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Summary

Two kernelization methods for the vertex cover problem are investigated. The first,

LP-kernelization, has been in prior use and is known to produce predictable results.

The second, crown reduction, is newer and faster but generates more variable results.

Previously-unknown connections between these powerful methods are established. It

is also shown that the problem of finding an induced crown-free subgraph in an ar-

bitrary graph is decidable in polynomial time. Applications of crown structures are

discussed.

1 Introduction

The difficulty and importance of finding solutions to NP-hard problems has resulted in a wide

variety of algorithmic techniques. One of the most common alternatives restricts attention only to

polynomial-time approximation methods. In this paper we take a different approach, and exploit

the fact that many of these problems are tractable when some key input parameter is fixed or
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bounded, much as it often is in practice. The motivation for this general idea dates back to the

Graph Minor Theorem and its many applications. See, for example, [3, 10, 13]. Since that time

much has been learned about this strategy. Amenable problems are now termed “fixed parameter

tractable” (henceforth FPT). For background and detailed information on FPT we refer the reader

to [7].

If (S, k) is a problem instance in which S denotes some structure of size n and k is a parameter

relevant to S, then the problem in question is said to be FPT if it can be solved by an algorithm

whose run time is O(f(k)nc), where c is a constant independent of both n and k. Although these

algorithmic bounds mean it is theoretically possible to find exact solutions in polynomial time as

long as k is fixed, the associated constants of proportionality are often so excessive as to render

FPT algorithms hopelessly infeasible from any practical standpoint. Thus a critical aspect in this

approach relies on problem reduction, which in this setting is called “kernelization.” As a general

rule, the goal of kernelization is to take the aforementioned instance (S, k) and produce from it

another instance (S ′, k′) in which S ′ is of size n′ << n with some k′ ≤ k. This is of course done

in such a way that (S ′, k′) has a solution if and only if (S, k) has a solution.

Perhaps the best known example of an FPT problem, and the one we study here, is vertex cover.

Given an undirected graph G and a parameter k, we seek to decide whether G contains a set C of k

or fewer vertices such that every edge in G has at least one endpoint in C. Once kernelization has

been accomplished, vertex cover can be solved in time O(1.2852k′
+ k′n) using a bounded search

tree approach [5]. There are a myriad of known applications for this foundational combinatorial

problem [2].

A variety of kernelization preprocessing rules have been proposed in an attempt to locate simple

structures in an input graph. One rule is based on identifying vertices of high degree [4]. Others

utilize vertices of low degree. With them we obtain a graph all of whose vertex degrees lie in the

range [3,k’] and with n′ ≤ k′2
3

+ k′. Put together these rules are straightforward to implement,

but not especially effective because they can require quadratic time (in n) and produce kernels of

quadratic size (in k). See [1] for details. We have no more to say about them here.
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2 Techniques for Finding Linear-Sized Kernels

2.1 LP-Kernelization

One powerful, well-known kernelization technique is based on an integer programming formula-

tion of the optimization version of vertex cover. We assign a weight Xu ∈ {0, 1} to each vertex u

of the graph G = (V, E) so that the following conditions are met.

(1) Minimize
∑

u Xu.

(2) Satisfy Xu + Xv ≥ 1 whenever {u, v} ∈ E.

We can relax this to a linear programming problem by replacing the constraint Xu = {0, 1}
with Xu ≥ 0. The linear programming problem can be solved using a general LP package, or it

can be posed as a network flow problem which can be solved using network flow techniques.

The solution to the linear programming problem is used to kernelize the original vertex cover

problem in the following manner. Let P = {u ∈ V |Xu > 0.5}, Q = {u ∈ V |Xu = 0.5} and

R = {u ∈ V |Xu < 0.5}. There is an optimal vertex cover that is a superset of P and that is disjoint

from R. This is a modification from [11] of a theorem originally proved in [12]. Furthermore, there

is a solution to this problem in which Xu = 0 for all u ∈ R, Xu = 1 for all u ∈ P and Xu = 0.5

for all u ∈ Q.

