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1. Introduction. Starting in 2005, the National Science Foundation is funding
an initiative [10] to improve the LAPACK [2] and ScaLAPACK [7] libraries for Nu-
merical Linear Algebra Computations. One of the ambitious goals of this initiative
is to put more of LAPACK into ScaLAPACK, recognizing the gap between
available sequential and parallel software support.

The NSF proposal [10] identifies the parallelization of the MRRR algorithm [22,
23, 24, 25, 26, 13] as one key improvement to ScaLAPACK. Specifically, the authors
point out that in ScaLAPACK, there are ’parallel versions of only the oldest LAPACK
algorithms for the symmetric eigenvalue decomposition.’

ScaLAPACK contains a parallel bisection code, pdstebz, to compute eigenvalues
of a symmetric tridiagonal matrix. These eigenvalues can be used to compute the
corresponding eigenvectors by parallel inverse iteration pdstein. For computing k
eigenvalues of an n× n matrix, bisection is an O(kn) process. If the k corresponding
eigenvectors are to be computed by bisection, then inverse iteration with reorthogo-
nalization takes O(k2n) operations.

ScaLAPACK also provides an expert driver, pdsyevx, that takes a dense dis-
tributed matrix, transforms it to tridiagonal form, computes the eigenvalues by pdstebz
and the eigenvectors by pdstein, and then applies the appropriate orthogonal trans-
formations to obtain the eigenvectors of the dense matrix. Both the reduction to
symmetric tridiagonal form and the orthogonal transformation to obtain the eigen-
vectors of the initial matrix have O(n3) complexity and require O(n2) memory.

Thus, if perfect scalability among p processors could be achieved, then each pro-
cessor would perform O(n3/p) operations using O(n2/p) memory. With respect to
these numbers, parallelizing the MRRR algorithm that has O(n2) complexity for the
full tridiagonal eigenproblem seems less of a priority. However, there is one important
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reason for its parallelization. Memory scalability with O(n2/p) memory per processor
can only be achieved if MRRR is parallelized.

A parallel version, ParEig, of the MRRR algorithm for the tridiagonal eigenvalue
problem has already been developed [3]. It is implemented in C and makes use
of LAPACK 3.0 f77 kernels for the sequential code dstegr. Memory is allocated
dynamically as needed; MPI [30] is used for parallel communication. The algorithm
depends on PLAPACK [1, 31] for the orthogonal transformation to tridiagonal form
and the backtransformation to obtain the eigenvectors of the original matrix.

We parallelized MRRR in the ScaLAPACK environment. Together with the ac-
companying tester, our algorithm is going to be part of the next ScaLAPACK release,
making it available across a large number of platforms and to a significant user base.
Our software was developed independently from [3]. Algorithmically, this work is
excellent and there was nothing for us to improve on. However, by its policy, ScaLA-
PACK only uses memory provided by the user. This required us to find a way to
implement the MRRR parallelization in fixed, minimal workspace. This is our scien-
tific contribution.

It is important to note that our code substantially improves the functionality
currently available in the ScaLAPACK library. pdsyevx does not guarantee a correct
answer with O(n2/p) memory per processor. Depending on the spectrum of the matrix
at hand, tridiagonal inverse iteration can require O(n3) operations and O(n2) memory
on a single processor to guarantee the correctness of the computed eigenpairs in the
worst case. If the eigenvalues of the matrix are tightly clustered, the eigenvectors have
to be computed (and reorthogonalized against each other) on the same processor;
parallelism in the inverse iteration is lost.

The rest of this paper is organized as follows. The general ScaLAPACK ap-
proach to parallel computation is described in Section 2.1. In Section 2.2, we describe
the design of the new MRRR-based ScaLAPACK driver. In Section 3.1, we give a
short introduction to the MRRR algorithm; we concentrate on those aspects that are
necessary for understanding the challenges of its parallelization. In Section 3.2, we
discuss various parallelization strategies with their benefits and shortcomings. Then
we present our conclusions and ideas for future work. In the Appendix A, we describe
the design of the ScaLAPACK tester for our code. Appendix C contains a description
of the calling sequence and all relevant parameters.

2. Outline of the parallel design.

2.1. The existing ScaLAPACK environment. This section gives a short
overview of the ScaLAPACK environment to explain its philosophy and constraints.
For a more complete description, we refer to [29, 7].

2.1.1. ScaLAPACK, BLACS, and PBLAS. Except for the (significant) ad-
ditional complexity of parallel communication, ScaLAPACK [7] algorithms look simi-
lar to their LAPACK [2] counterparts. Both LAPACK and ScaLAPACK rely heavily
on block-partitioned algorithms. In principle, ScaLAPACK uses two fundamental
building blocks:

• The Parallel Basic Linear Algebra Subprograms, PBLAS [8], that are distributed-
memory versions of the BLAS [5, 15, 16, 20].

