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Abstract.  Many models employed to solve problems in quantum mechanics, such as electronic 
structure calculations, result in nonlinear eigenproblems.   The solution to these problems typically involves 
iterative schemes requiring the solution of a large symmetric linear eigenproblem during each iteration.  
This paper evaluates the performance of various popular and new parallel symmetric linear eigensolvers 
applied to the Self-Consistent Field procedure in electronic structure calculations on the distributed 
memory supercomputers at the Oak Ridge National Laboratory.  Results using established routines from 
ScaLAPACK and vendor optimized packages, are presented, as well as from two recently developed 
parallel eigensolvers, the method of Multiple Relatively Robust Representations using PLAPACK support 
routines and the block divide-and-conquer algorithm. 
 
 

1.  Introduction.  The problem of describing the motion of N electrons in the field of 
M fixed nuclear point charges is a central problem in quantum chemistry.  It translates 
into the task of finding and describing approximate solutions of the electronic 
Schrödinger equation.  The solutions to this equation involving the electronic 
Hamiltonian are the electronic wave functions, which describe the motion of electrons, 
and the electronic energy.  The wave function for a single particle is called an orbital. 
 

Using the Hartree-Fock approximation [25, 27] in the electronic Schrödinger equation 
leads to the nonlinear Hartree-Fock equation, a spatial integro-differential equation for 
the orthonormal Hartree-Fock orbitals and the corresponding orbital energies. The N 
orbitals with the lowest energies are called the occupied orbitals.  In practice, the 
solutions of this equation are approximated by introducing a finite set of n basis 
functions, expanding the unknown molecular orbitals in terms of this basis, and 
converting the Hartree-Fock equation to a set of algebraic equations.  The problem of 
computing the molecular orbitals then reduces to the problem of computing the matrix C 
of expansion coefficients, which can be formulated as the Roothaan equations 
 
 ( )F C C S C E=  (1) 
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with the Hermitian (usually real symmetric) n x n matrices S (overlap matrix) and F 
(Fock matrix).  S is positive definite with unit entries along the diagonal, and its off- 
diagonal entries satisfy 1ijS <  for i j≠ .  E is a diagonal matrix that contains the orbital 
energies along the diagonal, and C contains the expansion coefficients columnwise. 
 

1.1  The Self-Consistent Field Method.  The Roothaan equations (1) establish a 
generalized eigenproblem with the unknowns E and C as the eigenvalues and 
eigenvectors, respectively.  Since F depends on the coefficient matrix C, this is a 
nonlinear eigenproblem.  Its solution is a very central and time-consuming task arising in 
many quantum chemistry applications. We have described the problem as it is normally 
derived in Hartree-Fock theory, however, very similar equations occur in density 
functional theory [23, 11] and in semi-empirical quantum chemistry [24, 8]. 
 

The standard approach in quantum chemistry for solving (1) is the self-consistent field 
(SCF) method, summarized in Algorithm 1.1.  After reduction of the generalized 
nonlinear eigenvalue problem (1) to a standard nonlinear eigenproblem, for example, 
using a Cholesky factorization of the overlap matrix S, this nonlinear problem is 
transformed into a linear eigenproblem using an initial guess C0 for the expansion 
coefficients. The linear eigenproblem is solved, the new expansion coefficients C1 are 
computed from the eigenvectors of the linear eigenproblem, and a new linear 
eigenproblem is formulated. This procedure is iterated until self-consistency is achieved, 
i.e., until the new expansion coefficients Ck are close enough to the old expansion 
coefficients Ck-1 or the new computed electronic energy is sufficiently close to the 
computed electronic energy in the previous iteration. 
 
 

Input:  guess initial values C0 
1. factorize S = U UT 
2. transform (1) into a standard problem A(C) V = V E 
3. repeat k =1,2, … 

(i) compute  A(Ck-1) 
(ii) solve A(Ck-1) V = V Ek 
(iii) compute  Ck = U-T V 

 until converged 
 Output: electronic energy, orbitals 

Algorithm 1.1  Self-Consistent Field Method 
 
 