2.2 Crown Reduction

A much newer kernelization technique relies on the identification of a “crown structure” in the

graph [1, 6]. The crown reduction method identifies two vertex subsets, H and I , in such a way

that there is an optimal vertex cover with the property that it is both a superset of H and disjoint

from I . Letting N(S) denote the neighborhood of S, a crown is an ordered pair (I, H) of subsets

of vertices from a graph G that satisfies the following criteria: (1) I �= ∅ is an independent set of

G, (2) H = N(I), and (3) there exists a matching M on the edges connecting I and H such that

all elements of H are matched. H is called the head of the crown. The width of the crown is |H|.
See Figure 1.
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Figure 1: A sample crown decomposition.

A crown that is a subgraph of another crown is called a subcrown. A straight crown is a crown

(I, H) that satisfies the condition |I| = |H|. A flared crown is a crown (I, H) that satisfies the

condition |I| > |H|. These relationships are depicted in Figure 2. Notice that if (I, H) is a crown,

then I is an independent set and H is a cutset between I and the rest of the graph.

The following algorithm can be used to find a crown in an arbitrary graph. It is listed here

mainly for the reader’s convenience. It is a refinement of the method originally proposed in [1],

where a proof of its correctness and the conditions necessary to produce a nontrivial crown are

given. Only Step 3 is new to this paper; its correctness relies merely on the definition of a crown.

The previous algorithm was incapable of identifying straight crowns. The inclusion of Step 3

eliminates this restriction. It also allows the algorithm to find larger crowns than was previously

possible. This algorithm will succeed in finding a crown as long as at least one of the following

conditions is met: (1) I0 is nonempty in Step 4 or (2) every vertex in N(O) is matched in Step 3.
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Figure 2: Selecting a subcrown to straighten a flared crown.

Let NM(H) denote the neighbors of H using only the edges contained in the matching M .

Step 1: Find a maximal matching M1 of the graph, and identify the set of all unmatched vertices

as the set O of outsiders.

Step 2: Find a maximum auxiliary matching M2 of the edges between O and N(O).

Step 3: If every vertex in N(O) is matched by M2, then H = N(O) and I = O form a crown,

and we are done.

Step 4: Let I0 be the set of vertices in O that are unmatched by M2.

Step 5: Repeat steps 5a and 5b until n = N so that IN−1 = IN .

5a. Let Hn = N(In).

5b. Let In+1 = In ∪ NM2(Hn).

Step 6: I = IN and H = HN form a flared crown.

2.3 Performance of LP-Kernelization and Crown Reduction

The time complexity of LP-kernelization is O(n3) if a general LP package is used. When a network

flow approach is used, it is is O(m
√

n) where m is the number of edges in G. The time complexity

of crown reduction is O(m∗√n∗), where m∗ is the number of edges between O and N(O) and
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n∗ is the number of vertices in O and N(O). Asymptotically, the behavior of the two methods

is similar. In practice, however, m∗ and n∗ are generally much smaller than m and n. Extensive

experimental results indicate that crown reduction is in fact much faster than LP-kernelization [1],

especially on large problem instances.

Both LP-kernelization and crown reduction result in kernels whose sizes are linear in k. The

kernel that results from LP-kernelization has size at most 2k. The kernel that results from crown

reduction is (perhaps loosely) bounded above by 3k. It should be noted that the particular crown

produced by crown reduction depends on the maximal matching identified in step 1 of the algo-

rithm. Thus, the crown reduction may be repeated, potentially resulting in smaller and smaller

kernels.

3 LP-kernelization: Finding Crowns

Because the crown reduction and LP-kernelization are based on different algorithmic techniques,

there was considerable suspicion that the methods would prove to be orthogonal [9]. This is not

the case, however. The sets P and R identified by LP-kernelization turn out, surprisingly, to be a

crown. This is proven with the following theorem.

Theorem 1 If LP-kernelization is applied to a graph G and finds a set R of vertices to exclude

from the vertex cover and a set P of vertices to include in the cover, then (R, P ) is a crown.

