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Abstract

My goal in this report is to recontextualize the concept of computation.  I re-
view the historical roots of Church-Turing computation to show that the theory
exists in a frame of relevance, which underlies the assumptions on which it rests
and the questions it is suited to answer.  Although this frame of relevance is ap-
propriate in many circumstances, there are many important applications of the
idea of computation for which it is not relevant.  These include natural compu-
tation (computation occurring in or inspired by nature), nanocomputation (com-
putation based on nanoscale objects and processes), and computation based on
quantum theory.  As a consequence we need, not so much to abandon the
Church-Turing model of computation, as to supplement it with new models
based on different assumptions and suited to answering different questions.
Therefore I will discuss alternative frames of relevance more suited to the inter-
related application areas of natural computation, emergent computation, and
nanocomputation.  Central issues include continuity, indeterminacy, and paral-
lelism.  Finally, I will argue that once we understand computation in a broader
sense than the Church-Turing model, we begin to see new possibilities for using
natural processes to achieve our computational goals.  These possibilities will
increase in importance as we approach the limits of electronic binary logic as a
basis for computation.  They will also help us to understand computational proc-
esses in nature.
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1 Introduction

My goal in this report is to recontextualize the concept of computation.  I will begin by

reviewing the historical roots of Church-Turing computation to remind us that the theory

exists in a frame of relevance, which underlies the assumptions on which it rests and the

questions it is suited to answer.  I will argue that, although this frame of relevance is ap-

propriate in many circumstances, there are many important applications of the idea of

computation for which it is not relevant.  These include natural computation, nanocom-

putation, and quantum computation.  As a consequence we need, not so much to abandon

the Church-Turing model of computation, as to supplement it with new models based on

different assumptions and suited to answering different questions.  Therefore I will dis-

cuss alternative frames of relevance more suited to the interrelated application areas of

natural computation, nanocomputation, and quantum computation.  Finally, I will argue

that once we understand computation in this broader sense, we begin to see new possi-

bilities for using natural processes to achieve our computational goals, and these new

possibilities will increase in importance as we approach the limits of electronic binary

logic.

2 Weaning Ourselves Away from Church-Turing Com-

putation
It is important to keep in mind that the Turing machine is a model of computation.  Like

all models, its purpose is to facilitate describing or reasoning about some other class of

phenomena of which it is a model.  A model accomplishes this purpose by being similar

to its object in relevant ways, but different in other, irrelevant ways, and it is these differ-

ences that make the model more tractable than the original phenomena.  But how do we

know what is relevant or not?  Every model is suited to pose and answer certain classes

of questions but not others, which we may call the frame of relevance of the model.  Al-

though a model’s frame of relevance often is unstated and taken for granted, we must ex-

pose it and make it explicit in order to understand the range of applicability of a model

and to evaluate its effectiveness within its frame of relevance.  What, then, is the frame of

relevance of the Turing-machine model of computation?

As we know, the Church-Turing theory of computation was developed to address issues

of formal calculability and provability in axiomatic mathematics.  The assumptions that

underlie Church-Turing computation are reasonable in that context, but we must consider

them critically before applying the model in other contexts.  In its context, for example,

for the purpose of addressing the questions of what is, in principle, effectively calculable

or formally provable, it is reasonable to require only that there be a finite number of steps

requiring finite resources.  As a consequence, according to this model, something is com-

putable if it can be accomplished eventually, given unlimited but finite resources.

Another consequence of the historical roots of the Church-Turing theory of computation

is its definition of computing power in terms of classes of functions.  A function is com-

putable if, given an input, we will get the correct output eventually, given unlimited but

finite resources.  Of course, the theory can address questions of computation time and
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space, but the framework of the theory limits its applicability to asymptotic complexity,

polynomial-time reducibility, and so forth. The roots of the idea that computation is a

process of taking an input, calculating for a while, and producing an output can be found

in the theory of effective calculability as well as in contemporary applications of the first

computers, such as ballistics calculations, code breaking, and business accounting.

