the MagPIe approach.

3 Automatically Tuned Collective Communications

A crucial step in our effort was to develop a set of competent algorithms. Table
1 lists the various algorithms used for different collective communications.

|| Collective Communications | Algorithms ||

Broadcast Sequential, Chain, Binary and Binomial
Scatter Sequential, Chain and Binary
Gather Sequential, Chain and Binary
Reduce Gather followed by operation, Chain, Binary, Binomial
and Rabenseifner [2]
Allreduce Reduce followed by broadcast, Allgather followed by
operation, Chain, Binary, Binomial and Rabenseifner
2]
Allgather Gather followed by broadcast
Alltoall Gather followed by scatter, Circular
Barrier Extended ring, Distributed binomial and tournament
(8]

Table 1. Collective communication algorithms

While there are other more competent algorithms for collective communica-
tions, the algorithms shown in Table 1 are some of the most commonly used
algorithms. For algorithms that involve more than one collective communication
(e.g., reduce followed by broadcast in allreduce), the optimized versions of the
collective communications were used. The segmentation of messages was imple-
mented for sequential, chain, binary and binomial algorithms for all the collective
communication operations.

3.1 Results For Broadcast

The experiments consist of multiple phases.



Phase 1: Determining the best segment size for a given {collective operation,
number of processors, message size, algorithm} tuple. The segment sizes are
powers of 2, multiples of the basic data type and less than the message size.

Phase 2: Determining the best algorithm for a given {collective operation,
number of processors} tuple for each message size. Message sizes from the size
of the basic data type to 1 MB were evaluated.

Phase 3: Repeating phase 1 and phase 2 for different {number of processors,
collective operation} combinations. The number of processors will be power of
2 and less than the available number of processors.

Our current effort is in reducing the search space involved in each of the
above phases and still be able to get valid conclusions.

The experiments were conducted on four different classes of systems, includ-
ing Sparc clusters and Pentium workstations and two different types of PowerPC
based IBM SP2 nodes.

Figure 1 shows the results for a tuned MPI broadcast on an IBM SP2 us-
ing “thin” nodes that are interconnected by a high performance switch with a
peak bandwidth of 150 MB/s. The tuned broadcast results are compared with
the results of the broadcast using IBM optimized vendor MPI implementation.

Similar encouraging results were obtained for other systems as detailed in [12]
and [13].
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Fig. 1. Broadcast Results (IBM thin nodes)



The times for broadcast shown in Figure 1 and the various figures in the other
sections of the paper were obtained by calling the broadcast functions within a
loop of fixed number of iterations and placing time stamps before and after the
loop. Barrier calls are also placed after the broadcast calls to ensure that all
the processes begin the broadcast operation at the same time. The difference
between the time stamps are calculated and the cost of the barrier functions are
also taken into account. The resulting time is divided by the number of iterations
to obtain the time for the broadcast function. The entire procedure is illustrated
by the code section shown in Figure 2.

/* Time for a broadcast function */
MPI_Barrier (comm) ;

if(rank == 0){

/* first processor */
gettimeofday(&t1l, NULL);

}

for(i=0; i<loop_count; i++){
broadcast_function(); /* invocation of broadcast function */
MPI_Barrier (comm) ;

}

if(rank == 0){
gettimeofday (&t2, NULL);

}

if(rank == 0){
diff = time_diff(tl, t2); /* difference between the time stamps */
total_time = diff - (loop_count-1)*barrier_cost;
total_time /= loop_count;

Fig. 2. Timing Procedure

4 Reducing the Number of Experiments

In the experimental method mentioned in the previous section, about 13000
individual experiments have to be conducted. Even though this only needs to
occur once, the time taken for all these experiments was considerable and was
approximately equal to 50 hours of computer time.



The experiments conducted consist of two stages, the primary set of steps
is dependent on message size, number of processors and MPI collective opera-
tion, i.e. the tuple {message size, processors, operation}. For example 64 KB of
data, 8 process broadcast. The secondary set of tests is an optimization at these
parameters for the correct method (topology-algorithm pair) and segmentation
size, i.e. the tuple {method, segment size}.

Reducing the time needed for running the actual experiments can be achieved
at three different levels:

1. reducing the primary tests

2. reducing the secondary tests and

3. reducing the time for a single experiment, i.e. for a single {message size,
processors, operation, method, segment size} instance.