Proof. Let us look at the requirements for a crown. Since Xu < 0.5 for all vertices u ∈ R, we

know, because of the edge constraint Xu + Xv ≥ 1, that there cannot be any edges {u, v} with

both u and v in R. Thus R is an independent set.

Suppose there is a vertex u ∈ P where u /∈ N(R). Then every neighbor v of u has Xv ≥
0.5. Thus we could improve the LP solution by imposing Xu = 0.5 without violating any of the

constraints Xu + Xv ≥ 1. This cannot happen so we can conclude that P ⊆ N(R). Similarly,

suppose there is a u ∈ N(R) where u /∈ P . Then Xu ≤ 0.5 while u has a neighbor v where

Xv < 0.5. The edge {u, v} must violate the constraint Xu + Xv ≥ 1. This too cannot happen, so
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we conclude that N(R) ⊆ P and thus P = N(R).

Let M be a maximum matching on the edges between R and P . We now show that every vertex

in P must be matched by contraction. Let C0 ⊂ P be the set of vertices in P that are unmatched

by M and suppose C0 �= ∅. Let D0 = N(C0) ∩ R and C1 = NM(D0) ∪ C0. Repeat this process,

setting Dn = N(Cn) ∩ R and Cn+1 = NM(Dn) ∪ Cn, until C = CN+1 = CN and D = DN .

Since M is a maximum matching, alternating paths with an odd number of edges that begin

and end at unmatched vertices are impossible. Thus any alternating path beginning with a vertex

in C0 has an even number of edges (and an odd number of vertices), beginning and ending in

C. Since very vertex in D must be part of such an alternating path, this implies that C must be

larger than D. This can be most easily seen by noting that the matching M gives a natural one

to one association between the elements of D and NM(D). If this were not true an alternating

path with an odd number of edges would result. Furthermore C0 �= ∅ and NM(D) are disjoint and

C = NM(D) ∪ C0. Thus C is larger than D.

Notice that for any set P ′ ⊂ P we know that N(P ′)∩R must be larger than P ′ since otherwise

we could improve the LP solution by setting Xu = 0.5 for all u ∈ P ′ and u ∈ N(P ′)∩R. However

we have already shown that C ⊂ P is larger than N(C) ∩ R = D so this is a contradiction. Thus

C0 = ∅ and every vertex in P must be matched. Therefore (R, P ) is a crown.

3.1 Types of Crowns Identified

We now determine the types of crowns that can be identified by LP-kernelization. To do this, it is

useful to prove the following lemma which helps refine the relationship between straight and flared

crowns.

Lemma 1 If (I, H) is a flared crown then there is another crown (I ′, H) that is straight and where

I ′ ⊂ I .

Proof. Since (I, H) is a crown there is a matching M on the edges between I and H so that all

elements of H are matched. Since (I, H) is flared there must be at least one unmatched vertex in

I . Let I ′ be the set of matched vertices in I . It is clear that I ′ ⊂ I and that I ′ is an independent
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set. It is also clear that M is a matching between I ′ and H and that every vertex in H is matched.

Thus (I ′, H) is a crown. Finally, the M forms a one-to-one association between the vertices in I ′

and H . Thus |I ′| = |H| and the crown is straight.

This lemma allows us to break a flared crown into two subcrowns. There is a straight subcrown

and a flared subcrown. We are now ready to prove that LP-kernelization eliminates all flared

crowns from the graph. It does this by either finding all of the flared crown, or by straightening

the flared crown by identifying the flared part of the crown, but leaving the straight subcrown

unrecognized. Since the LP-solutions are not unique, different solution techniques may produce

different results on the same graph. One solution technique may identify an entire flared crown,

while another technique may only straighten the crown.

Theorem 2 If LP-kernelization is performed then the only straight crowns remain.

Proof. Suppose there is a crown (I, H) with |I| > |H| that is not identified by LP-kernelization.

Vertices u not removed by LP-kernelization are given weights Xu = 0.5. Thus Xu = 0.5 for every

u ∈ I ∪ H . Since |I| > |H| we can improved the LP-solution by assigning Xu = 1 for every

u ∈ H and Xv = 0 for every v ∈ I .