• The Basic Linear Algebra Communication Subprograms, BLACS [14, 17],
that provide interfaces for common communication tasks that arise frequently
in parallel linear algebra computations.

2



Furthermore, on individual processors, ScaLAPACK makes frequent use of the avail-
able LAPACK computational kernels or slight modifications of them.

As an example, we look at Algorithm 1 that describes the principal structure of
pdsyevx, the ScaLAPACK expert driver for the symmetric eigenvalue problem. It
has the same structure as the respective sequential LAPACK expert driver dsyevx,
solely the prefix ’p’ indicates that the called subroutines work on distributed data.
First, the eigenvalues are computed by bisection [11]. Afterwards, the corresponding
eigenvectors are computed by inverse iteration [12, 18, 19].

Algorithm 1 Outline of ScaLAPACK’s driver pdsyevx based on parallel bisection
and inverse iteration.

Input: distributed symmetric matrix A
Output: eigenvalues W and distributed eigenvector matrix Z
(1) Transform A into tridiagonal form Q · T · QT (pdsyntrd).
(2) Broadcast tridiagonal matrix T to each processor.
(3) Compute eigenvalues and eigenvectors in parallel (pdstebz and pdstein).
(4) Apply distributed orthogonal matrix Q to eigenvectors to obtain the distributed
Z containing the eigenvectors of A (pdormtr).

2.1.2. Memory and communication management. Both LAPACK and ScaLA-
PACK only use memory provided by the user, no memory is allocated internally. The
required amount of workspace is an explicit part of the interface.

This policy can provide severe constraints for the developer. Firstly, algorithmic
design requires careful and tedious workspace reuse and is prone to errors that are hard
to debug. Secondly, for backward compatibility, interfaces should not be changed.
Thus, algorithmic changes that require a different amount of workspace imply new
interfaces that need to be propagated throughout the library.

On the other hand, this policy guarantees to the user that no LAPACK or ScaLA-
PACK library function aborts inexpectedly due to insufficient memory when dynamic
allocation fails. Secondly, there is no unknown run-time cost in terms of memory and
time on each allocation and de-allocation.

2.1.3. Communication management. The BLACS provide only synchronous

send and receive routines for communication [7]. Thus, each communication implic-
itly serves as a barrier. Furthermore, this implies that calls to sequential LAPACK
codes cannot be overlapped with BLACS-based communication. Depending on the
application, this can be less efficient than the use of non-blocking communication.

2.2. The new driver pdsyevr. In this section, we describe the general struc-
ture of pdsyevr. We avoid here the specifics of the parallel eigencomputation and
only focus on the correct use of the available ScaLAPACK routines.

The design of Algorithm 2 is very similar to the existing ScaLAPACK driver
pdsyevx shown in Algorithm 1. The difference lies in the way communication is
handled. Whereas part of the communication in pdsyevx is hidden inside of pdstebz
and pdstein, we decided to gather all communication in pdsyevr itself.

The key steps are those from (2) to (4b). The tridiagonal matrix is shared across
all processors in (2). Based on some division of work, the processors compute the
wanted eigenvalues and eigenvectors in parallel. There is an optional communication
between the eigenvalue (3a) and the eigenvector (3b) part which we discuss later.
Then the eigenvalues are shared (4a), and the eigenvector matrix is distributed (4b).
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Algorithm 2 Outline of the new ScaLAPACK driver pdsyevr based on the MRRR
algorithm.

Input: distributed symmetric matrix A
Output: eigenvalues W and distributed eigenvector matrix Z
(1) Transform A into tridiagonal form Q · T · QT (pdsyntrd).
(2) Broadcast tridiagonal matrix T to each processor.
(3a, 3b) Compute eigenvalues and eigenvectors in parallel using an MRRR-based
kernel.
(4a) Share the computed eigenvalues across all processors.
(4b) Distribute the eigenvectors from local workspace into distributed storage for
Z matrix(pdlaevswp).
(5) Apply distributed orthogonal matrix Q to eigenvectors to obtain the distributed
Z containing the eigenvectors of A (pdormtr).

We point out that we store Z using ScaLAPACK’s 2D-block-cyclic layout, mainly
to make the orthogonal matrix-matrix multiply in step 5 efficient. However, the com-
putation of an eigenvector is done on a single processor. For this reason, the eigen-
vectors are distributed in 1D form across the processors, and step (4b) is responsible
for the redistribution of the eigenvector data from 1D into 2D form.

3. A road map for the computational MRRR-based kernel. This section
describes the heart of the new ScaLAPACK driver pdsyevr, i.e steps (3a) & (3b)
from Algorithm 2 in Section 2.2. To set the stage, Section 3.1 gives a short overview
of the MRRR algorithm. Afterwards, in Section 3.2, we discuss different ways of using
it in a parallel environment.

