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abstract. The disk dimension of a planar graph G is the least
number k for which G embeds in the plane minus k open disks, with
every vertex on the boundary of some disk. Useful properties of
graphs with a given disk dimension are derived, leading to an efficient
algorithm to obtain an outerplanar subgraph of a graph of disk di-
mension k by removing at most 2k−2 vertices. This reduction is used
to obtain linear-time exact and approximation algorithms for prob-
lems on graphs of fixed disk dimension. In particular, a linear-time
3-approximation algorithm is presented for the pathwidth problem on
graphs of fixed disk dimension. This approximation ratio was previ-
ously known only for outerplanar graphs (graphs of disk dimension
one).

1 Introduction

Disk dimension was introduced in [6], and can be defined as follows. Let G
denote a finite, simple planar graph. The disk dimension of G is the least
positive integer k for which G embeds in the plane minus k open disks, with
every vertex of G lying on the boundary of some disk. Deciding whether G
has disk dimension k is NP-complete when k is part of the input [2, 5], but
solvable in quadratic-time for every fixed value of k [6].

Our focus here is not, however, on solving the disk dimension problem
itself. Instead, we restrict our attention to graphs of bounded disk dimen-
sion and show that they possess several useful properties. For example, we
prove that graphs of disk dimension k are within 2k − 2 vertices of being
outerplanar. We also employ this fact to derive exact and approximation
algorithms for a variety of problems on such graphs.
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2 Background and Definitions

Let dd(G) denote the disk dimension of G. If k ≥ dd(G), then G has a
planar embedding minus k open disks such that every vertex of G lies on
the boundary of some disk. We call this a “k dimensional embedding of
G,” written Ek(G). We use di to denote disk i, ci to denote the center
of disk i, and bi to denote the boundary of disk i. The “wheel graph” of
G with respect to a given k dimensional embedding Ek(G) is defined by
Gw

E = (V ∪ {ci}ki=1, E ∪ {civ : v ∈ bi}ki=1). Note that Gw
E is defined in

terms of a particular embedding, and thus is not necessarily unique to G.
Nevertheless its planarity turns out to be very useful to us. We will drop
the reference to E when it causes no ambiguity.

Topological containment plays an important role in our algorithms. H
is contained in G in the topological order, written H ≤t G, if and only
if a graph isomorphic to H can be obtained from G by a series of these
two operations: taking a subgraph and contracting an edge at least one
of whose endpoints has degree two. Equivalently, H ≤t G if and only if
there is a one-to-one mapping from the vertices of H to the vertices of G
under which the edges of H are mapped to vertex-disjoint paths in G. The
set of endpoint images and paths is collectively called an H-model in G.
The image endpoints are more specifically called corners of the model. It
is well known that a graph G is planar if and only if neither K5 ≤t G nor
K3,3 ≤t G. For series-parallel graphs, the exclusion is K4. For outerplanar
graphs, the exclusion is K2,3 and K4.

Path decompositions are also central to our methods. Such a decompo-
sition of G is a pair (P, X), where P is a path and X = {Xi : i ∈ V (P )}
is a collection of subsets of V (G) satisfying: (1) ∀uv ∈ E(G), ∃ i such that
{u, v} ⊆ Xi and (2) ∀i, j, k ∈ V (P ), if i ≤ j ≤ k, then Xi ∩Xk ⊆ Xj . The
width of (P, X), w(P, X), is max{|Xi| : Xi ∈ X} − 1. The pathwidth of G,
pw(G), is min{w(P, X) : (P, X) is a path decomposition of G}. We observe
that the pathwidth of any path is 1, while the pathwidth of the complete
graph Kt is t− 1. Trees may have arbitrarily large pathwidth as witnessed,
for example, by ternary trees whose pathwidth grows with their height.

3 Fundamentals

In what follows, let G denote a finite simple graph with n vertices and e
edges. G is said to be “maximal planar” if it is planar and the addition of
any new edge produces a nonplanar graph. The disk dimension of a maximal
planar graph is at least n/3. This is because the boundary of any disk in an
embedding of a maximal planar graph contains at most three vertices, else a
chord could be added across the disk and planarity preserved. It is possible,
of course, for arbitrary planar graphs to need fewer than n/3 disks. Some
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even require more. For example, a consequence of Theorem 2 (to follow) is
that dd(K2,11) = 6 > 	(13/3)
.
LEMMA 1. If (A, B) = K2,3 ≤t G, and i ≥ dd(G), then the three vertices of
B do not lie on the boundary of a single disk in any i dimensional embedding
of G.

Proof. Suppose otherwise. Extending G to Gw produces K3,3 = (A ∪
{ci}, B) ≤t Gw, which is impossible because Gw must be planar. �

THEOREM 2. If K2,2m+1 ≤t G, then dd(G) > m.

Proof. Let (A, B) = K2,2m+1 ≤t G. If dd(G) ≤ m, then at least 3 vertices
of B must lie on the boundary of some disk di. This contradicts the assertion
of Lemma 1. �

OBSERVATION 3. Let G denote a graph of disk dimension 2. Then G
contains a pair of vertices, u and v, such that dd(G− uv) = 1. To see this,
note that removing two adjacent vertices that lie on different disks leads to
an embedding that unifies the disks.