We must demonstrate that this new weight assignment is an LP-solution by showing that it still

meets the edge constraints. Since N(I) = H the condition Xu + Xv ≥ 1 is satisfied by for all

edges (u, v) where either u or v is in I . Next consider edges that have an endpoint in H but not in

I . These edges have had their total weight increased and so still meet the edge constraints. Finally,

edges that do not connect either to I or to H are unaffected by the new weights and so still satisfy

the edge constraints.

3.2 Every Crown Identified by Some LP-Solution

Even though a given LP-solution may or may not recognize a particular straight crown, there is an

LP-solution that does. This is proven in the following theorem.

Theorem 3 If (I, H) is a crown, then there is an optimal LP-solution that identifies a crown of

which (I, H) is a subcrown.

8



Proof. Suppose there is a particular optimal LP-solution that does not identify a crown with (I, H)

as a subcrown. This implies that the crown must be straight and |I| = |H| by Theorem 2. Let us

construct another LP-solution by assigning Xv = 0 for all v ∈ I and Xu = 1 for all u ∈ H and

leaving the weight of the other vertices unchanged.

We first show that it is an LP-solution by showing that it still meets the edge constraints. Since

N(I) = H the condition Xu + Xv ≥ 1 is satisfied by for all edges (u, v) where either u or v is in

I . Next consider edges that have an endpoint in H but not in I . These edges have had their total

weight increased and so still meet the edge constraints. Finally, edges that do not connect either to

I or to H are unaffected by the new weights and so still satisfy the edge constraints.

Finally, we need to show that the solution is optimal. Since |I| = |H| the value of the objec-

tive function
∑

u∈V Xu is unchanged. Therefore this is a new solution to the LP-problem which

identifies the crown.

3.3 Finding All Crowns

Even though each crown has an LP-solution that would identify it, we need to determine if there is

a particular LP-solution that would eliminate all crowns from the graph. We present a lemma and

series of theorems that can be used to design a procedure for identifying all crowns in a graph.

First, we need to show that if a crown is identified and removed from a graph and a second

crown is identified among the remaining vertices, then these two crowns can be combined to form

a single crown. To do this it is useful to prove the following lemma that allows us to restrict the

number of values that must be considered in the LP-solution. It is previously known that there are

optimal solutions to the LP-problem that only use weights 0, 0.5, and 1 [11, 12]. Nevertheless, it

is useful to recast this result here in term of crowns, using Theorem 1, and then to demonstrate a

method for modifying any LP-solution to use only these weights.

Lemma 2 If there is an optimal solution to the LP-kernelization problem that assigns weight Xu

to each vertex u ∈ V and we define R = {u ∈ V |Xu < 0.5}, Q = {u ∈ V |Xu = 0.5}, and
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P = {u ∈ V |Xu > 0.5}, then there is another optimal solution to the LP-kernelization problem

that assigns weights X ′
u = 0 if u ∈ R, X ′

u = 0.5 if u ∈ Q, and X ′
u = 1 if u ∈ P .

Proof. By Theorem 1 we know that (R, P ) forms a crown and so there is a matching M between

R and P so that every element in P is matched. The total weight contribution of R ∪ P must be

at least |M | = |P | in any LP-solution since the edges in M must have total edge weight ≥ 1. We

can achieve this lower bound by making the weight assignments X ′
u = 0 if u ∈ R and X ′

u = 1

if u ∈ P . The weights of the remaining vertices are unchanged by the assignment X ′
u = 0.5 if

u ∈ Q, so the total edge weight of the graph is either unchanged or reduced by these assignments.

We now show that this new assignment is in fact an LP-solution by considering the edge con-

straints. The edge constraints are met for all edges {u, v} with u ∈ P , since in this case X ′
u = 1.

Edges {u, v} with u ∈ R must have v ∈ P and so we have already met the edge constraint. This

is because (R, P ) is a crown and so N(R) = P . Finally, we consider edges {u, v} with u ∈ Q.