The iterative Algorithm (1.1) does not always converge, for example, if the initial 
guess is poor. Various techniques have been suggested for ensuring or accelerating 
convergence [18].  As a convergence criterion, it is common to require that two 
successive values of the total energy do not differ by more than a tolerance δ. A value of 
δ =10-6 is adequate for most purposes [27].  Alternatively, it is also possible to require 
that the change 1k kC C −−  be bounded in some norm. 
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1.2 Synopsis.  The purpose of this paper is to report on the performance evaluation of 

various parallel standard symmetric eigensolvers as they solve the linear problem given 
in Step 3(ii) of Algorithm 1.1.  The tests will involve applying the SCF method to 
molecules from various types of materials using the distributed memory supercomputers 
located in the Center for Computational Sciences (CCS) [1] at the Oak Ridge National 
Laboratory (ORNL).  Due to its architecture and maturity, our tests will concentrate on 
the IBM pSeries system. 

 
The algorithms will be briefly described in Section 2, the test matrices in Section 3, 

and the supercomputers in Section 4.  Section 5 will present the test results and provide 
summary comments. 
 

2. Parallel Eigensolvers.  For our performance tests, we include the two parallel 
eigensolvers that are readily available to the users of the distributed memory 
supercomputers located in ORNL’s CCS.  Both of these have been tuned for improved 
performance through the use of BLAS and PBLAS optimized by the computer vendor. In 
addition, we will include an initial parallel implementation of a recent algorithm, the 
method of Multiple Relatively Robust Representations, and an initial parallel version of 
the block divide-and-conquer algorithm.  The salient features of each algorithm will be 
given below with algorithmic and parallel implementation details provided in the cited 
references. 

 
2.1  PDSYEVD.  The parallel eigensolver, PDSYEVD, used in our experiments is 

found in ScaLAPACK [6] and is based upon the divide-and-conquer algorithm [7].  It 
consists of the classical three steps: reduction to symmetric tridiagonal form, eigen-
decomposition of the tridiagonal matrix, and back-transformation of the eigenvectors.  
The eigen-decomposition of the tridiagonal matrix is computed by the Tisseur-Dongarra 
parallel implementation [28] of the divide-and-conquer algorithm using the Gu-Eisenstat 
method [16] for stably computing the eigenvectors.  The reduction to tridiagonal form 
does not incorporate some of the more recent methods [5, 12] designed to increase the 
number of BLAS3 operations.  Algorithms implementing all three steps use a vendor-
optimized version of BLAS on all three (IBM, SGI, and Cray) distributed-memory 
supercomputers at ORNL. 

 
2.2  PDSYEVX.  The parallel eigensolver, PDSYEVX, used in our experiments is 

found in PESSL [2], which is a library of parallel solvers for scientific problems supplied 
by IBM.  PESSL incorporates optimizations for the intended computational platform.  
PDSYEVX also consists of the classical three steps described above but uses a different 
algorithm for the eigen-decomposition of the symmetric tridiagonal matrix.  The 
bisection method [19] is used for computing its eigenvalues and inverse iteration (with 
re-orthogonalization for tightly clustered eigenvalues) [19] is used for computing its 
eigenvectors.  The same algorithms as in PDSYEVD are used for the reduction and back-
transformation steps.   
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2.3  PMR3.  Significant progress has been made in computing the eigensystem of 
symmetric tridiagonal matrices. The method of Multiple Relatively Robust 
Representations (MRRR) [21, 9, 20, 10, 22] has greatly improved the efficiency of these 
solvers while maintaining accuracy and obtaining eigenvector orthogonality.  The MRRR 
provides an O(n2) algorithm for computing the n eigenpairs to full accuracy and 
eigenvectors to numerical orthogonality.  Since the solution to the full eigenvector 
problem generally requires the computation of n2 values, this algorithm is considered 
optimal, hence its informal name of “Holy Grail.”   

 
The parallel MRRR algorithm used in our tests, PMR3, is described in [4].  It is the 

first parallel implementation of an MRRR algorithm and was obtained from the 
PLAPACK researchers at the University of Texas. The same basic algorithms as used in 
PDSYEVD and PDSYEVX, but with different implementations, are used to reduce the 
full matrix to tridiagonal form and back-transform the eigenvectors of the tridiagonal 
matrix to those of the original matrix [15]. 