3.1. A brief overview of the MRRR algorithm. This section presents a
very short introduction to the MRRR algorithm in order to show different sources of
parallelism in the computation. We assume that the reader is familiar with at least
the general ideas of MRRR, for more details we refer to [13, 23, 24, 25, 26].

The ultimate goal of MRRR is to find a suitable (shifted) LDLT factorization so
that a local eigenvalue of interest has a large relative gap1. We denote the eigenvalue
approximation by λ̂ and require that

‖λ − λ̂‖ = O(ǫ|λ|).(3.1)

In this case, MRRR computes the corresponding computed eigenvector v in a way
that guarantees v to have a small relative residual

‖(LDLT − λ̂I)v‖ = O(nǫ|λ|).(3.2)

Then, the classical gap theorem [9, 21] implies

| sin 6 (v, z)| ≤
‖(LDLT − λ̂I)v‖

gap(λ̂)
≡

O(nǫ)

relgap(λ̂)
.(3.3)

where z denotes the true eigenvector.

1We define ’suitable’ by requiring that small relative changes in entries of L and D cause small
relative changes in the eigenvalue. We call such an LDLT a Relatively Robust Representation (RRR)
for this eigenvalue.
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In order to find such an RRR for each eigenvalue, the algorithm builds a represen-

tation tree [25]. Each node of the graph represents the RRR for a group of eigenvalues.
The root node of this representation tree is the initial representation that is an RRR
for all the wanted eigenvalues, each leaf corresponds to a singleton, that is a (shifted)
eigenvalue with a large relative gap. The root node is derived directly from a shifted
LDLT factorization of the original tridiagonal matrix T . All subsequent RRRs are
computed from the RRR of their parent node in the representation tree using the
differential stationary qd algorithm. It provides a stable way of computing a child
RRR (L+, D+) from its parent (L, D) via

(LDLT − σI) = L+D+(L+)T .(3.4)

We summarize the MRRR procedure in Algorithm 3.

Algorithm 3 Principle outline of the (sequential) MRRR algorithm.

(1) For each unreduced block of T , compute a root representation LDLT = T −σI
and its wanted eigenvalues.
(2) Build the representation tree. Using a series of shifts and qd transformations
of the form (3.4), find suitable RRRs so that, eventually, all eigenvalues become
singletons.
(3) For each singleton compute the corresponding eigenvector so that (3.2) holds.

An investigation of the different steps of Algorithm 3 yields the following sources
of potential parallelism.

1. The computation of each root representation costs O(n) operations and is
essentially sequential. However, the computation of eigenvalues by bisection
is an embarrassingly parallel operation: each individual eigenvalue can be
computed independently from all the others.

2. The computation of a child RRR from its parent is again essentially sequen-
tial. However, in order to detect large relative gaps in an RRR at hand,
eigenvalues need to be refined by bisection. This is again embarrassingly
parallel.

3. As soon as an RRR is known for which a local eigenvalue is a singleton, the
eigenvector computation becomes independent from the computation of all
other eigenvectors. Thus, once such an RRR is known for each eigenvector,
the computation of all eigenvectors is embarrassingly parallel.

3.2. Setting up the MRRR-based parallel kernel.

3.2.1. Subset-based parallelization. A straightforward idea for paralleliza-
tion is to use the subset feature of the sequential code (Algorithm 3). (See [28] for a
discussion of how the MRRR algorithm computes subsets of eigenpairs.) Given a set
with k wanted eigenvalues, one can assign non-overlapping subsets of k/p eigenpairs
to each processor. This approach is perfect with respect to complexity and memory.

Unfortunately, it does not guarantee numerical accuracy. If the sequential MRRR
code (LAPACK’s dstegr) is called on a given subset, it returns eigenpairs that
have small residuals and eigenvectors that are mutually orthogonal among each other.
No orthogonality is guaranteed between computed eigenvectors from different non-
overlapping subsets. 2

2ScaLAPACK’s driver pdsyevx calls bisection and inverse iteration on non-overlapping subsets
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The orthogonality problem can be illustrated nicely by the corresponding repre-
sentation trees. Figure 3.1 shows the representation tree of a sample matrix when all
eigenpairs are computed on a single processor.

λ10λ2λ1λ

2λ1λ 11λ10λ

7λ

9

11

Representation tree for full spectrum
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3λ
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8λ7λ
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7λ 8λ

6λ5λ1λ 2λ 4λ3λ

Fig. 3.1. The (sequential) representation tree for the full spectrum. Square boxes correspond to
singletons, rectangular ones correspond to eigenvalue groups for which an individual representation
is needed to improve relative gaps.