Such an edge cannot have v ∈ R since N(R) = P and so we only need to examine cases where

v ∈ P or v ∈ Q. If v ∈ P then we have already met the edge constraint. If v ∈ Q then X ′
u = 0.5

and X ′
v = 0.5 and so the edge constraint is met in this final case.

Now we prove that if a crown is identified and removed from a graph and a second crown is

identified among the remaining vertices, then these two crowns can be combined to form a single

crown.

Theorem 4 Suppose a graph G = (V, E) has a crown (I, H) identified by LP- kernelization and

that when (I, H) is removed the induced subgraph G′ = (V ′, E ′) has another crown (I ′, H ′), then

(I ∪ I ′, H ∪ H ′) forms a crown in G.

Proof. Let S be the optimal LP-solution for G where Xv = 0 for every v ∈ I , Xu = 1 for every

u ∈ H , and Xw = 0.5 for every w /∈ H ∪ I . We know that such an optimal LP-solution exists by

Lemma 2.

We construct a new optimal LP-solution S ′. For any u ∈ V we set X ′
u as follows:

(1) If u ∈ H ∪ H ′ then X ′
u = 1.

(2) If u ∈ I ∪ I ′ then X ′
u = 0.
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(3) If u /∈ H ∪ H ′ ∪ I ∪ I ′ then X ′
u = 0.5.

Notice that all of the vertices in I ′∪H ′ remain when (I, H) is removed so I ′∪H ′ and I∪H are

disjoint. We already know that I and H are disjoint and that I ′ and H ′ are disjoint. This implies

that I , H , I ′, and H ′ are all mutually disjoint. Thus there are no contradictions in the definition of

S ′.

We now show that S ′ is in fact an LP-solution by verifying the edge constraints for an arbitrary

edge (u, v) ∈ E.

Case 1: One of the endpoints is in H ∪ H ′. Without loss of generality assume v ∈ H ∪ H ′,

then X ′
v = 1 and the edge constraint is met.

Case 2: One of the endpoints is in I . Without loss of generality assume u ∈ I . We know that

v ∈ H since N(I) = H . Thus the problem reduces to case 1 and the edge constraint is met.

Case 3: One of the endpoints is in I ′. Without loss of generality assume u ∈ I ′. Since (I, H)

is removed before (I ′, H ′) is identified, there are two possibilities v ∈ I ∪ H or v /∈ I ∪ H . If

v ∈ I ∪ H , we know that N(I) = H and u /∈ H so we can restrict our attention to the case were

v ∈ H . Thus the problem reduces to case 1 and the edge constraint is met. If v /∈ I ∪ H then v is

a vertex in G′ and in this graph N(I ′) = H ′. Thus v ∈ H ′, the problem reduces to case 1 and the

edge constraint is met.

Case 4: Neither u nor v is in H ∪ H ′ ∪ I ∪ I ′. In this case X ′
u = 0.5 and X ′

v = 0.5 and the

edge constraint is met.

Finally, we show that S ′ is an optimal LP-solution for G. We know that S is an optimal LP-

solution for G. Notice that the total edge weight in S is |H| + 0.5|V − (H ∪ I)| = |H| + 0.5|V ′|
and that an optimal LP-solution for G′ has total edge weight 0.5|V ′|. Also notice that since (I ′, H ′)

is a crown, there is another optimal LP-solution that identifies this crown and uses weights 0, 1,

and 0.5. We know this is possible by the proof of Lemma 2. The total edge weight of this new

LP-solution for G′ is |H ′| + 0.5|V ′ − (H ′ ∪ I ′)|. However, since these are both optimal solutions

for G′ we know that 0.5|V ′| = |H ′| + 0.5|V ′ − (H ′ ∪ I ′)|.
Now consider the total edge weight for S ′ which is |H ∪ H ′| + 0.5|V − (H ∪ H ′ ∪ I ∪

