
Specifying A Software
Module by Enumeration, and
Transformations to and from

Other Formal
Representations

Lan Lin, Jesse H. Poore, Stacy J. Prowell

Department of Computer Science

University of Tennessee

Knoxville, TN 37996

ut-cs-05-556

June 2005

Contents

1 Transition Diagram 3

2 An Enumeration 3

3 Enumeration to State Machine 5

4 State Machine to Enumeration 5

5 Enumeration to Regular Expression 5

6 Regular Expression to Enumeration 6

7 Enumeration to Prefix-recursive Function 7

8 Prefix-recursive Function to Enumeration 8

9 State Machine to Regular Expression 8

10 Regular Expression to State Machine 9

11 State Machine to Prefix-recursive Function 9

12 Prefix-recursive Function to State Machine 10

13 Regular Expression to Prefix-recursive Function 10

14 Prefix-recursive Function to Regular Expression 11

Specifying A Software Module by Enumeration, and Transformations to
and from Other Formal Representations

List of Figures

1.1 Transition Diagram . 3

2

Specifying A Software Module by Enumeration, and Transformations to
and from Other Formal Representations

1 Transition Diagram

With a stimulus set S we can specify a software module in terms of an
enumeration, a state machine, a set of regular expressions, or a set of prefix-
recursive functions. Each representation contains enough information to
allow for some operation on its own.

Given a software module to be specified, if we do not already have a
state machine in mind to verify, we want most to work at the enumeration
level, to discover and derive a state machine. Some model checkers work
with state machines or regular expressions directly. Some theorem provers
like ACL2 manipulate prefix-recursive functions to prove assertions. It thus
becomes valuable to provide an algorithm for the transition between any of
these forms.

Figure 1.1 shows the transition diagram between these forms as a square,
where each can be obtained from any other form algorithmically. Each
representation is as rich as, but no more powerful than any of the other
three in the specification of the module. One is correct with regard to the
underlying black box function if and only if any other is correct.

Figure 1.1: Transition Diagram

2 An Enumeration

Notation: Let A,B, and C be sets, and consider partial functions
of the form T : A → B × C. We define the following notation.

If T (u) = 〈r, v〉, then we write u
T
7→ r and u

T
. v. The T will be

dropped where it is obvious from context. Let dom T = {u |u ∈
A, T (u) is defined}.

3

Specifying A Software Module by Enumeration, and Transformations to
and from Other Formal Representations

Definition 1 (Distinguishability): Let S be a finite, nonempty set,
R be a non-empty set containing 0, ω, and at least one other
member, and let T : S∗ → R × S∗ be a partial function. We
define relation 6∼⊆ dom T × dom T as follows:

1. If a, b ∈ dom T and ∃x ∈ S such that ax 7→ r and bx 67→ r

for some r ∈ R, then a 6∼ b.

2. If a 6∼ b, and ∃x ∈ S such that cx . a and dx . b for c, d ∈
dom T , then c 6∼ d.

3. Nothing else is in 6∼ except by a finite number of applications
of the above two rules.

Definition 2 (An Enumeration/A Complete Enumeration/A Com-
plete and Minimal Enumeration/A Complete and Finite Enu-
meration): Let S be a finite, nonempty set equipped with a total
order < (the alphabetical order), and let the order be extended to
a total order on S∗ by length, and then alphabetically. Let R be
a non-empty set containing 0, ω, and at least one other member.
Then a partial function E : S∗ → R × S∗ is an enumeration iff
1–7 below hold ∀x ∈ S,∀u, v ∈ S∗. The enumeration is complete
iff 8 also holds. A complete enumeration is minimal if 9 further
holds. A complete enumeration is finite if 10 further holds, where
N denotes the set of natural numbers.