LEMMA 4. Let G denote a planar graph satisfying dd(G) = k > m > 0.
Then G has at most 2m vertices {u1, u2, ...ul}, l ≤ 2m, such that dd(G −
{u1, u2, ...ul}) ≤ k −m.

Proof. Let G be given with an optimal k dimensional embedding. There
are at least two disks, di and dj , in the embedding that have an edge joining
some u on di to some v on dj . By Observation 3, removing u and v results
in replacing di and dj by one disk, and may reduce the disk dimension by
more than one. This can be repeated at most m times or until we get a
graph whose disk dimension is at most k −m. �

4 A Reduction Algorithm

Given a property P of graphs, the “within-k-vertices-of P” set, denoted
Wk(P ), is the set of all graphs that contain at most k vertices whose removal
yields a graph satisfying P .

We present an algorithm that, when given any planar graph G and a
positive integer k, tries to remove at most 2k − 2 vertices of G in order to
obtain an outerplanar subgraph H of G. If the algorithm fails to produce
any such H , then dd(G) > k. Hence, our algorithm proves the following
result.

THEOREM 5. The family of graphs whose disk dimension is at most k is
a subfamily of W2k−2(outerplanar).
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According to Lemma 4, if G has disk dimension k, then there are pairs
of adjacent vertices whose removal reduces the disk dimension of G. The
question is, how do we find such pair when G is not given by a k dimensional
embedding?

THEOREM 6. Let G be a graph of disk dimension k satisfying K4 ≤t G.
Let u be any of the 4 corners of the K4 model in G. Then the three neighbors
of u in this model cannot all belong to the boundary of the same disk as u.

Proof. Note first that the four corners {ui}4i=1 of a K4-model cannot
all lie on the boundary of the same disk. Otherwise Gw would contain a
K5 in the topological order. Let v2, v3, and v4 be the neighbors of u1 in
the model. Without loss of generality, assume that either vi = ui or vi

is on the u1 − ui path of the K4 model. Let {di}ki=1 be a k dimensional
embedding of G such that u1 ∈ b1. Assume {v2, v3, v4} ⊂ b1. If u2 �= v2,
then ({u1, u2}, {v2, v3, v4}) = K2,3 ≤t G. To see this, note that u2−v2, u2−
u3− v3, and u2−u4− v4 are vertex disjoint paths in the model of K4 ≤t G.
But this is impossible by Lemma 1. �

THEOREM 7. Let G be graph of disk dimension k satisfying (A, B) =
K2,3 ≤t G. Let u be either of the two corners corresponding to A in the
K2,3 model. Then the three neighbors of u in the model can’t all lie on the
same disk as u.

Proof. Let v1, v2 and v3 be the neighbors of u in the model. Then
(A, {v3, v4, v5}) is another K2,3 model in G. The result follows by Lemma
1. �

We are now ready to present the reduction algorithm, Procedure REDUCE.
A 2-corner of a K2,3-model is either of the two elements of A when (A, B) =
K2,3 ≤t G. Function outerplanar is an outerplanarity test. If G is not out-
erplanar and contains a topological K4, then a corner of a K4-model is
returned together with its three neighbors in that model. If G is not outer-
planar and contains no topological K4, then a 2-corner of a K2,3 model is
returned together with its three neighbors in that model.
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Procedure REDUCE
Input: A planar graph G with n vertices and e edges, along with a

non-negative integer k.
Output: Either S, a vertex subset with at most 2k − 2 elements such

that G− S is outerplanar, or null if no such subset exists.
begin procedure

if (k = 0) then return null and halt
S ← φ
if (G is outerplanar) then return S and halt
if (K4 ≤t G)

then u← corner of a K4-model M in G
else u← 2-corner of a K2,3-model M in G

{v0, v1, v2} ← neighborhood of u in M
for i = 0 to 3 do

S′ ← REDUCE(G− {u, vi}, k − 1)
if (S′ �= null) then return S ∪ S′ and halt
end do

return null
end procedure

Note that corners of a K4-model can be found by the linear-time algorithm
described in [8]. Corners of a K2,3-model can also be found in linear time
[10].

LEMMA 8. Let (G, k) be the input to procedure REDUCE, where G is any
planar graph of order n. The output of REDUCE is either an outerplanar
subgraph of order n−2k+2 or the fact that G is not a graph of disk dimension
k. Moreover, REDUCE runs in O(3kn) time.