The Church-Turing model of computation, like all models, makes a number of idealizing
assumptions appropriate to its frame of relevance.  Many of these assumptions are cap-

tured by the idea of a calculus, but a phenomenological analysis of this concept is neces-

sary to reveal the background of assumptions (MacLennan 1994a).  Although there is not

space here to discuss them in detail, it may be worthwhile to mention them briefly (for

more see MacLennan 2003, 2004).

The model of information representation derives from mathematical formulas.  As ideal-

ized in calculi, representations are formal, finite, and definite.  We assume that tokens can

be definitively discriminated from the background and from one another, and we assume

that they can be classified by a mechanical procedure into exactly one of a finite number

of types.  The texts, or as we might say, data structures, are required to be finite in size,

but also finite in depth; that is, as we divide it into parts, we will eventually reach its

smallest, atomic constituents, which are tokens.  These and other assumptions are taken

for granted by the Church-Turing model of computation.  Although the originators of the

model discussed some of them, many people today do not think of them as idealizing as-

sumptions, which might not be appropriate in some other frames of relevance.

A similar array of idealizing assumptions underlie the Church-Turing model of informa-

tion processing, in particular, that it is formal, finite, and definite.  Applicability of basic

operations depends only on mechanically determinable properties of the tokens, and there

is no ambiguity in the applicability of these operations (although it is permissible for sev-

eral operations to be applicable).  Each basic operation is atomic, and a computation ter-

minates after a finite number of these atomic operations.  Also, it is definitely determin-

able whether a computation has terminated.  Again, these are largely unquestioned as-

sumptions of the Church-Turing model.

Since there is not space here to go into the details, I will only remark that it is the as-

sumptions underlying these notions of discrete representation and processing that permit

the processes to be described by rules that can be represented themselves as finite discrete

structures.  This is the foundation of the ability of one calculus to emulate another based

on a description of the latter in rules, notable examples of which are the universal Turing

machine and other universal computing systems.

3 Alternative Frames of Relevance
It certainly could, and has, been argued that the notion of computation was vague before

the pioneering work of Church, Turing, and the other founders of the theory of computa-

tion, and that what they did was to analyze, define, and express this previously informal

notion in more precise terms.  However, I want to argue that there are important concerns

connected with computation that are outside the frame of relevance of the Church-Turing

model.  Therefore we need to consider these alternative frames and the models suited to

them.
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First, I will discuss natural computation, which may be defined as computation occurring

in nature or inspired by that occurring in nature.  Natural computation occurs, of course,

in the brains of many species, but also in the control systems of microorganisms and in

the self-organized collective behavior of groups of animals, such as insect colonies,

flocks of birds, and so on.  Natural computation is an important research area because

robust, efficient, and effective natural systems can show us how to design better artificial

computational systems, and our artificial systems, in turn, can suggest models of compu-

tational processes in nature.  Such fruitful interchange is already apparent in the theories

of neural nets and complex systems.  However, natural computation occurs in a different

frame of relevance from conventional computing, and so it answers questions about the

relative power and equivalence of computing systems from a different perspective, and at

the same time it asks entirely new questions.

First, natural computation is often more like real-time control than the evaluation of a

function.  In nature the purpose of computation is frequently to generate continuous con-

trol signals in response to continuous sensor inputs.  The system continues to compute so

long as the natural system exists, and so eventual termination is generally irrelevant in

natural computation.  Typically, we are concerned with whether a result, such as a deci-

sion to act, can be delivered within a fixed real-time bound, or whether continuous con-

trol signals can be generated in real time.  Thus, we are not concerned with speed in

terms of a number of abstract computation steps, but with real time, and therefore with

how the rate of computation relates to the rates of the physical processes by which it is

implemented.  Also, in the usual theory the criterion is whether an absolutely correct out-

put will be produced eventually, whereas in natural computation it may be more impor-

tant to know how closely a preliminary result approximates to the correct one, since the

system may be forced by real-time constraints to use the preliminary result.