These techniques for reducing the time for conducting actual experiments
are described in the following sections. The experiments corresponding to the
results shown in the following sections of the paper were conducted on 3 different
parallel environments detailed as follows:

1. 31 node Sun Microsystems SunBlade 100 System with 500 Mhz UltraSPARC-
ITe processors and 512 MBytes of Memory per node. System located at the
Department of Computer Science, University of Tennessee. Interconnection
100 Mbps 100-Base-T Ethernet interface, full duplex and connected to Cisco
switches 2948 running Solaris 2.8 and MPICH 1.2.3.

2. 40 thin node IBM SP2 with 160MHz POWER2 SC processors and 256
MBytes of memory per node located at the Joint Institute for Computational
Science, University of Tennessee. Interconnection TB3 Switch and adapter
with peak bandwidth of 150 MB/sec running AIX Version 2, Release 4 and
native IBM MPI.

3. 512 node Cray T3E-900/512 with 128 MBytes of memory per node. Located
at the High Performance Computing Center (HLRS), Stuttgart, Germany.
Interconnect 3D torus interconnect with 500MB/Sec bidirectional transfers
per link. System running unicosmk 2.0.5.55 and the mpt 1.4.0.2 toolkit.

4.1 Reducing the Primary Tests

Currently the primary tests are conducted on a fixed set of parameters, in effect
making a discrete 3D grid of points. For example, varying the message size in
powers of two from 8 bytes to 1 MB, processors from 2 to 32 and the MPI
operations from Broadcast to All12All etc.

This produces an extensive set of results from which accurate decisions will be
made at run-time. This however makes the initial experiments time consuming
and also leads to large lookup tables that have to be referenced at run time,
although simple caching techniques can alleviate this particular problem.

Currently we are examining three techniques to reduce this primary set of
experimental points.



1. Reduced number of grid points with interpolation. For example reducing the
message size tests from {8 Bytes, 16 Bytes, 32 Bytes, 64 Bytes.. 1 MB} to
{8 Bytes, 1024 Bytes, 8192 Bytes.. 1 MB}.

2. Using instrumented application runs to build a table of only those collective
operations that are required, i.e. not tuning operations that will never be
called, or are called infrequently.

3. Using combinatorial optimizers with a reduced set of experiments, so that
complex non-linear relationships between points can be correctly predicted.

4.2 Reducing the Secondary Tests

The secondary set of tests for each {message size, processors, operation} tuple
are where we have to optimize the time taken, by changing the method used
(algorithm/topology) and the segmentation size (used to increase the bi-sectional
bandwidth utilization of links), i.e. {method, segment size}. Figure 3 shows the
performance of four different methods for solving an 8 processor MPI Scatter of
128 KB of data on the UltraSPARC cluster. Both the x-axis and the y-axis data
are logarithmically scaled. Several important points can be observed. Firstly, all
the methods have the same basic shape that follows the form of an exponential
slope followed by a plateau. Secondly, the results have multiple local optima,
and that the final result (segment size equal to message size) is not usually the
optimal but is close in magnitude to the optimal.

The time taken per iteration for each method is not constant, thus many of
the commonly used optimization techniques cannot be used without modifica-
tion. For example in Figure 3, a test near the largest segment size is in the order
of hundreds of microseconds whereas a single test near the smallest segment size
can be in the order of a 100 seconds, or two to three orders of magnitude larger.

For this reason we have developed two methods that reduce the search space
to tests close to the optimal values, and a third that runs a full set of segment-size
tests on only a partial set of nodes.

The first two methods use a number of different hill descent algorithms that
reduce the search space to only the tests close to the optimal values. The first
is a Modified Gradient Decent (MGD), and the second is a Scanning Modified
Gradient Decent (SMGD).

The MGD method is a hill decent (negative gradient hill climber) that
searches for the minimum value starting from the largest segment sizes and
working in only one direction. This algorithm had to be modified to look beyond
the first minimum found so as to avoid multiple local optima.

The SMGD method is a combination of linear search and MGD, where the
order of the MGD search is controlled by a sorting of current optimal values and
rates of change of gradients. The rates of change are used so that we can predict
values and thus prune more intelligently. This was required as in many cases
the absolute values were insufficient to catch results that interchanged rapidly.
This method also includes a simple threshold mechanism that is used to prune
the search in cases where a few methods were considerably better than others
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Fig. 3. Segment size vs. time for various communication methods

and thus they can be immediately rejected. It should be noted that the SMGD
method checks all algorithms with the maximum segment size always.