1. λ 7→ 0, λ . λ. (Empty sequence)

2. u . v implies v < u or v = u. (Partial order)

3. u . v implies v . v. (No reduction to reduced)

4. ux ∈ dom E implies u 67→ ω. (No extensions of illegals)

5. ux ∈ dom E implies u . u. (No extensions of reduced)

6. u . v, u 67→ ω implies v 67→ ω. (No reduction to illegals for
legals)

7. u . v, u 7→ ω implies v 7→ ω. (No reduction to legals for
illegals)

8. u 67→ ω, u . u implies ux ∈ dom E. (Completeness)

9. u, v ∈ dom E , u 67→ ω, u.u, v 67→ ω, v.v, u 6= v implies u 6∼ v.
(Minimality)

10. ∃n ∈ N such that |dom E| = n. (Finiteness)

4

Specifying A Software Module by Enumeration, and Transformations to
and from Other Formal Representations

For the rest of the discussion, we assume we are always working with
a complete and finite enumeration E and its equivalent form in the transi-
tions, unless stated otherwise. Infinite enumerations are not addressed as a
result of realistic concerns. Incomplete enumerations can be made complete
before applying any algorithm by mapping all unmapped sequences to some
response i (for incompleteness) and reducing all such sequences to the first
such sequence in canonical order.

3 Enumeration to State Machine

Given a complete and finite enumeration E : S∗ → R×S∗, we can construct
the state machine M (a Mealy machine) as follows.

Let C = {u |u 67→ ω, u . u}, |C| = n. Let C = {c0, . . . , cn−1}, where
c0 < . . . < cn−1. It must be the case that c0 = λ. We define M =
〈Q, S, δ, q0, R, ν, φ〉, where Q = {q0, . . . , qn−1, qω}, δ : Q × S → Q and
ν : Q × S → R are both total functions defined by: δ(qi, a) = qj iff
cia . cj,∀ ci, cj ∈ C,∀ a ∈ S; δ(qi, a) = qω iff cia 7→ ω,∀ ci ∈ C,∀ a ∈ S;
δ(qω , a) = qω,∀ a ∈ S. ν(qi, a) = r iff cia 7→ r,∀ ci ∈ C,∀ a ∈ S,∀ r ∈ R;
ν(qω, a) = ω,∀a ∈ S.

4 State Machine to Enumeration

Given a state machine M = 〈Q,S, δ, q0, R, ν, φ〉, where Q = {q0, . . . , qn−1, qω},
δ : Q× S → Q and ν : Q× S → R are both total functions, how can we get
the implied enumeration E : S∗ → R × S∗?

Extend δ : Q × S → Q to δ̂ : Q × S∗ → Q by δ̂(q, λ) = q,∀q ∈
Q; δ̂(q, wa) = δ(δ̂(q, w), a),∀q ∈ Q,∀w ∈ S∗,∀a ∈ S, and simply refer to
δ̂ as δ. Let δ(q0, ci) = qi such that ∀z ∈ S∗, δ(q0, z) = qi, z 6= ci ⇒ ci <

z,∀ 0 ≤ i ≤ n − 1. It must be the case that c0 = λ. For λ, λ 7→ 0, λ . λ.
It is extended by each a in S and the extensions are considered in canoni-
cal order. Each string u considered after λ can be written as u = wa, for
some w ∈ S∗, a ∈ S. Thus u 7→ ν(δ(q0, w), a), u . ci if δ(q0, u) = qi for
some 0 ≤ i < n, u . u otherwise. u is further extended by each a in S iff
u 67→ ω, u . u. The process continues until E is complete.

5 Enumeration to Regular Expression

Given a complete and finite enumeration E : S∗ → R × S∗, we want to
derive a set of regular expressions for each legal equivalence class and for

5

Specifying A Software Module by Enumeration, and Transformations to
and from Other Formal Representations

each response.
Let C = {u |u 67→ ω, u . u}, |C| = n. Let C = {c0, . . . , cn−1}, where

c0 < . . . < cn−1. It must be the case that c0 = λ. Let rc0, . . . , rcn−1
be regular

expressions for each legal equivalence class. For each rci
, let Eci

= {u |u.ci}.
Assume Eci

= {ei,1, . . . , ei,pi
} for some integer pi > 0. Each ei,j ∈ Eci

contributes to one item ti,j on the RHS of the regular expression equation
for rci

. The RHS is these pi items unioned together. rci
= ti,1 + . . . + ti,pi

.
ti,j = λ if ei,j = λ, otherwise ei,j = cka for some ck ∈ C, a ∈ S, and thus
ti,j = rck

a. This writing gives us a regular expression equation array for
each element in C as follows:

rc0 = t0,1 + . . . + t0,p0

. . . = . . .

rcn−1
= tn−1,1 + . . . + tn−1,pn−1

Now that we have n equations and n variables rc0, . . . , rcn−1
to solve.