 
2.4  PBDnC.  The recently developed block divide-and-conquer algorithm [14, 13] 

has proven very attractive for computing eigensystems of symmetric, block tridiagonal 
matrices with reduced accuracy requirements, that is, accuracy less than machine 
precision.  This algorithm has been used with good results in electronic structure 
calculations[13].  An initial parallel implementation of this algorithm [3] has recently 
been developed.  Since parallel algorithms for reducing dense matrices to block 
tridiagonal form are still under development, PBDnC can only be tested on matrices that 
are already in nontrivial block tridiagonal form (more than 2 blocks) or can be placed in 
nontrivial block tridiagonal form without affecting the required accuracy, e.g., when the 
elements outside the block tridiagonal are small enough to be set to zero. 

 
3. Test Matrices.  The test matrices used in this eigensolver performance study 

come from various molecule families and derivation schemes.  A brief description of 
each is given in the subsections below along with a picture of one normalized Fock 
matrix (produced by Step 2 in algorithm 1.1) from each family.  The picture uses a color 
to indicate the magnitude of the exponent of the element in that matrix position.  The 
color-coded scale bar to the right of the picture shows the value of the exponent.  Pictures 
of different normalized Fock matrices in the same family are very similar. The major 
difference in test matrices in a family comes from the number of molecules in the model 
and, except for the impure hydrogen family, result in matrices of different orders.  Note 
that the orders of the matrices range from fairly small (i.e., 1934) to reasonably large (i.e., 
16,000). 
 

3.1  Alkane Family.  The alkane family consists of acyclic hydrocarbons in which 
the molecule has the maximum number of hydrogen atoms – hence has no double bonds.  
The general formula for alkanes is CnH2n+2.  The nonlinear eigenproblem for this family 
has been derived from the semi-empirical method CNDO, and as such, does not have an 
overlap matrix.  Thus, there is no normalization (steps 1 and 2 of Algorithm 1.1) of the 
Fock matrix. 
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Two Fock matrices from this family were included in our performance study.  One 
came from the C322H646 alkane with n = 1934 and the other from C502H1006 with n = 3014.  
Figure 3.1 shows a picture of the Fock matrix for C322H646 using 1934 functions in the 
basis set.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1  Element Magnitudes of the Initial Fock matrix for the 
C322H646 Molecule in the Alkane Family 

 
 

3.2  Polyalanine Family.  The matrices in this family were formed from modeling 
polypeptides made solely from alanine.  Linear polyalanine chains of differing lengths 
were constructed, then a classical force field was used to randomize the chain 
conformations so that the molecules were no longer linear.  The MINDO method was 
then used to construct the Fock matrices, all of which had a bandwidth of 79. 
 

Our performance study includes two Fock matrices from this family.  One comes 
from a polyalanine chain of length 125, which yields a matrix size of 3152, and the other 
from a chain of length 200, resulting in a matrix size of 5027.  Figure 3.2 shows a picture 
of the magnitude of the elements in the Fock matrix produced by the chain of length 125.   
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Figure 3.2  Element Magnitudes of the Fock matrix for the 

Polyalanine Chain of Length 125 
 
 

3.3  Silicon Crystal Family.  This family of test matrices has been generated using 
the PBE form of Density Functional Theory on Silicon crystals with differing numbers of 
atoms.  We denote the different problems in the family by the number of unit cells in 
each of the x, y, and z directions.  Thus, the 111 problem has one unit cell in each of the 
directions, and the 432 problem has 4 unit cells in the x direction, 3 in the y direction, and 
2 in the z direction. Each unit cell has 8 atoms using 104 basis functions from the Double 
Zeta basis set.  Thus, the 111 problem models 8 atoms with 104 basis function resulting 
in an eigenproblem of order 104, and the 443 problem models 384 atoms with 4992 basis 
functions resulting in an eigenproblem of 4992.   
 

We include two Fock matrices from this family in our tests: the 443 and 544 Silicon 
crystals.  The 443 Fock matrix is of order 4992, and the 544 is 8320.  Figure 3.3 shows a 
picture of the magnitude of the elements in the initial normalized Fock matrix produced 
from the 443 lattice.   
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Figure 3.3  Element Magnitudes  of the Initial Normalized Fock matrix 

for the 443 Lattice in the Silicon Crystals Family 
 
 

3.4  Hydrogen Molecules with Impurities.  These test matrices are derived from a 
finite-basis representation of the vibrational Hamiltonian of a randomly close, packed 
solid sample of hydrogen molecules H2 in which 0.1% of the molecules have been 
replaced by impurities [17].  The solid is represented by a collection of 21 x 24 x 26 
molecules on a lattice with periodic boundary conditions imposed in all three 
dimensions.  The off-diagonal elements represent couplings between nearby H2 
molecules and decrease in magnitude the further they appear from the diagonal.   
Different matrices in this family are produced by including more distant neighbors in the 
model.  All the matrices are of order 13,104. 
 