Proof. The preceding lemmas and discussion explain the output of REDUCE.
As for its time complexity, note that each time vertex u is found (u is the
corner of a K4-model or a 2-corner of a K2,3-model), we branch with three
cases in the search tree. The height of the search tree is at most k. Thus
it contains at most 3k nodes. All other statements in the code require only
linear time. �

5 Exact Linear-time Algorithms

Our constructive reduction algorithm can be used to obtain efficient algo-
rithms for other problems that are easy on outerplanar graphs and whose
input is a graph of (fixed) disk dimension k.
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Consider the independent set problem as an example. Let G be a graph
of disk dimension k. Start by applying procedure REDUCE to obtain a
set R of l vertices, where l ≤ 2k−2, such that G\R is outerplanar. Observe
that any maximum independent set of G induces an independent set when
restricted to R. We can solve the independent set problem by enumerating
all independent sets of the subgraph induced by R. For each independent
set I of R (including the empty set), we can find, in linear time, a maximum
independent set J(I) of the outerplanar graph induced by the vertices of
V (G) − (R ∪ neighborhoodG(I)). A maximum independent set of G is a
maximum-size element of {J(I)∪ I : I is an independent set of R}. It takes
O(4k) time to enumerate all subsets of R (from these we consider only those
that are independent). Therefore, the total run time is: O(3kn + 4kk + n),
which is O(n) since k is fixed.

The maximum independent set algorithm just described can be imitated
to obtain linear-time algorithms for other problems. These include vertex
cover, 3-coloring, 4-coloring, dominating set and many others.

6 Pathwidth Approximation

The treewidth of graphs of disk dimension k is O(
√

k) [1]. Therefore, op-
timal path decompositions of graphs of disk dimension k can at least the-
oretically be obtained in polynomial time. This is due to [4], where it is
asserted that optimal path decompositions can be found in polynomial time
for graphs of bounded treewidth. The algorithm suggested there is not
practical, however, because it operates on sets of size O(n11) in its first
step.

Motivated by recent fast approximation algorithms for the pathwidth of
graphs of disk dimension one [7], we show how to get similar algorithms for
graphs of disk dimension k. We rely again on Lemma 4, by using Procedure
REDUCE, to obtain a linear-time algorithm whose worst-case performance
ratio is 3. Take, for example, a graph of disk dimension two. Delete a
suitable pair of vertices {u, v}. The resulting graph, H , is outerplanar.
Using the work of [7], we can find a path decomposition (P, X) that is
not more than 3pw(H) + 2 in O(n) time. (The bound stated in [7] is
only O(nlogn), because the algorithm described there relies on obtaining
optimal path decompositions of trees. It has been shown, recently, that such
decompositions can be computed in linear time [9]. Thus the algorithm of
[7] runs in linear time as well.) Adding the two vertices to every element of
X gives a path decomposition of G of width ≤ 3pw(H) + 4 ≤ 3pw(G) + 4
because H ⊆ G. If H were biconnected, we could use the algorithm of [3]
to obtain a path decomposition of width ≤ 2pw(H) + 1.

Procedure DECOMPOSE, shown below, uses the function outpl pw to



Linear-Time Algorithms for Problems on Planar Graphs of Fixed Disk Dimension 7

obtain a path decomposition of a given outerplanar graph, H , in linear time.
The width of the path decomposition returned by outpl pw is not more than
3pw(H)+2. Thus, given graph G as input, DECOMPOSE returns a path
decomposition of width not exceeding 3pw(G) + 2k. It outputs null only if
dd(G) > k.

Procedure DECOMPOSE
Input: A planar graph G with n vertices and e edges, along with a

non-negative integer k.
Output: A path decomposition (P, X) of G.
begin procedure

if (G is outerplanar) then do
(P, X)← outpl pw(G)
return (P, X) and halt
end do

S ← REDUCE(G, k)
if (|S| ≤ 2k − 2) then do

(P, X ′)← outpl pw(G\S)
X ← {Xi ∪ S : Xi ∈ X ′}
return (P, X) and halt
end do

return null
end procedure

THEOREM 9. If G is graph of disk dimension k and order n, a path de-
composition of G with width at most 3pw(G) + 2k can be constructed in
O(3kn) time.

Proof. Obtaining the path decomposition of width at most 3pw(G) + 2k
has been described in details in the preceding paragraphs. The claimed time
complexity follows from Lemma 8 since the time consuming part of function
DECOMPOSE is the call to REDUCE. Other parts of the code run in
linear time. �

7 Remarks

We showed that graphs of disk dimension k or less are within 2k−2 vertices
of outerplanar graphs. The containment of graphs of disk dimension k in
W2k−2(outerplanar) is proper. In fact, for arbitrary r > 0, a graph, Gr ,
that has disk dimension r and is within one vertex of outerplanar can be
constructed from K1 and (r − 1) copies of K3 by connecting a vertex u
representing K1 to all vertices of (r − 1)K3. The resulting graph, Gr =
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K1 +(r− 1)K3, is shown in Figure 1. Gr is (obviously) planar and has disk
dimension r. Procedure REDUCE will do a good job on this graph since
it would only take out two vertices of which one is u. We are investigating
the behaviour of REDUCE on general W2k−2(outerplanar) graphs and we
hope to be able to show that our algorithms for graphs of disk dimension k
extend automatically to W2k−2(outerplanar).
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Figure 1. A “within one vertex of outerplanar” graph whose disk dimension
is four.
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