Now assume that the computation is parallelized among four processors using
the subset approach. The corresponding subset representation trees for each of the
processors are shown in Figure 3.2.

It is important to understand the algorithmic significance of the representation
tree for the MRRR algorithm. The algorithm only guarantees orthogonality between
the eigenvectors computed from the same root representation. Thus, if different root
representations are used for different processors, only the eigenvectors within each
processor are guaranteed to be orthogonal. Orthogonality across processors depends
on the cluster structure and is not guaranteed. An example for a failure of subset-
based parallelization is given in Appendix B.1.

Note that it would be possible to allow overlapping subsets and make each pro-
cessor perform redundant computation in order to guarantee the use of ’consistent’
root representations on all processors. This approach will work, according to the
classical gap theorem (3.3), provided an isolated superset of eigenvalues is known for
each processor. However, there need not be a small isolated superset; in the worst
case, each processor would have to compute almost all (or all) of the eigenvalues to
some accuracy. Thus, in none of its forms, does the subset based approach guarantee

for parallelization. There is no guarantee for orthogonal eigenvectors unless reorthogonalization is
performed inside tight clusters. For reorthogonalization to be done for a given cluster, all eigenvectors
must be computed on the same processor. Thus, pdsyevx cannot guarantee the right answer unless
the user supplies enough memory. In the most extreme case, all or almost all wanted eigenvectors
have to be computed on a single processor; memory scalability has to be sacrificed to guarantee
orthogonal vectors. One example is the matrix in Appendix B.1.
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Fig. 3.2. The subset representation trees by processor for the matrix from Figure 3.1.

both accuracy and scalability at the same time.

3.2.2. Parallelization of the eigenvector computation via conformal em-
bedding of subset representation trees. In this section, we suggest an approach
that achieves the desired O(nk/p) storage per processor (for k wanted eigenpairs)
while at the same time guaranteeing orthogonal eigenvectors. This strategy imple-
ments the idea proposed in [3] for a parallel traversal of the representation tree.

The algorithm starts with a superset of the wanted eigenvalues that is isolated
from the rest of the spectrum. For simplicity of presentation, we assume it to be the
full spectrum. Then, the relevant part of the full representation tree is constructed.
All those representations are computed that define at least one of the wanted eigenval-
ues. The procedure is then repeated. The computation of irrelevant representations
as well as of unwanted eigenvectors is omitted.

When used in parallel (as step (2) of Algorithm 3), this procedure yields consistent

representation trees among all processors, that is, all processors start of with the same
root. Consequentially the parallel algorithm produces mutually orthogonal sets of
eigenvectors on different processors. In Figure 3.3, we illustrate this approach by the
example from Figure 3.1 and the eigenpairs 4 − 6 assigned to processor 1 (processor
numbering and subset assignment according to Figure 3.2).

For the ScaLAPACK implementation working in fixed memory, one question re-
mains to be addressed, namely how to store intermediate representations. The MRRR
algorithm conventionally stores RRRs for clusters in the eigenvector matrix Z and
later overwrites them by the eigenvectors, see [13]. We recently found that it is pos-
sible to store the RRRs in the embedded case with (at worst) only one additional
vector on each side of the wanted spectrum. This is illustrated in Figure 3.4.

We remark that no additional space is needed if the extremal eigenvalues are close
to their neighbors inside the wanted part of the spectrum. Additional storage is only
needed if an extremal wanted eigenvalue belongs to another cluster and is separated
from the rest of the wanted spectrum. In this case, we need to compute an RRR for
the single eigenvalue. This requires 2N storage of which only N are available from
the eigenvector storage.

One issue remains. The algorithm requires a superset of the wanted eigenvalues
that is well isolated so that the embedding is conformal to the tree for all wanted
eigenvalues. Depending on the matrix, the superset can be substantially larger than
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 Processor 1 (assigned eigenpairs: 4−6)
 Computation of shaded boxes omitted

Conformal embedding of subset tree
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Fig. 3.3. Illustration of the conformal embedding of the subset representation tree into the
representation tree for the full spectrum. (Compare to Figures 3.1 and 3.2.)
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 Processor 1 (assigned eigenpairs: 4−6)
 Storage layout map for RRRs

Z columns used for RRR storage

Conformal embedding of subset tree
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Fig. 3.4. Storage map for the RRRs in the eigenvector matrix when the subset tree is embedded.

the k/p eigenvalues one would ideally like to work with; in the extreme case it can
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contain all k wanted eigenvalues on each processor. This does not jeopardize the im-
portant memory scalability, each processor still requires O(nk/p) memory. However,
the worst case bound for the computational complexity is O(nk) instead of the optimal
O(nk/p) unless the eigenvalue computation (step (1) of Algorithm 3) is parallelized,
too. (In the context of the dense symmetric eigenvalue problem, the O(nk) complexity
of the tridiagonal eigensolver is a cosmetic imperfection because the transformation
to tridiagonal form is O(n3/p) at best.)