We include two matrices from this family in our tests.  The first includes multiple 
layers of molecular couplings producing a matrix with 0.42% of its elements nonzero.  
The matrix contains 716,273 nonzero elements that are all between -10 and -0.015.  Its 
zero-nonzero structure is given in Figure 3.4.  The second is the most dense matrix in the 
family and includes all molecular pairs with a coupling greater than or equal to -10-5.  
The matrix contains 24,231,553 nonzero elements, i.e., about 14%, with values between -
10 and –10-5.   
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Figure 3.4  Zero-Nonzero Structure of  Hamiltonian from Impure Hydrogen 
Lattice with 0.42% sparsity (Blue for nonzero, White for zero) 

 
 
 

3.5  trans-Polyacetylene Family.  Polyacetylene (PA) has been the subject of 
intensive investigation for many years.  It shows a very fast response time upon laser 
excitation, making it a candidate for fast-optical switching and optical computation.  Our 
test matrices come from the trans-form of PA with C-H chains sufficiently long that end 
effects may be ignored.  The SSH Hamiltonian[26], which is a tight-binding 
approximation and includes only nearest neighbor atoms, is used within the Hartree-Fock 
approximation framework.  As a tight-binding approximation, each cell unit has only one 
basis function; therefore, the size of the matrix is the number of atoms being modeled. 
 

We include two matrices from this family in our tests: one with 12,000 atoms and one 
with 16,000. Figure 3.5 shows a picture of the magnitude of the elements in the initial 
Fock matrix produced from the 12,000-atom problem.   

 

 8 



 
Figure 3.5  Element Magnitudes of the Fock matrix for a trans-

Polyacetylene with 12,000 atoms 
 
 

4.  Supercomputers.  The test cases were run on the three distributed memory 
supercomputers in the Center for Computational Sciences at the Oak Ridge National 
Laboratory.  Brief descriptions of these systems are given below. 
 

4.1  IBM 4.5 Teraflops pSeries System.  The system, installed in 2002 and 
nicknamed Cheetah, consists of twenty-seven p690 nodes of thirty-two 1.3 GHz IBM 
Power4 processors each for a total of 864 processors.  There are 2 processors per chip.  
All nodes are connected via IBM’s Federation interconnect.  With each processor having 
a peak rating of 5.2 GFlops, the peak computational power of the system is 4.5 TFlops.  
The system has a peak LINPACK rating of 2.3 TFlops. 
 

Twenty of the nodes have 32 GB of SMP memory each, five nodes have 64 GB of 
SMP memory, and two have 128 GB; thus, the total available main memory on the 
system is 1.2 TB.  Access to data residing off-node is via the interconnect at a slower 
speed, resulting in a non-uniform memory access (NUMA) system.  In addition, 14 nodes 
have 160 GB of local temporary disk space. 

 
The Power4 memory hierarchy consists of 3 levels of cache.  The first and second 

levels are on-chip.  The split L1 instruction and data caches are 128 KB and 64 KB 
respectively or 64 KB and 32 KB respectively per processor.  The unified L2 cache is 1.5 
MB and is shared between the 2 processors.  The L3 cache shared by the 2 processors is 
32 MB and is located on a separate chip.  
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4.2  SGI 1.5 Teraflops Altix.  The system, installed in 2003 and nicknamed Ram, 
consists of 256 Intel Itanium2 processors running at 1.5 GHz.  With each processor 
having a peak rating of 6 GFlops, the peak computational power of the system is 1.5 
TFlops.  The system has a peak LINPACK rating of 1.3 TFlops.  Currently, only a 
maximum of 128 processors, which form a cluster, can be used together in parallel. 
 

Ram is a cache-coherent, shared-memory system with 8 GB of main memory per 
processor for a total of 2 TB of system memory.  Memory is physically distributed with 
different access times for local and remote memory, resulting in a NUMA system.  The 
Itanium2 cache hierarchy consists of 32 KB of on-die equally split L1 instruction and 
data caches, 256 KB of on-die unified L2 cache, and 6 MB of on-die L3 cache. 
 