We can apply substitution and elimination to get the solved expressions for
each of them. They form a base set in that once they become known, all
the other regular expressions can be obtained easily by substitution.

This is because we can write another array of equations for each response
in R. Assume R = {r0, . . . , rm−1}, and rm−1 = ω. For each rri

, let Eri
=

{u |u 7→ ri}. Assume Eri
= {e′i,1, . . . , e

′

i,qi
} for some integer qi ≥ 0. The

derivation of t′i,j from e′i,j is exactly the same as that of ti,j from ei,j. The
array looks like:

rr0
= t′

0,1 + . . . + t′
0,q0

. . . = . . .

rrm−2
= t′m−2,1 + . . . + t′m−2,qm−2

rrm−1
= (t′m−1,1 + . . . + t′m−1,qm−1

)S∗

The RHS of the equation for rω(i.e. rrm−1
) is further concatenated with

S∗, to reflect that any extension of an illegal sequence remains illegal.
In this array, all the RHSs are expressions in terms of rc0, . . . , rcn−1

,
which when substituted for their solved expressions, give us every one we
need on the LHS.

6 Regular Expression to Enumeration

Given rc0, . . . , rcn−1
for each legal equivalence class, where c0 < . . . < cn−1,

and rr0
, . . . , rrm−1

for each possible response, here is a way to recover the
implied enumeration E : S∗ → R × S∗.

6

Specifying A Software Module by Enumeration, and Transformations to
and from Other Formal Representations

Derive the first strings in canonical order represented by rc0, . . . , rcn−1
.

They form the set C = {c0, . . . , cn−1} of canonical sequences, where c0 <

. . . < cn−1. We start with λ. It must be the case that λ ∈ r0, λ ∈ rλ (i.e.
rc0). Thus λ 7→ 0, λ . λ, and it is extended by each a in S. The extensions
are considered in canonical order. For each u that is considered in turn,
u 7→ ri iff u ∈ rri

, u . cj iff u ∈ rcj
, u . u if u ∈ rω. u is further extended

by each a in S iff u 67→ ω, u . u, and the extensions are further considered in
canonical order. The process continues until E is complete.

To decide whether u ∈ r for string u and regular expression r, the
following procedure can be used. Apply Theorem 2.3 in [1] to construct
an NFA with ε-transitions that accepts r, and apply Theorems 2.2 and 2.1
to obtain a DFA, Mr, accepting r. u ∈ r iff u ∈ L(Mr).

7 Enumeration to Prefix-recursive Function

Given a complete and finite enumeration E : S∗ → R × S∗, we need to
define two functions in prefix-recursive form, the specification function and
the black box function.

Let C = {u |u 67→ ω, u . u}, |C| = n. The specification function f : S∗ →
{0, . . . , n−1} distinguishes n canonical sequences. The integer values can be
replaced with meaningful values when necessary without loss of generality.
Let C = {c0, . . . , cn−1}, where c0 < . . . < cn−1, f(ci) = i,∀ 0 ≤ i < n. For
each u ∈ dom E with u . v, v ∈ C, u 6= λ, u can be written as u = wa, for
some w ∈ C, a ∈ S. This gives f(ux) = f(v) if f(u) = f(w) ∧ x = a,∀u ∈
S∗,∀x ∈ S. The base case for the inductive definition is f(λ) = 0. Because
we do not care about the values for illegal sequences, we have the recursive
rule f(ux) = f(u) otherwise ∀u ∈ S∗,∀x ∈ S.