3.2.3. Parallelization of the eigenvalue computation. In this section, we
describe how to achieve O(nk/p) complexity in step (1) of Algorithm 3, when com-
puting k eigenpairs. The following simple procedure (almost) solves the problem:

• Call bisection in parallel on the wanted part of the spectrum.
• Broadcast the eigenvalues to all processors that need them.

It has to be ensured that all processors use the same root representations when
the eigenvalue computation is parallelized so that the eigenvalues are consistent with
the outcome from a sequential computation.

Secondly, it is important to consider what data must be communicated and what
data should better be computed redundantly. As a principle, we do not communicate
O(n) data that can be computed by O(n) work. This principle imposes that each
processor should redundantly compute the root representation for the part of the
spectrum it is going to be responsible for. Only the eigenvalue computation itself is
shared.

It is important to emphasize that it is often faster to compute all eigenvalues
redundantly on each processor by a fast sequential algorithm like dqds [27] instead
of sharing the work between the processors by parallel bisection, say. See also the
remarks in [3]. The reason is that in order to make the parallel eigenvalue computation
for the root representation worthwhile, the cost for the subsequent broadcast of the
eigenvalues to all processors needs to be amortized.

Thus, the parallel feature for the root eigenvalue computation is optional in our
code. Depending on the problem size, the architecture, and the available libraries, the
feature can be enabled or disabled. This choice should be done automatically, this is
future work.

3.2.4. Requirements of the computing environment. Heterogeneous com-
puting poses enormous difficulties for some of the ScaLAPACK algorithms, see for
example [4, 11].

In [4], the authors identify the following key aspects of homogeneity:

• Hardware (processors) and software (compiler and operating system) store
floating point numbers in the same way and produce the same results for
floating point operations.

• Communication transmits floating point numbers exactly.

In [11], the authors devise ways to ensure the correctness of parallel bisection in
a non-homogeneous environment.

At this point, we only have practical experience with MRRR in a homogeneous
environment. Since MRRR is much more complicated than bisection, it is highly
non-trivial to find criteria for its parallel correctness.

For this reason, we advise the use of the parallel MRRR algorithm only in an
environment that guarantees the computation to be consistent with the sequential
code.
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4. Conclusion and future work. In this paper, we have described our design
of pdsyevr, a ScaLAPACK implementation of the MRRR algorithm to compute the
eigenpairs of a symmetric matrix in parallel. Our code guarantees perfect memory
scalability (O(n2/p) memory per processor) and accuracy for the symmetric eigenvalue
problem, in contrast to pdsyevx in the current ScaLAPACK release. The software
is available from the authors on request and will be part of the next ScaLAPACK
release.

We now mention three ideas for future work. Firstly, it is necessary to test our
code on matrices of larger size than are available in our current tester (described in
Appendix A). Secondly, in order to guarantee portable performance, the code should
become automatically tunable. Lastly, it would be interesting to compare our code
with pdsyevx and ParEig.

Acknowledgments. We are very grateful to P. Bientinesi for many discussions
and comments on the contents of this paper. We also thank J. Demmel, J. Langou,
and B. Parlett for their comments on an earlier draft.

Appendix A. Testing.

A.1. Design of the tester. As part of the current release, we provide a tester
for pdsyevr. The tester allows the user to specify matrix sizes, matrix types, and
processor configurations. There are six different tests available: The user can choose
whether to compute eigenpairs or eigenvalues only; furthermore (s)he can choose
between the full spectrum, a range of eigenpairs specified by index, or the eigenpairs
from an interval.

The tester verifies that the computed eigenpairs have small residuals, that is they
satisfy

‖(A − λI)z‖ = O(ǫ‖A‖).(A.1)

Furthermore, the computed eigenvectors must be numerically orthogonal, satisfying

‖ZT Z − I‖ = O(nǫ).(A.2)

For subset tests, the code also checks that the computed eigenvalues are consistent
with those computed for the full-spectrum test. Lastly, the tester performs mem-
ory consistency checks to ensure that no memory is accessed outside the assigned
workspace.

The driver pdseprdriver is the main program that initializes the ScaLAPACK
environment. The processor 0 is responsible for I/O, it reads in the current test from
the file ’SEPR.dat’ and prints a diagnostic message at the end of the test. pdseprreq
partitions the available memory appropriately for the processor configuration and
matrix at hand and passes it to the test subroutine pdseprtst.

A.2. Test matrices. We use the test matrices from the ScaLAPACK test matrix
collection for the symmetric eigenvalue problem, see also the ScaLAPACK Installation
Guide [6].