Figure 4 shows the extent of the MGD and SMGD superimposed on the initial
scatter results. The MGD extent is marked by thicker lines and the SMGD by
individual points. On the SMGD search some of the methods results are so
comparatively large compared to others that they are pruned immediately. The
pruning performed by the MGD is much less aggressive as can be seen by the
extent of the thicker lines. In the case of methods that do not exhibit the shown
curves characteristics the MGD can provide more accurate but slower results.

Table 2 lists the relative performance of the algorithms in terms of both
experimental time required to find an optimal solution as well as number of
iterations. Linear is used to indicate an exhaustive linear search, and speed up
is linear compared to the SMGD algorithm. As can be seen from the table,
reduction in total time spent finding the optimal can be reduced by a factor of
10 to over 300. Smaller test sets yield less speed up as unnecessary results are
less expensive than in larger tests with larger messages.

The number of segment sizes to explore can also be reduced by considering
certain characteristics of the architecture. For example, in some architectures,
the size of the packets used in communications is known beforehand. Hence the
optimum segment size in these architectures will be within a certain range near
the packet size used for communications.
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Table 2. Performance of optimizing algorithms



The third method used to reduce tests is based on the relationship between
some performance metrics of a collective that utilizes a tree topology and those of
a pipeline that is based only on the longest edge of the tree as shown in Figure 5.
In particular the authors found that the pipeline can be used to find the optimal
segmentation size at greatly reduced time as only a few nodes need to be tested as
opposed to the whole tree structure. For the 128 KB 8 process scatter discussed
above, an optimal segment size was found in around 1.6 seconds per class of
communication method (such as tree, sequential or ring). i.e. 6.4 seconds verses
39 seconds for the gradient descent methods on the complete topologies or 12613
seconds for the complete exhaustive search.

Although the pipeline test is useful, it cannot always be applied as it assumes
that the network interconnection is capable of full cross-sectional bandwidth.
In the case of many large clusters this is not true. For intermediate cases we
have devised a further test to check for network saturation based on pair wise
communications so that we can decide if we can use this optimization atall.

COMPLETE TREE PARTIAL TREE ASA PIPELINE

Fig. 5. The Pipeline Model

4.3 Reducing the single-experiment time

Running the actual experiments to determine the optimal parameters for collec-
tive communications is time-consuming due to the overheads associated with the
startup of different processes, setting up of the actual data buffers, communica-
tion of messages between different processes etc. We are building experimental
models that simulate the collective algorithms but incur less time to execute
than the actual experiments. Since the collective communication algorithms are
based on the MPI point to point sends and receives and do not use any lower
level communications, the models for collective communications do not take into
account the raw hardware characteristics such as the link bandwidth, latency,
topology etc. Instead they take into account times for MPI point to point com-
munications in terms of the send overhead, receive overhead etc. As part of this



approach, we discuss the modeling experiments for broadcast in the following
sub-sections.

General Overview All the broadcast algorithms are based on a common
methodology. The root in the broadcast tree continuously performs MPI non-
blocking sends (MPI_Isends), to send individual message buffers to its children.
The other nodes post all their MPI non-blocking receives (MPI Irecvs), initially.
The nodes between the root node and the leaf nodes in the broadcast tree, send
on any segments to their children as soon as any segments are received.

After determining the times for individual Isends and the times for message
receptions, a broadcast schedule as illustrated by Figure 6 can be used to predict
the total completion time for the broadcast.

proc. O | Isend to proc. 1 | Isend to proc. 2 <

proc. 1 _'I_'t | \ \

|
S

Tt - Transmission time

TC - Time for message copy to user buffer

Fig. 6. Illustration of Broadcast Schedule

A broadcast schedule such as the one shown in Figure 6 can be used to provide
better predictions for collective communication algorithms based on unbalanced
tree topologies than the prediction models based on mathematical formulas such
as in MagPle [11, 12, 14].

Measurement of Point to Point Communication Parameters As ob-
served in the previous section, accurate measurements of the times for Isends



and the times for the reception of the messages are necessary for efficient mod-
eling of broadcast operations. Previous communications models [9,14,11,12] do
not efficiently take into account the different types of Isends. Also, these models
overlook the fact that the performance of an Isend can vary depending on the
number of Isends posted previously. Thus the parameters, the send overhead,
0s(m), the receive overhead, or(m), the gap value, g(m), for a given message size
m, that were discussed in the parameterized LogP model [13] based on LogP
model [5] can vary from a particular point in execution to another depending on
the number of pending Isends and the type of the Isend. MPI implementations
employ different types of Isends depending on the size of the message transmit-
ted. The popular modes of Isends are blocking, immediate and rendezvous and
are illustrated by Figure 7.