4.3  Cray 6.4 Teraflops X1.  The system, installed/upgraded in 2003/2004 and 
nicknamed Phoenix, consists of 512 multi-streaming processors (MSP) with 4 MSPs 
forming a node.  Each MSP has four single-steaming processors (SSP), each with 2 
floating-point vector units and one super-scalar unit.  Each SSP is capable of 3.2 GFlops 
on 64-bit operations, yielding a system peak performance of 6.4 TFlops.  The system has 
a peak LINPACK rating of 5.9 TFlops. 
 

Four MSPs and 16 GB of flat, shared memory form a Cray X1 node.  The 
interconnect system within a node provides 200 GB/s bandwidth with the off-node 
interconnect system providing 50 GB/s.  The Cray X1 memory system is globally 
addressable and distributed across nodes with nonuniform access time.  The four SSPs in 
an MSP share 2 MB of cache. 
 

5. Test Results.  Given the difference in architectural features of the three 
supercomputers, the degree of algorithmic optimization present in the available 
algorithms, and the software available, we will report the performance results from the 
IBM Cheetah separately since these tests were more comprehensive.   
 
 5.1 Tests On IBM Cheetah. 
 

Our tests on Cheetah invoked the Fortran versions of PDSYEVD, PSYEVX and 
PBDnC through version 8.1 of IBM’s xlf compiler and C versions of PMR3 and 
PLAPACK through version 6 of IBM’s xlc compiler.  Both compilers were set to the 
default 32-bit compile mode and linked to the 32-bit PESSL library. The compiler 
options for PDSYEVD, PDSYEVX and PBDnC were:  

-O4 -qarch=auto -qcache=auto -bmaxdata:0x70000000, 
and for PMR3 and PLAPACK: 

-O4 -qtune=pwr4 -qarch=pwr4 -bmaxdata:0x70000000. 
 

The wall-clock times (in seconds) for the different algorithms using consecutive 
powers of 2 as the number of processors are given in tabular form for each test matrix 
followed by graphical representations of their performance.  For the smaller matrices, we 
start with 4 processors and go up to 512; we start with more processors for the larger 
matrices. 
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For an estimate of the accuracy of the computed eigensystem, we will use the 

following two scaled values: 
R = 

, 1,2, ,
max maxT

iiiji j n i
A VEV E

=
 −    

O = 
, 1,2, ,
max T

iji j n
V V I n

=
 −   , 

where A is the Fock matrix, V is the eigenvector matrix, and E is the diagonal matrix of 
eigenvalues.  We use R and O as accuracy indicators rather than including the 
eigenvalue gaps [19] since these measures are frequently used in applications and are 
sufficient in many cases.  For each family of test matrices, we provide one table giving 
the maximum R and O over all the computed eigensystems in that family.   
 

Since the PBDnC algorithm requires the matrix to be in block tridiagonal form, only 
the larger polyalanine Fock matrix and the two polyacetylene Fock matrices were run 
using this algorithm.  These matrices can be easily represented in nontrivial block 
tridiagonal form without affecting the accuracy of the eigensystem to machine precision, 
although we only asked PBDnC to compute the eigensystem to an accuracy of 10-6.  For 
the polyalanine (n = 5027), we used a block size of 104 for the first and last diagonal 
blocks and 79 for all other diagonal blocks.  All the blocks in both polyacetylene matrices 
were of size 500.  

 
PMR3 ran into some difficulty on some of the test cases and did not complete the 

computations, ending with an error.  A reasonable amount of effort was spent trying to 
solve the problems without success.  The errors appear to occur in the reduction and 
back-transformation routines rather than the PMR3 tridiagonal eigensolver and appear to 
be a portability problem since some of these tests ran successfully on a smaller cluster. 
These tests are shown with a DNF (did not finish) tag for the wall clock time.  We 
anticipate these problems will disappear when PLAPACK is formally ported to these 
architectures. 
 