1. The zero matrix
2. The identity matrix
3. A diagonal matrix with uniformly spaced entries from 1 to ǫ and random

signs
4. A diagonal matrix with geometrically spaced entries from 1 to ǫ and random

signs
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5. A diagonal matrix with entries 1, ǫ, ǫ, . . . , ǫ and random sign
6. Same as (4), but multiplied by SQRT(overflow threshold)
7. Same as (4), but multiplied by SQRT(underflow threshold)
8. Same as (3), but pre- and post-multiplied by an orthogonal matrix and its

transpose, respectively
9. Same as (4), but pre- and post-multiplied by an orthogonal matrix and its

transpose, respectively
10. Same as (5), but pre- and post-multiplied by an orthogonal matrix and its

transpose, respectively
11. Same as (8), but multiplied by SQRT(overflow threshold)
12. Same as (8), but multiplied by SQRT(underflow threshold)
13. A symmetric matrix with random entries chosen uniformly from (-1, 1)
14. Same as (13), but multiplied by SQRT(overflow threshold)
15. Same as (13), but multiplied by SQRT(underflow threshold)
16. Same as (8), but diagonal elements are all positive.
17. Same as (9), but diagonal elements are all positive.
18. Same as (10), but diagonal elements are all positive.
19. Same as (16), but multiplied by SQRT(overflow threshold)
20. Same as (16), but multiplied by SQRT(underflow threshold)
21. A tridiagonal matrix that is a direct sum of smaller diagonally dominant

submatrices. Each unreduced submatrix has geometrically spaced diagonal
entries from 1 to ǫ.

22. A matrix of the form U ′DU , where U is orthogonal and D has ⌈lg N⌉ ”clus-
ters” at 0, 1, 2, . . . , ⌈lg N⌉ − 1. The size of the cluster at the value I is 2I .

Appendix B. Two illustrative examples.
We provide here an example for a failure of the subset-based parallelization and

show that the embedded approach succeeds.

B.1. How subset-based parallelization can fail. This Section gives a short
example to illustrate how the simple approach discussed in Section 3.2.1, the paral-
lelization based on the subset feature of the sequential code, can fail.

Our example is the matrix given in (B.1). It stems from the test set described in
Appendix A.2 and is of type 10.

D =













7.603714754255181× 10−2

9.239628524574373× 10−1

1.090348352668058× 10−14

−1.103610618742564× 10−14

−1.110886780132261× 10−14













,E =









2.650575404250068× 10−1

6.006645802706129× 10−15

−9.033212524378735× 10−16

1.373587734806744× 10−17









(B.1)
Its eigenvalues are shown in (B.2).

W =













−1.113099956921839× 10−14

−1.110886780132261× 10−14

−1.099358132331527× 10−14

1.110223024625157× 10−14

1













(B.2)

The experiment used p = 2 processors; eigenpairs 1 − 3 are assigned to the
first and eigenpairs 4, 5 are assigned to the second processor. Each processor calls
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the sequential code (LAPACK’s dstegr) on its subset. The crossproduct of the
computed eigenvector matrix is shown in (B.3).

Z′ · Z =















1 0 −1.1 × 10−16 1.3 × 10-4 −1.2 × 10−17

0 1 0 0 0

−1.1 × 10−16 0 1 −7.5 × 10-4 −1.8 × 10−17

1.3 × 10-4 0 −7.5 × 10-4 1 3.7 × 10−18

−1.2 × 10−17 0 −1.8 × 10−17 3.7 × 10−18 1















(B.3)

Within the subset assigned to each processor, the orthogonality is fine, see the
diagonal blocks in (B.3). However, the eigenvectors computed by the first processor
are not orthogonal to the fourth eigenvector computed by the other processor.

B.2. Test result for the conformal embedding. For the same processor
configuration as in the previous section, and the sample matrix (B.1), we show in
(B.4) the crossproduct of the eigenvectors computed with the embedded approach
from Section 3.2.2. This time, the eigenvector matrix is numerically orthogonal as
desired.

Z′ · Z =













1 0 1.1 × 10−15 2.1 × 10−17 −1.1 × 10−17

0 1 0 0 0
1.1 × 10−15 0 1 1.7 × 10−17 −4.7 × 10−17

2.1 × 10−17 0 1.7 × 10−17 1 3.4 × 10−19

−1.1 × 10−17 0 −4.7 × 10−17 3.4 × 10−19 1













(B.4)

Appendix C. The interface of pdsyevr.
This section shows the interface of the new ScaLAPACK driver in DOUBLE

PRECISION and explains the meaning of each argument.
SUBROUTINE PDSYEVR( JOBZ, RANGE, UPLO, N, A, IA, JA, DESCA, VL,

$ VU, IL, IU, M, NZ, W, Z, IZ,

$ JZ, DESCZ, WORK, LWORK, IWORK, LIWORK,

$ INFO )

*

* .. Scalar Arguments ..