The black box function BB : S∗ → R is defined with the help of f .
For the base case we have BB(λ) = 0. For each u ∈ dom E with u 7→
r, r ∈ R (allowing r = ω), u 6= λ, u can be written as u = wa, for some
w ∈ C, a ∈ S. This gives BB(ux) = r if f(u) = f(w) ∧ x = a ∧ BB(u) 6=
ω,∀u ∈ S∗,∀x ∈ S. Because the values of specification function f for illegal
sequences appearing in the enumeration are chosen arbitrarily as the values
for their legal canonical prefixes (after removing the last symbol), we have
BB(ux) = ω if BB(u) = ω to avoid messing up with the illegal sequences.

7

Specifying A Software Module by Enumeration, and Transformations to
and from Other Formal Representations

8 Prefix-recursive Function to Enumeration

Given a specification function f and a black box function BB in prefix-
recursive form and defined everywhere on S∗, how can we extract a complete
enumeration E : S∗ → R × S∗?

We can start with the empty sequence λ. We must have f(λ) = 0 and
BB(λ) = 0. Let ci ∈ {u | f(u) = i, u < v,∀ v ∈ S∗ such that f(v) = i, v 6=
u},∀ 0 ≤ i < n. We have c0 = λ, λ 7→ 0, λ . λ. Next we extend λ by each
a ∈ S, since it is canonical. For each sequence u to be defined after λ, it
can be written as u = wa for some w ∈ C = {c0, . . . , cn−1}, a ∈ S, because
only canonical sequences are extended. We have already known f(w) = i

for some i, BB(w) 6= ω, otherwise w would not have been extended by a.
By definition we also know f(u) and BB(u). If BB(u) = ω, u 7→ ω, u . u,
otherwise let f(u) = j for some 0 ≤ j < n, u 7→ BB(u), u . cj . Only
when u 67→ ω and u . u do we further extend u by each a ∈ S, and consider
the extensions in canonical order. This process continues until a complete
enumeration E is obtained.

9 State Machine to Regular Expression

Given a state machine M = 〈Q,S, δ, q0, R, ν, φ〉, where Q = {q0, . . . , qn−1, qω},
δ : Q × S → Q and ν : Q × S → R are both total functions, how can we
derive the set of regular expressions for each legal equivalence class and each
response?

State qω can be identified as the one from which all outgoing arcs are
associated with the illegal response. Every other state represents a legal
equivalence class. Assume they are the states denoted by q0, . . . , qn−1, and
the regular expressions for them are denoted by rc0 , . . . , rcn−1

.
To get each rci

, we make qi the unique final state in M , and denote the
modified automaton Mi. Mi = 〈Q,S, δ, q0, R, ν, {qi}〉, where everything is
defined the same as for M except for the final state set. rci

= L(Mi). The-
orem 2.4 in [1] gives us a constructive proof that can serve as an algorithm
to get rci

from Mi.
Assume the regular expression for each response ri ∈ R is denoted by

rri
. Let Eri

= {〈q, a〉 | ν(q, a) = ri, q ∈ Q, q 6= qω, a ∈ S}. Assume Eri
=

{〈qi1, ai1〉, . . . , 〈qip, aip〉} for some integer p ≥ 0. rri
= rci1

ai1 + . . . + rcip
aip.

If λ 6∈ r0, union λ to the RHS of the equation for r0. Further concatenate S∗

with the RHS of the equation for rω if Eω 6= φ to reflect that any extension
of an illegal sequence is illegal.

8

Specifying A Software Module by Enumeration, and Transformations to
and from Other Formal Representations

10 Regular Expression to State Machine

Given rc0, . . . , rcn−1
for each legal equivalence class, and rr0

, . . . , rrm−1
for

each possible response, how can we reconstruct the implied state machine
M?

M = 〈Q,S, δ, q0, R, ν, φ〉, where Q = {q0, . . . , qn−1, qω}, δ and ν can be
defined as follows. For each rci

, consider rci
a,∀ a ∈ S. Either rci

a ⊆ rcj
for

some j, or rci
a ⊆ rω. In the former case we have δ(qi, a) = qj, and in the

latter case we have δ(qi, a) = qω. With regard to response, rci
a ⊆ rrk

for
some k, thus we have ν(qi, a) = rk. For qω, δ(qω , a) = qω, ν(qω, a) = ω,∀ a ∈
S. At the end of the process δ and ν are fully defined on Q × S.