5.1.1.  Alkane Family.   
 

# procs PDSYEVD PDSYEVX PMR3 # procs PDSYEVD PDSYEVX PMR3
4 19.8 29.9 7.7 4 20.3 68.2 DNF
8 5.3 8.5 7.2 8 16.8 26.2 19.8

16 3.2 4.8 7.1 16 10.4 12.4 DNF
32 2.2 6.3 3.7 32 5.6 12.2 DNF
64 2.0 5.8 4.1 64 4.6 10.3 8.2

128 2.2 11.0 5.2 128 5.4 17.1 10.1
256 2.7 13.1 6.9 256 5.7 19.4 11.7
512 5.2 21.7 9.4 512 11.8 33.4 15.2  

Table 5.1  Wall Clock Time in Seconds  Table 5.2  Wall Clock Time in Seconds  
 for C322H646 for C502H1006 
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Figure 5.1  Plots of Wall Clock Time for C322H646 
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Figure 5.2  Plots of Wall Clock Time for C502H1006 

 
 

 R O 

PDSYEVD 2.53E-15 1.84E-18 

PDSYEVX 8.56E-15 1.28E-17 

PMR3 1.46E-13 2.29E-15 

Table 5.3  Maximum Residual and Orthogonality Results for Alkanes 
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5.1.2  Polyalanine Family.   

 
# procs PDSYEVD PDSYEVX PMR3

4 28.1 45.9 32.0
8 17.9 23.4 DNF

16 10.3 14.0 12.3
32 6.2 14.0 DNF
64 5.7 12.0 9.2

128 4.5 19.9 11.5
256 4.7 19.4 12.9
512 7.0 37.5 19.0  

Table 5.4  Wall Clock Time in Seconds for Polyalanine Chain of Length 125 
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Figure 5.3  Plots of Wall Clock Time for Polyalanine Chain of Length 125 

 
 

# procs PDSYEVD PDSYEVX PMR3 PBDnC
8 56.6 84.9 55.6 23.0

16 33.8 39.8 DNF 16.2
32 17.9 33.8 24.0 8.7
64 14.2 25.6 DNF 6.3

128 10.5 35.7 21.7 5.1
256 10.2 33.3 26.1 3.5
512 12.4 62.8 30.8 4.8  

Table 5.5  Wall Clock Time in Seconds for Polyalanine Chain of Length 200 
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Figure 5.4  Plots of Wall Clock Time for Polyalanine Chain of Length 200 

 
 
 

 R O 

PDSYEVD 1.14E-14 3.66E-18 

PDSYEVX 3.62E-11 2.42E-14 

PMR3 6.53E-12 1.30E-14 

PBDnC 4.72E-06 9.51E-18 

Table 5.6  Maximum Residual and Orthogonality Results for Polyalanines 
(Note that PBDnC was given an accuracy request of 10-6.) 

 
 

5.1.3  Silicon Crystal Family.   
 

# procs PDSYEVD PDSYEVX PMR3 # procs PDSYEVD PDSYEVX PMR3
8 70.0 63.6 51.1

16 35.1 41.3 DNF 16 147.2 179.0 DNF
32 18.1 32.9 22.8 32 66.9 105.0 81.1
64 14.1 24.6 DNF 64 45.8 63.1 DNF
128 10.6 36.1 22.1 128 31.0 72.0 55.8
256 13.8 33.3 25.9 256 25.0 63.8 59.1
512 12.5 62.5 30.9 512 26.2 109.4 66.5  

 Table 5.7  Wall Clock Time in Seconds  Table 5.8  Wall Clock Time in Seconds 
 for 443 Lattice for 544 Lattice 

 14 



0

10

20

30

40

50

60

70

80

8 16 32 64 128 256 512
Processors

Ti
m

e 
 (s

ec
)

PDSYEVD
PDSYEVX
PMR3

 
Figure 5.5  Plots of Wall Clock Time for 443 Lattice 
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Figure 5.6  Plots of Wall Clock Time for 544 Lattice 

 
 

 R O 

PDSYEVD 3.16E-16 1.02E-18 

PDSYEVX 9.73E-11 7.68E-14 

PMR3 1.75E-09 2.70E-10 

Table 5.9  Maximum Residual and Orthogonality Results for Silicon Crystals 
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5.1.4  Hydrogen Molecules with Impurities.   
 