CHARACTER JOBZ, RANGE, UPLO

INTEGER IA, IL, INFO, IU, IZ, JA, JZ, LIWORK, LWORK, M,

$ N, NZ

DOUBLE PRECISION VL, VU

* ..

* .. Array Arguments ..

INTEGER DESCA( * ), DESCZ( * ), IWORK( * )

DOUBLE PRECISION A( * ), W( * ), WORK( * ), Z( * )

* ..

*

* Purpose

* =======

*

* PDSYEVR computes selected eigenvalues and, optionally, eigenvectors

* of a real symmetric matrix A by calling the recommended sequence
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* of ScaLAPACK routines. Eigenvalues/vectors can be selected by

* specifying a range of values or a range of indices for the desired

* eigenvalues.

*

*

* Arguments

* =========

*

* JOBZ (global input) CHARACTER*1

* Specifies whether or not to compute the eigenvectors:

* = ’N’: Compute eigenvalues only.

* = ’V’: Compute eigenvalues and eigenvectors.

*

* RANGE (global input) CHARACTER*1

* = ’A’: all eigenvalues will be found.

* = ’V’: all eigenvalues in the interval [VL,VU] will be found.

* = ’I’: the IL-th through IU-th eigenvalues will be found.

*

* UPLO (global input) CHARACTER*1

* Specifies whether the upper or lower triangular part of the

* symmetric matrix A is stored:

* = ’U’: Upper triangular

* = ’L’: Lower triangular

*

* N (global input) INTEGER

* The number of rows and columns of the matrix A. N >= 0.

*

* A (local input/workspace) block cyclic DOUBLE PRECISION array,

* global dimension (N, N),

* local dimension ( LLD_A, LOCc(JA+N-1) )

*

* On entry, the symmetric matrix A. If UPLO = ’U’, only the

* upper triangular part of A is used to define the elements of

* the symmetric matrix. If UPLO = ’L’, only the lower

* triangular part of A is used to define the elements of the

* symmetric matrix.

*

* On exit, the lower triangle (if UPLO=’L’) or the upper

* triangle (if UPLO=’U’) of A, including the diagonal, is

* destroyed.

*

* IA (global input) INTEGER

* A’s global row index, which points to the beginning of the

* submatrix which is to be operated on.

*

* JA (global input) INTEGER

* A’s global column index, which points to the beginning of

* the submatrix which is to be operated on.

*
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* DESCA (global and local input) INTEGER array of dimension DLEN_.

* The array descriptor for the distributed matrix A.

* If DESCA( CTXT_ ) is incorrect, PDSYEVR cannot guarantee

* correct error reporting.

*

* VL (global input) DOUBLE PRECISION

* If RANGE=’V’, the lower bound of the interval to be searched

* for eigenvalues. Not referenced if RANGE = ’A’ or ’I’.

*

* VU (global input) DOUBLE PRECISION

* If RANGE=’V’, the upper bound of the interval to be searched

* for eigenvalues. Not referenced if RANGE = ’A’ or ’I’.

*

* IL (global input) INTEGER

* If RANGE=’I’, the index (from smallest to largest) of the

* smallest eigenvalue to be returned. IL >= 1.

* Not referenced if RANGE = ’A’.

*

* IU (global input) INTEGER

* If RANGE=’I’, the index (from smallest to largest) of the

* largest eigenvalue to be returned. min(IL,N) <= IU <= N.

* Not referenced if RANGE = ’A’.

*

* M (global output) INTEGER

* Total number of eigenvalues found. 0 <= M <= N.

*

* NZ (global output) INTEGER

* Total number of eigenvectors computed. 0 <= NZ <= M.

* The number of columns of Z that are filled.

* If JOBZ .NE. ’V’, NZ is not referenced.

* If JOBZ .EQ. ’V’, NZ = M

*

* W (global output) DOUBLE PRECISION array, dimension (N)

* On normal exit, the first M entries contain the selected

* eigenvalues in ascending order.

*

* Z (local output) DOUBLE PRECISION array,

* global dimension (N, N),

* local dimension ( LLD_Z, LOCc(JZ+N-1) )

* If JOBZ = ’V’, then on normal exit the first M columns of Z

* contain the orthonormal eigenvectors of the matrix

* corresponding to the selected eigenvalues.

* If JOBZ = ’N’, then Z is not referenced.

*

* IZ (global input) INTEGER

* Z’s global row index, which points to the beginning of the

* submatrix which is to be operated on.

*

* JZ (global input) INTEGER
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* Z’s global column index, which points to the beginning of

* the submatrix which is to be operated on.