To decide whether r1 ⊆ r2 for regular expressions r1 and r2, we can apply
Theorem 2.3 in [1] to construct two NFAs with ε-transitions that accept r1

and r2 respectively, then apply Theorem 2.2 and Theorem 2.1 to build two
DFAs accepting r1 and r2. Let the two DFAs be M1 and M2. We construct
M3 such that L(M3) = L(M1) ∩ L(M2) (i.e. L(M3) = r1 − r2) by applying
Theorem 3.2 and Theorem 3.3. r1 ⊆ r2 iff L(M3) = φ as a result of applying
Theorem 3.7.

11 State Machine to Prefix-recursive Function

Given a state machine M = 〈Q,S, δ, q0, R, ν, φ〉, where Q = {q0, . . . , qn−1, qω},
δ and ν are both total functions, we first identify qω to be the state with
coming arcs associated with the illegal response. The first trace in canon-
ical order is identified for every other state, which gives us the set of all
canonical sequences {c0, . . . , cn−1}. Without loss of generality, assume
c0 < . . . < cn−1. Correspondingly the states are assigned values from 0
to n − 1 for the specification function f . From then on we can treat these
states as qc0, . . . , qcn−1

, and plug them into the definition for δ and ν. The
base case for f is defined to be f(λ) = 0. For each δ(qci

, a) = qcj
, we have

f(ux) = j if f(u) = i ∧ x = a,∀u ∈ S∗,∀x ∈ S. Because we only consider
transitions between states other than qω, we arbitrarily assign specification
function values to illegal sequences by declaring f(ux) = f(u) otherwise.

The base case for BB is defined to be BB(λ) = 0. For each ν(qci
, a) =

r(allowing r = ω), we have BB(ux) = r if f(u) = i ∧ x = a ∧ BB(u) 6=
ω,∀u ∈ S∗,∀x ∈ S. For extensions of an illegal sequence we have BB(ux) =
ω if BB(u) = ω.

9

Specifying A Software Module by Enumeration, and Transformations to
and from Other Formal Representations

12 Prefix-recursive Function to State Machine

Given f and BB defined in prefix-recursive form, how do we reconstruct the
implied state machine M?

Suppose we have possible values from 0 to n−1 for f , we will have states
from q0 to qn−1 in M , corresponding to each value. M has one other state
for all illegal sequences denoted by qω. In the inductive definition for BB,
whenever we have BB(ux) = r(allowing r = ω) if f(u) = i∧x = a∧BB(u) 6=
ω,∀u ∈ S∗,∀x ∈ S, correspondingly we have an output ν(qi, a) = r. In case
r 6= ω, we check the corresponding entry in the inductive definition for f .
If f(ux) = j if f(u) = i ∧ x = a, we define a transition δ(qi, a) = qj . In
accordance with BB(ux) = ω if BB(u) = ω, we define ν(qω, a) = ω,∀ a ∈ S

and δ(qω, a) = qω,∀ a ∈ S. M is defined as M = 〈Q,S, δ, q0, R, ν, φ〉, where
Q = {q0, . . . , qn−1, qω}.

13 Regular Expression to Prefix-recursive Func-

tion

Given a set of regular expressions for each legal equivalence class, and a set of
regular expressions for each response, here is a way to write the specification
function and the black box function in prefix-recursive form.