Sender os(m)

or(m)

Receiver

9(m) }

lsend éompl etion
-_—

BLOCKING IMMEDIATE RENDEZVOUS

- Isend Completion
Isend Completion -
- -

Fig. 7. Different modes for Isends

The parameters associated with the different modes of Isends can vary de-
pending on the number of Isends posted earlier. Hence, for example, in the case
of immediate mode, the Isends can lead to overflow of buffer space in the re-
ceive end, which will eventually result in larger g(m) and os(m). To illustrate
the dependence of the Isends on the number of previous Isends, we conducted
an experiment on the UltraSPARC cluster in which one process of a MPI pro-
gram continuously posts Isends of messages and another process of the program
continuously receives the messages using Irecvs. Figure 8 shows the times taken
for the individual Isends for messages of sizes 2K and 4K bytes.

In Figure 8, we observe that the overhead of Isend is not constant for all the
Isends. This is due to the limitations on the capacities of the buffers used in
the underlying network layer. For messages of small size, most MPI implemen-
tations copy the messages to the local buffers before sending the messages to the
receiver. When the buffers become fully occupied, a posted Isend waits till some
of the messages in the buffers are cleared. For the UltraSPARC MPICH imple-
mentation, we found the buffer capacities to be 32 KBytes. Hence in Figure 8, we
observe steep increase in Isend times for the 16th and 8th Isends corresponding
to the 2K and 4K messages respectively.

To obtain the various parameters corresponding to point to point commu-
nications, we first measure os_g_or(m) for message size, m. os_g_or(m) is the
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time from the start of the Isend on the sender to the time taken for the Irecv
to complete on the receiver and is obtained by ping-pong transmission of the
message using MPI Isends, MPI Irecvs and MPI Waits. We then measure the
receive overhead, or(m), by forcing the receiver to wait for os_g_or(m) before
receiving a message from the sender. If the resulting or(m) is comparable to
the os_g_or(m), then the underlying MPI implementation used blocking or ren-
dezvous mode for Isend of the message. If or(m) is less than os_g_or(m), the
underlying MPI implementation used the immediate mode of Isend. In this case,
we measure os_start(m), the time for Isend when the underlying network buffers
possess adequate capacity to accommodate messages. We calculate the gap, g(m)
as g(m) = os_g_or(m) — (os_start(m) + or(m).

We then proceed to determine the different parameters associated with over-
heads corresponding to Isends. As noted in Figure 8, the times for Isends for small
messages are initially small and approximately equal to os_start(m). After ini-
tial_interval(m) number of Isends, the Isends follow a pattern of an Isend of large
overhead, os_spike(m), followed by mid_interval(m) number of Isends of small
overheads, os_mid(m), followed again by an Isend of large overhead, os_spike(m)
and so on. We calculate the various parameters of the Isend overhead by having
the sender send consecutive 16 messages, 32 messages etc. to the receiver till
10 Isends of large overheads are encountered. We then calculate the average of
large overheads as os_spike(m), the initial number of Isends of small overheads as



initial_interval(m), the average number of Isends between two successive Isends
of large overheads as mid_interval(m) and the average of times of the Isends
corresponding to the mid_interval(m) as os_mid(m). Thus by associating 5 dif-
ferent parameters corresponding to the send overhead, viz., initial_interval(m),
os_start(m), os_spike(m), mid_interval(m) and os_mid(m), better predictions of
the point to point communication behavior can be obtained than when using
a single parameter, os(m), as is being practiced in LogP [5] and parameterized
LogP [13] models.

For each of the above experiments, 10 different runs were made and aver-
ages were calculated. The experiments were repeated at different points in time
on shared machines and the standard deviation was found to be as low as 40
microseconds.

Model Based on Communication Schedules Predictions of broadcast al-
gorithms were achieved by building communication schedules for the algorithms
as shown in Figure 6 and using the various point to point communication pa-
rameters previously calculated. The procedure for prediction is the simulation
of a parallel broadcast algorithm by a sequential program. The simulator main-
tains events corresponding to the various sends and receives and calculates the
starting and ending times for the sends and receives.