*

* DESCZ (global and local input) INTEGER array of dimension DLEN_.

* The array descriptor for the distributed matrix Z.

* DESCZ( CTXT_ ) must equal DESCA( CTXT_ )

*

* WORK (local workspace/output) DOUBLE PRECISION array,

* dimension (LWORK)

* On return, WORK(1) contains the optimal amount of

* workspace required for efficient execution.

* if JOBZ=’N’ WORK(1) = optimal amount of workspace

* required to compute the eigenvalues.

* if JOBZ=’V’ WORK(1) = optimal amount of workspace

* required to compute eigenvalues and eigenvectors.

*

* LWORK (local input) INTEGER

* Size of WORK

* See below for definitions of variables used to define LWORK.

* If no eigenvectors are requested (JOBZ = ’N’) then

* LWORK >= 5 * N + MAX( 12 * NN, NB * ( NP0 + 1 ) )

* If eigenvectors are requested (JOBZ = ’V’ ) then

* the amount of workspace required is:

* LWORK >= 5*N + MAX( 18*NN, NP0 * MQ0 + 2 * NB * NB ) +

* (2 + ICEIL( NEIG, NPROW*NPCOL))*NN

*

* Variable definitions:

* NEIG = number of eigenvectors requested

* NB = DESCA( MB_ ) = DESCA( NB_ ) =

* DESCZ( MB_ ) = DESCZ( NB_ )

* NN = MAX( N, NB, 2 )

* DESCA( RSRC_ ) = DESCA( NB_ ) = DESCZ( RSRC_ ) =

* DESCZ( CSRC_ ) = 0

* NP0 = NUMROC( NN, NB, 0, 0, NPROW )

* MQ0 = NUMROC( MAX( NEIG, NB, 2 ), NB, 0, 0, NPCOL )

* ICEIL( X, Y ) is a ScaLAPACK function returning

* ceiling(X/Y)

*

* If LWORK = -1, then LWORK is global input and a workspace

* query is assumed; the routine only calculates the size

* required for optimal performance for all work arrays. Each of

* these values is returned in the first entry of the

* corresponding work arrays, and no error message is issued by

* PXERBLA.

*

* IWORK (local workspace) INTEGER array

* On return, IWORK(1) contains the amount of integer workspace

* required.

*
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* LIWORK (local input) INTEGER

* size of IWORK

* LIWORK >= 6 * NNP

* Where:

* NNP = MAX( N, NPROW*NPCOL + 1, 4 )

* If LIWORK = -1, then LIWORK is global input and a workspace

* query is assumed; the routine only calculates the minimum

* and optimal size for all work arrays. Each of these

* values is returned in the first entry of the corresponding

* work array, and no error message is issued by PXERBLA.

*

* INFO (global output) INTEGER

* = 0: successful exit

* < 0: If the i-th argument is an array and the j-entry had

* an illegal value, then INFO = -(i*100+j), if the i-th

* argument is a scalar and had an illegal value, then

* INFO = -i.

*

* Notes

* =====

*

* Each global data object is described by an associated description

* vector. This vector stores the information required to establish

* the mapping between an object element and its corresponding process

* and memory location.

*

* Let A be a generic term for any 2D block cyclicly distributed array.

* Such a global array has an associated description vector DESCA.

* In the following comments, the character _ should be read as

* "of the global array".

*

* NOTATION STORED IN EXPLANATION

* --------------- -------------- --------------------------------------

* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,

* DTYPE_A = 1.

* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating

* the BLACS process grid A is distribu-

* ted over. The context itself is glo-

* bal, but the handle (the integer

* value) may vary.

* M_A (global) DESCA( M_ ) The number of rows in the global

* array A.

* N_A (global) DESCA( N_ ) The number of columns in the global

* array A.

* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute

* the rows of the array.

* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute

* the columns of the array.

* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
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* row of the array A is distributed.

* CSRC_A (global) DESCA( CSRC_ ) The process column over which the

* first column of the array A is

* distributed.

* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local

* array. LLD_A >= MAX(1,LOCr(M_A)).

*

* Let K be the number of rows or columns of a distributed matrix,

* and assume that its process grid has dimension p x q.

* LOCr( K ) denotes the number of elements of K that a process

* would receive if K were distributed over the p processes of its

* process column.

* Similarly, LOCc( K ) denotes the number of elements of K that a

* process would receive if K were distributed over the q processes of

* its process row.

* The values of LOCr() and LOCc() may be determined via a call to the

* ScaLAPACK tool function, NUMROC:

* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),

* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).

* An upper bound for these quantities may be computed by:

* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A

* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

*

* PDSYEVR assumes IEEE 754 standard compliant arithmetic.

*
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