Suppose rc0, . . . , rcn−1
correspond to regular expressions for each legal

equivalence class, and rri
is for the regular expression for ri ∈ R. The set

{rc0 , . . . , rcn−1
} forms a base set B in that if members in this set are known,

any rri
can be derived. The base set corresponds to values of f from 0 to

n − 1.
Then we consider ra,∀ r ∈ B,∀ a ∈ S and write down each item’s con-

tribution to the RHSs of the above expressions. λ contributes to the RHS of
rλ and r0. In this way each regular expression given can be expressed as the
union (0 or more) of items in the form of either λ or a one-symbol extension
of a base regular expression on the RHS. We further concatenate the RHS
for rω by (s1 + . . . + sk)

∗ where s1, . . . , sk represent all elements in S, be-
cause any extension of an illegal sequence is illegal. rci

a is one unioned item
on the RHS of the equation for rcj

iff rci
a ⊆ rcj

, which is further decidable
as follows. Apply Theorem 2.3 in [1] to build two NFAs with ε-transitions
that accept rci

a and rcj
respectively. Then apply Theorem 2.2 and Theorem

2.1 to construct two DFAs for the same two languages. Let the DFAs be
M1 and M2 respectively. Construct M3 such that L(M3) = L(M1)∩L(M2)
applying Theorem 3.2 and Theorem 3.3. rci

a ⊆ rcj
iff L(M3) = φ, which is

10

Specifying A Software Module by Enumeration, and Transformations to
and from Other Formal Representations

decidable by the proof of Theorem 3.7.
Now that we have a regular expression array whose LHSs are the regular

expressions in interest only. The RHSs are put into a form easily convertable
to prefix-recursive function definition. The base case for f is f(λ) = 0. The
base case for BB is BB(λ) = 0. If rci

a appears as one item on the RHS of the
equation for rcj

, we have f(ux) = j if f(u) = i ∧ x = a,∀u ∈ S∗,∀x ∈ S.
If rci

a appears as one item on the RHS of the equation for rrj
, we have

BB(ux) = rrj
if f(u) = i ∧ x = a ∧ BB(u) 6= ω. We can ignore the

concatenated (s1 + . . . + sk)
∗ temporarily and treat rω the same way as

any other expression. For illegal sequences we further add f(ux) = f(u)
otherwise ∀u ∈ S∗,∀x ∈ S, BB(ux) = ω if BB(u) = ω.

14 Prefix-recursive Function to Regular Expres-

sion

Given f and BB defined in prefix-recursive form, it is an opposite process
to get regular expressions for each legal equivalence class as well as for each
response.

Suppose f takes the values from 0 to n − 1, find the first sequences in
canonical order that are mapped to these values by f . They form the canon-
ical sequence set C = {c0, . . . , cn−1}. We will denote the regular expressions
for legal equivalence classes by rc0 , . . . , rcn−1

, each of which is referred to as
a base regular expression, and the regular expressions for each response by
rri

,∀ ri ∈ R. Without loss of generality, assume c0 < . . . < cn−1.
To come up with a regular expression array, we put each of the regular

expressions on the LHS of an equation only. On the RHSs we consider each
possible contribution in the form of either λ or a one-symbol extension of
a base regular expression. λ contributes to the RHSs of r0 and rc0 . If we
have BB(ux) = rrj

if f(u) = i ∧ x = a ∧ BB(u) 6= ω,∀u ∈ S∗,∀x ∈ S,
rci

a is one item contributed to the RHS of the equation for rrj
. After we

have walked through the definition for BB, we further concatenate the RHS
for rω by (s1 + . . . + sk)

∗, where s1, . . . , sk represent all elements in S,
because of the definition of BB(ux) = ω if BB(u) = ω. Similarly for each
BB(ux) = rrj

if f(u) = i∧x = a∧BB(u) 6= ω,∀u ∈ S∗,∀x ∈ S, if rrj
6= ω,

we check the corresponding entry in the definition for f . If f(ux) = l if
f(u) = i ∧ x = a, ria is one item contributed to the RHS for rcl

. At the
end of this process we have a regular expression array whose LHSs are each
base regular expression in interest, and the RHSs are expressions of itself
and/or other base expressions. Solving the array containing equations for

11

Specifying A Software Module by Enumeration, and Transformations to
and from Other Formal Representations

the base set gives us regular expressions for legal equivalence classes, which
when further substituted for their notations, give us solutions for all the
rest.

References

[1] John E. Hopcroft, Jeffrey D. Ullman, Introduction to Automata Theory,
Languages, and Computation, 1979.

12