One of the important utilities the simulator uses to simulate the Isends is the
isend() utility. The isend() utility accepts as input, pending_g_count and returns
as output the Isend time for message size, m. The pending_g_count is the number
of incomplete g(m)s corresponding to the previous Isends. Based on the pattern
of Isend overheads determined from the point to point communication measure-
ments and the number of pending g(m)s, the isend() utility determines the time
for Isend to be either os_start(m), os_spike(m) or os_mid(m). The simulator,
before invoking the isend() utility, determines pending_g_count as

previous_Isend_count x g(m) — time_since_first_Isend

g(m)
(1)

The simulation of the send and receive events for broadcast operation is
illustrated by means of the pseudo code shown in Figure 9.

pending_g_count =

Experiments and Results Experiments were conducted on the UltraSPARC,
IBM SP and Cray T3E machines to verify the accuracy of our prediction models.
We also compared the prediction results from our method, the Automatically
Tuned Collective Communications (ATCC), with the prediction results from
MagPTe.

Figures 10 - 13 show the results obtained on the Cray T3E-900 for various
broadcast algorithms. The figures show the actual and predicted times for broad-
cast for different segment sizes when the message size used was 256 KBytes. The
predicted times were obtained for both ATCC and MagPIe models.



recv start time:

if (intermediate node)
recv_time_time = last_Isend_end_time;
else
if(first recv)
recv_start_time = 0;
else
recv_time_time = last_recv_end_time;
end
end

recv end time:

if (blocking or rendezvous mode)
recv_end_time = max(recv_start_time,
corresponding_Isend_start_time) + os_g_or(m);
else if (immediate mode)
if (recv_start_time <= corresponding_Isend_end_time)
recv_end_time = corresponding_Isend_start_time + os_g_or(m);
else
if (first recv)
recv_end_time = corresponding_Isend_end_time +
g(m) + or(m);
else
recv_end_time = max(precv_recv_end_time - or(m),
corresponding_Isend_end_time) + g(m) + or(m);
end
end
end

send start time

if (root)
send_start_time = prev_Isend_end_time;
else
send_start_time = max(prev_Isend_end_time,
corresponding_recv_end_time;

end
send end time

if (blocking or rendezvous)

send_end_time = send_start_time + os_g_or(m);
else

calculate pending_g_count;

isend_time = isend_time(pending_g_count) ;

send_end_time = send_start_time + isend_time;
end

Fig. 9. Pseudo code for the simulation of send and receive events for broadcast oper-
ation
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The actual optimum segment sizes and the optimum segment sizes as deter-
mined by ATCC and MagPle are given in Table 3. The nearness of the predicted
optimal values to the actual optimal values are also given in the table.

Broadcast Actual  Opti-|MagPIe Opti-|ATCC  Opti-|(Actual Time|(Actual Time
Topology mum Segment|mum Segment|mum Segment|at MagPle|at ATCC
Size Size Size Optimum)  /|Optimum) /
(Actual Time|(Actual Time
at actual|at actual
Optimum,) Optimum,)
Flat 256 KB 256 KB 256 KB 1.00 1.00
Chain 4 KB 8 KB 8 KB 1.01 1.01
Binary 8 KB 16 KB 32 KB 1.02 1.05
Binomial 256 KB 16 KB 256 KB 1.28 1.00

Table 3. Prediction Accuracy on a T3E-900

From Figures 10 - 13 and Table 3, we find that both MagPle and ATCC
provide the same kind of predictions for the broadcast times and the near-optimal
segment sizes for flat, chain and binary trees. For binomial trees, ATCC provides
much better prediction than MagPTe especially for large segment sizes. This is
due to the unbalanced nature of the binomial tree. The upper bounds of the
broadcast times as predicted by the mathematical formulas of MagPIe are much
higher than the actual times taken for broadcast for large segment sizes. In
these cases, ATCC provides a more accurate prediction due to the employment
of communication-schedule based simulations.

Similar results were obtained on the Sun UltraSPARC and the IBM SP2
system. The predictions for the unbalanced binomial tree algorithms on the Sun
UltraSPARC and the IBM SP2 system for 256 KByte message sizes are given in
Figures 14 and 15.

Figures 16 - 18 compares the various broadcast algorithms in terms of the
actual measurements, MagPle predictions and ATCC predictions respectively
on the Cray T3E set of 64 processors. The figures show the times for various
segment sizes when message size of 256 KByte was used.