# procs PDSYEVD PDSYEVX PMR3 # procs PDSYEVD PDSYEVX PMR3
16 477.3 660.1 408.2 16 476.3 609.2 506.7
32 264.7 290.5 253.3 32 266.1 282.9 255.5
64 157.7 136.7 DNF 64 152.4 129.7 DNF

128 82.3 81.2 132.1 128 81.5 78.9 127.8
256 63.9 53.9 128.0 256 62.1 52.5 119.7
512 51.8 49.8 139.4 512 49.6 44.8 124.3  

Table 5.10  Wall Clock Time in Seconds for  Table 5.11  Wall Clock Time in Seconds 
 Impure Hydrogen with 0.42% Sparsity for Impure Hydrogen with 14% Sparsity 
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Figure 5.7  Plots of Wall Clock Time for Impure Hydrogen with 0.42% Sparsity 
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Figure 5.8  Plots of Wall Clock Time for Impure Hydrogen with 14% Sparsity 
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 R O 

PDSYEVD 1.79E-14 6.27E-19 

PDSYEVX 2.98E-14 9.32E-19 

PMR3 1.44E-10 9.43E-15 

Table 5.12  Maximum Residual and Orthogonality Results for Impure Hydrogens 
 
 

5.1.5  trans-Polyacetylene Family. 
 
 

# procs PDSYEVD PDSYEVX PMR3 PBDnC
16 402.6 529.2 434.5 33.0
32 229.5 298.4 DNF 14.1
64 119.3 142.2 DNF 15.7

128 66.2 135.2 283.4 6.4
256 50.8 108.8 108.9 4.5
512 45.1 163.6 128.0 4.6  

Table 5.13  Wall Clock Time in Seconds for 12K-Atom trans-PA 
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Figure 5.9  Plots of Wall Clock Time for 12K-Atom trans-PA 
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# procs PDSYEVD PDSYEVX PMR3 PBDnC
32 499.2 656.4 497.4 18.8
64 322.1 328.0 DNF 13.0
128 152.7 251.6 221.4 8.6
256 96.8 174.0 202.6 6.4
512 76.4 251.9 211.4 7.2  

Table 5.14  Wall Clock Time in Seconds for16K-Atom trans-PA 
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Figure 5.10  Plots of Wall Clock Time for 16K-Atom trans-PA 

 
 
 

 R O 

PDSYEVD 5.43E-16 3.52E-19 

PDSYEVX 6.07E-16 7.33E-18 

PMR3 1.91E-15 2.64E-16 

PBDnC 2.90E-06 1.59E-18 

Table 5.15  Maximum Residual and Orthogonality Results for trans-Polyacetylenes 
(Note that PBDnC was given an accuracy request of 10-6.) 
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5.1.6  Performance of the Classical 3-Steps in Eigensolvers.  As mentioned earlier, 
many eigensolvers, including PDSYEVD, PDSYEVX and PMR3, involve 3 major steps: 
(1) reduction to symmetric tridiagonal form, (2) eigen-decomposition of the tridiagonal 
matrix, and (3) back-transformation of the eigenvectors.  During our tests, the time 
required for each step was recorded for PDSYEVD and PMR3.  We were unable to 
include PDSYEVX in this test since the source code was not available for the insertion of 
proper timing statements.   
 

The below area charts present the average for each algorithm over all test matrices of 
the percentage of time spent in each step as a function of the number of processors.  As is 
obvious, the reduction step continues to dominate eigensolvers.  The below charts also 
illustrate the fact that PMR3’s reduction and back-transformation steps did not perform as 
well as PDSYEVD’s on most test cases, which is why PMR3 did not usually perform as 
well as PDSYEVD. 
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Figure 5.11  Mean Percentage of Solver Time Spent in the Three Steps 

of PDSYEVD as a Function of the Number of Processors 
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Figure 5.12  Mean Percentage of Solver Time Spent in the Three Steps 

of PMR3 as a Function of the Number of Processors 
 
Area charts of percentage time in each step as a function of the matrix order are given 
below for the problem with the fastest time over all problems with the same matrix order 
regardless of number of processors and test family. 
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Figure 5.13  Percentage of Solver Time Spent in the Three Steps of 

PDSYEVD as a Function of the Matrix Size 
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Figure 5.14  Percentage of Solver Time Spent in the Three Steps of 

PMR3 as a Function of the Matrix Size 
 
 
 
 
 5.2 PDSYEVD Tests on the SGI Ram and Cray Phoenix. 
 

The only eigensolver available on these two supercomputers was PDSYEVD as 
provided by the vendors.  SGI included the ScaLAPACK solver in their Scientific 
Computing Software Library, a collection of high-performance, optimized routines in 
support of scientific computing.  Cray included the solver in their CrayLibSci software 
library of mathematical routines, but many of the routines available in CrayLibSci, 
including PDSYEVD, have not yet incorporated algorithmic optimizations (except for 
BLAS) for the Cray X1’s unique architecture.  PLAPACK was not successfully ported to 
either of these 64-bit computers within the limited time available for the tests.  
 