11



I ′)| = |H ∪ H ′| + 0.5|V − (H ∪ I) − (H ′ ∪ I ′)| = |H ∪ H ′| + 0.5|V ′ − (H ′ ∪ I ′)|. Since

H , H ′ are disjoint, we know that |H ∪ H ′| = |H| + |H ′|. Thus the total edge weight for S ′ is

|H|+ |H ′|+ 0.5|V ′ − (H ′ ∪ I ′)| = |H|+ 0.5|V ′| which is the total edge weight for S. Thus, both

S and S ′ are optimal LP-solutions for G. Thus by Theorem 1 we know that the sets identified by

S ′, namely I ∪ I ′ and H ∪ H ′ must form a crown.

Finally, we need to show that identifying two different crowns cannot result in any serious

conflicts. That is, if a graph has two different crowns, then the two crowns can be combined to

form a single crown. This is not a matter of simply taking the union of the two crowns. There may

be vertices in the independent set of one crown that are included in the cutset of the other crown.

Such conflicts always occur in straight crowns that are subcrowns of the two original crown and

that can be reversed without disrupting the crown properties.

Theorem 5 If (I1, H1) and (I2, H2) are crowns of a graph G that are identified by two different

LP-solutions, then there is a crown (I, H) that contains all the vertices in I1 ∪ I2 ∪ H1 ∪ H2 and

where I1 ⊆ I and H1 ⊆ H .

Proof. For each vertex u in G, let X1
u designate the weight of u in an optimal LP-solution that

identifies (I1, H1) so that X1
u = 0 if and only if u ∈ I1, X1

u = 1 if and only if u ∈ H1, and

X1
u = 0.5 otherwise. We know such a solution exists by Lemma 2. Similarly find X 2

u for an

optimal LP-solution that identifies (I2, H2).

We now create another optimal LP-solution by defining, for each vertex u, X ∗
u = X1

u+X2
u

2
.

Notice the total weight
∑

u X∗
u =

∑
u X1

u =
∑

u X2
u is still optimal. If {u, v} is an edge in G, the

X∗
u + X∗

v = X1
u+X2

u

2
+ X1

v+X2
v

2
≥ 1 since X1

u + X1
v ≥ 1 and X2

u + X2
v ≥ 1. Thus X∗ defines an

optimal LP-solution. By Lemma 2 we can modify these values so that X ∗
u = 0, 0.5, or 1 for all

vertices u in G.

The only vertices in the original two crowns that do not have X ∗ weights of 1 or 0 are those in

I1 ∩H2 and I2 ∩H1. Let G′ be the graph that remains when all vertices with X ∗ weights of 0 or 1

are removed from the original graph. In this graph let u ∈ I1 ∩H2 and v be a neighbor of u. Since

u ∈ I1 and H1 = N(I1) we know v ∈ H1. Thus X1
v = 1 and since we know X∗

v = 0.5 we also
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know X2
v = 0. Therefore v ∈ I2 and v ∈ H1 ∩ I2. Thus N(I1 ∩ H2) ⊆ (I2 ∩ H1) in graph G′. A

similar argument shows that N(I2 ∩ H1) ⊆ (I1 ∩ H2) in G′.

Finally, we show that (I1∩H2, I2∩H1) forms a straight crown that can be reversed. Notice that

if |I1 ∩H2| ≤ |I2 ∩H1| we would not increase the size of the LP-solution by assigning weight 1 to

the vertices in I1 ∩H2 and 0 to the vertices in I2 ∩H1. On the other hand if |I2 ∩H1| ≤ |I1 ∩H2|
then we would not increase the size of the LP-solution by assigning weight 1 to the vertices in

I2 ∩ H1 and 0 to the vertices inI1 ∩ H2. In either case we have a new LP-solution that identifies

(I1 ∩H2, I2 ∩H1) as a crown but X∗ does not. By Theorem 2, this implies that (I1 ∩H2, I2 ∩H1)

is a straight crown. Since N(I1 ∩ H2) ⊆ (I2 ∩ H1) and N(I2 ∩ H1) ⊆ (I1 ∩ H2) in G′ we know

that this crown has no neighbors. Thus it can be reversed without loss of generality.