From the figures, according to the actual measurements, flat tree broadcast
algorithm gives the worst performance for all segment sizes and the MagPIe and
ATCC predictions concur with the actual measurements for flat tree broadcast.
According to the actual measurements, the chain broadcast algorithm provides
best performance for segment sizes 8bytes to 1Kbytes. The binomial broadcast
algorithm provides best performance for segment sizes greater than 32 KBytes.
According to MagPIe and ATCC predictions, the chain broadcast algorithm
provides best performance for segments sizes 8 bytes to 4 KBytes. MagPIe pre-
dicts that binary tree algorithm provides the best performance for segment sizes
4KBytes to 256 KBytes. ATCC predicts that the binary tree algorithm provides
the best performance for segment sizes 4KByes to 64 KBytes and the binomial
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Comparison of algorithms - actual, Cray T3E (64 procs)
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Fig. 18. Comparison of broadcast algorithms on Cray T3E - ATCC predictions

tree algorithm provides the best performance for segment sizes 128 and 256
KBytes. Also, MagPIe predicts that the chain and the binomial tree algorithms
provide almost the same performance for large size segments, whereas according
to the actual measurements and the ATCC predictions, there is a significant
difference in performance between chain and binomial broadcast algorithms for
large segment sizes. Thus for medium segment sizes, both MagPIe and ATCC
provide the same amount of accuracy in comparing the performance of the vari-
ous broadcast algorithms. For large segment sizes, ATCC prediction concur more
with the actual results in the comparison of the different broadcast algorithms.

Thus we find that the ATCC model is able to predict both near-optimal
segment sizes within a single algorithm and near-optimal algorithms when com-
paring different algorithms.

Modeling Other Collective Communications While models for other im-
portant collective communications like scatter and gather are not implemented,
modeling the other collective communications is similar to modeling broadcast
with few additional issues.

A scatter operation is similar to broadcast operation except that the sender
has to make strides in the send buffer to send the next element to its next
child. For small buffer sizes, the entire buffer is brought inside the cache and
our broadcast model should be applicable to scatter as well. For large buffer



sizes, additional complexity is introduced due to frequent cache misses. In that
case our model needs to take into account the time needed for bringing data
from memory to cache and compare this time with the gap time for the previous
Isend.

Modeling gather is more challenging than modeling broadcast or scatter since
three different scenarios have to be considered. For small buffer sizes, the time
for receive of a segment by the root assuming the children have already posted
their sends have to be modeled and techniques used in modeling broadcast and
scatter can be used. For large buffer sizes, issues regarding movement of data
from memory to cache also apply to gather and the corresponding techniques
used for scatter can be used. For large number of segments, the children of the
root will be posting large number of Isends to the same destination, i.e. the root.
In this case, the storage of pending communications will get exhausted, and the
performance of Isends will deteriorate. Some benchmark tests can be performed
before hand to determine the point when the performance of Isends degrades
and this can be plugged directly into our model.

Models for other collective communications such as allreduce, allgather etc.
can be built based on the experience of modeling broadcast, scatter and gather.

Although the models are primarily used to reduce the single-experiment time,
they can also be used to reduce the number of segment sizes to explore. For
example, in architectures where fixed size packets are used for communications,
the send and receive overheads for large message sizes will be approximately
multiples of the overhead times associated with the message of size equal to
the packet size. Hence simulation experiments can only be conducted for those
segment sizes close to the packet size.

5 Conclusion

Modeling the collective communications to determine the optimum parameters
of the collective communications is a challenging task, involving complex scenar-
ios. A single simplified model will not be able to take into account the complexi-
ties associated with the communications. A multi-dimensional approach towards
modeling, where various tools for modeling are provided to the user to accurately
model the collective communications on his system, is necessary. Our techniques
regarding the reduction of number of experiments are steps towards construct-
ing the tools for modeling. These techniques have given promising results and
have helped identify the inherent complexities associated with various collective
communications. While proving the efficiency of the techniques, we have also
compared our model with a well known model for collective communications
and found some encouraging results.

6 Future Work

While our initial results are promising and provide us some valuable insights
regarding collective communications, much work still has to be done to provide



comprehensive set of techniques for modeling collective communications. Select-
ing the right set of techniques for modeling based on the system dynamics is an
interesting task and will be explored further. We also want to investigate the
efficacy of using the parameters of point to point communications correspond-
ing to the previous models, especially LogP and parameterized LogP, in our
communication-based schedules.
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