The Fortran version of PDSYEVD was invoked on Ram through the Intel Fortran 
compiler efc version 7 with option –O3 and on Phoenix with the Cray FORTRAN 
compiler ftn version 5.2 with options –O3 stream2. 

 
Performance data for PDSYEVD on the SGI Ram are given in Table 5.16a & 5.16b 

below, and data for Cray Phoenix are given in Table 5.17 below. 
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# procs C322H646 C502H1006 Polyala 125 Polyala 200 443 Si Cryst 
4 4.82 18.04 20.34   

8 2.66 9.02 10.19 37.60 37.73 

16 2.14 6.20 5.91 22.27 22.45 

32 1.88 4.05 4.45 12.14 12.70 

64 1.56 3.33 3.50 8.95 7.85 

128 1.46 2.86 3.03 6.45 6.53 

Table 5.16a  Wall Clock Time for PDSYEVD on the SGI Ram 
 
 

# procs 544 Si Cryst Impure H 
0.42% 

Impure H 
14% 

12K    
trans-PA 

16K    
trans-PA 

16 93.34   231.31  
32 52.88 173.10 173.16 130.03 283.18 

64 32.62 103.28 103.29 80.68 171.57 

128 17.34 54.24 54.40 40.55 96.58 

Table 5.16b  Wall Clock Time for PDSYEVD on the SGI Ram 
 
 
 
 

# procs C322H646 C502H1006 443 Si Cryst 
4 11.46 23.91 55.03 

8 8.16 16.63 25.40 

16 5.64 10.43 26.97 

32 6.34 12.03 18.61 

64 6.28 10.73 21.34 

128 6.11 10.96 55.03 

Table 5.17  Wall Clock Time for PDSYEVD on the Cray Phoenix 
 
 

Although comparisons at this time are very unfair due to the differences in their 
basic architecture, ported software and levels of optimization, a few graphs are given 
below comparing the performance of PDSYEVD on the three supercomputers.  These 
performance graphs are expected to change over the next several months as appropriate 
optimizations are made to mathematical software libraries, especially those for the Cray 
X1.  
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Figure 5.15  Wall Clock Time for PDSYEVD Solving C502H1006 
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Figure 5.16  Wall Clock Time for PDSYEVD Solving 443 Silicon Crystal 
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	Two Fock matrices from this family were included in our performance study.  One came from the C322H646 alkane with n = 1934 and the other from C502H1006 with n = 3014.  Figure 3.1 shows a picture of the Fock matrix for C322H646 using 1934 functions in th
	We include two Fock matrices from this family in our tests: the 443 and 544 Silicon crystals.  The 443 Fock matrix is of order 4992, and the 544 is 8320.  Figure 3.3 shows a picture of the magnitude of the elements in the initial normalized Fock matrix p
	We include two matrices from this family in our tests.  The first includes multiple layers of molecular couplings producing a matrix with 0.42% of its elements nonzero.  The matrix contains 716,273 nonzero elements that are all between -10 and -0.015.  I
	Twenty of the nodes have 32 GB of SMP memory each, five nodes have 64 GB of SMP memory, and two have 128 GB; thus, the total available main memory on the system is 1.2 TB.  Access to data residing off-node is via the interconnect at a slower speed, resul
	The Power4 memory hierarchy consists of 3 levels of cache.  The first and second levels are on-chip.  The split L1 instruction and data caches are 128 KB and 64 KB respectively or 64 KB and 32 KB respectively per processor.  The unified L2 cache is 1.5 M
	The below area charts present the average for each algorithm over all test matrices of the percentage of time spent in each step as a function of the number of processors.  As is obvious, the reduction step continues to dominate eigensolvers.  The below