We select the independent set of the straight crown to be I1 ∩ H2 and the cutset of the straight

crown to be I2 ∩ H1 so that the weight agree with the crown (I1, H1). Notice that all of the

remaining vertices in the two original crowns were identified by the LP-solution defined by X ∗.

Thus, by Theorem 4, we can union the crown identified by X ∗ and the straight crown to obtain

(I, H) where I = I1 ∪ (I2 − I1) and H = H1 ∪ (H2 − I1).

4 A Polynomial Time Algorithm to Identify All Crowns

We can now use the results we have just proven to produce a polynomial time algorithm that will

find all possible crowns in an arbitrary graph.

Theorem 6 There is a polynomial time algorithm for processing a graph G to produce an induced

subgraph G′ that has no crowns.

Proof. We present such a polynomial time algorithm.

Step 1: Perform LP-kernelization. By Theorem 2, this can be used to eliminate all flared

crowns by either removing the entire crown, or by removing enough vertices so that all the crowns

are straight. Let G1 = (V1, E1) be graph induced by the set of vertices that remain in the kernel.

Since these vertices were not removed by LP-kernelization, we know that Xu = 0.5 for all u ∈ V1.
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We also know that the total weight in the optimal LP-solution for G1 is 0.5|V1|.
Step 2: Pick a vertex w ∈ V1 and test it to see if it is in the independent set of some crown by

finding the optimal solution of the following LP-problem.

Assign a value Xu ≥ 0 to each vertex u ∈ V1 so that the following conditions hold.

(1) Minimize
∑

u∈V1
Xu.

(2) Satisfy Xu + Xv ≥ 1 whenever uv ∈ E1.

(3) Xw = 0

Step 3: If the total weight is still 0.5|G1|, then this too is an optimal solution of the original

LP-problem and we have identified a straight crown. We remove the straight crown from the graph

in the usual manner producing an induced subgraph G2 = (V2, E2) where we know that Xu = 0.5

for all u ∈ V2 and the total weight in the optimal LP-solution for G2 is 0.5|V2|. If the total weight

is larger, then we have not identified a crown and we let G2 = G1.

We repeatedly apply steps 2 and 3 until all vertices have been checked or eliminated, producing

the graph G′. Theorem 4 guarantees that removing a crown does not create new crowns from

vertices not previously in a crown. Theorem 5 guarantees that the order in which crowns are

identified does not significantly change the final result.

Thus we only need to check each vertex once and when this process is complete, there can

be no crowns and we will have identified all possible crowns in the graph. The total run time of

the LP-solution procedure is O(mn3/2) where m is the number of edges and n is the number of

vertices in G if the network flow approach is used. This is a worst case scenario, in which the

original graph has no crowns, and the process is repeated n times, once for each vertex.

5 Crown Decomposition

The algorithm in Theorem 6 allows us to find a single large crown that breaks the graph into a

crown and a subgraph without any crowns. We state this in the form of the following corollary.

14



Corollary 1 The union of the crowns found in the algorithm in Theorem 6 forms a single large

crown and is, up to reversals of straight crowns, unique.

Proof. Theorems 4 and 5.

This is equivalent to the following corollary that allows us to decompose every graph into a

large crown and a subgraph that has no crowns.

Corollary 2 Every graph G can be decomposed in to two subgraphs, C and K where C is a crown

and K has no crowns.

6 Concluding Remarks

Although the results reported here are primarily of a theoretical flavor, it would seem that in prac-

tice one would seek to kernelize a problem using one or more crown reductions before attempting

the crown decomposition algorithm. Recent empirical investigations appear to bear out this pre-

sumption [1, 14]. Also, decomposing graphs into crowns and subgraphs that are crown free is

not only useful in reducing the kernel size of the vertex cover problem. It may also be helpful in

kernelizing a variety of packing problems, the n − k coloring problem and many other NP-hard

problems [8]. Because the notion of crown decompositions is so new, there may well be other

applications that have yet to surface.
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