Asymptotic complexity is not so important in natural computation as in conventional

computation, because in applications of natural computation the size of the inputs are of-

ten fixed; for example, they are determined by the physical structure of the sensors.

Other bases for comparing computational processes are more relevant in natural compu-

tation.  For example, for fixed-sized inputs and processing resources, which computa-

tional process has a greater generality of response, that is, a wider range of inputs to

which it responds well?

A closely related criterion relevant to natural computation is how flexibly a system re-

sponds to novel inputs, that is, to inputs outside its range.  For an artificial system this

range is the set of inputs it was designed to process correctly; for a natural system it is the

set of inputs that it has evolved to process in its environment of evolutionary adaptedness.

Adaptability is another relevant basis of comparison for natural computation systems, that

is, how well do they accommodate themselves to changing circumstances.  In this regard

we are interested in the range, quality, speed, and stability of adaptation.

Finally, the function of natural computation is to allow imperfect physical agents to oper-

ate effectively in the extremely complex, unpredictable natural world. Therefore, in natu-

ral computation, we must take noise, uncertainty, errors, faults, and damage as givens,

not as peripheral issues added on as an afterthought, if considered at all, as is often done
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in conventional computing.  These considerations affect both the structure of natural

computations and the criteria by which they are compared.

It will be apparent that the Church-Turing model is not particularly well suited to ad-

dressing many of these issues, and in a number of cases begs the questions or makes as-

sumptions incompatible with addressing them.

Since nanocomputation is outside the scope of this report, I will just mention some of the

issues that are relevant when computing with nanoscale devices and processes.  First, at

the nanoscale, error and noise are major, unavoidable factors.  Even at low temperatures,

thermal noise looms large, and as sizes are decreased quantum indeterminacy becomes

significant.  As a consequence error, noise, and indeterminacy must be a part of our mod-

els of computation; it is a bad idealization to assume they can be eliminated.  Rather, we

must design under the assumption that they are present and even learn to exploit them as

positive effects.  Second, many nanoscale processes, such as molecular ones, will be to

some degree reversible, so we cannot assume that computation proceeds monotonically

forward.  Therefore we will be most interested in computations that progress on a statisti-

cal, or macroscopic scale, even in the face of microscopic reversals.  Finally, many nano-

computations, especially molecular computations, will not have well-defined computa-

tional steps, for they will proceed asynchronously in continuous-time parallelism.

4 Computation in General

4.1 Traditional Notions of Digital and Analog Computation
Historically, there have been many kinds of computation.  Digital computation, effective

calculability, formal axiomatics, and the Church-Turing model of computation have their

roots in arithmetical algorithms, using written numerals as well as devices, such as abaci,

that have been used since ancient times.  However, there are equally important examples

of continuous computation, including devices, such as the slide-rule, and computational

procedures, such as the traditional, compass-and-straightedge constructions of Euclidean

geometry.  In more modern times, we have had both analog and digital electronic and

mechanical computers.  The contemporary overwhelming visibility of digital computers

should not blind us to this fact.  Therefore both history and the existence of alternative

frames of relevance show us the importance of non-Turing models of computation. How,

then, can we define “computation” in sufficiently broad terms?  Prior to the 20
th

 century

computation involved the manipulation of mathematical objects by means of physical

operations.  The familiar examples are arithmetic operations on numbers, but we are also

familiar with geometric operations on spatial objects and with logical operations on for-

mal propositions.  Modern computers manipulate a much wider variety of objects, in-

cluding character strings, images, sounds, and much else.  Therefore, when I say that

computation uses physical operations to accomplish the mathematical manipulation of

mathematical objects, I mean it in the broadest sense, that is, the abstract manipulation of

abstract objects.  In terms of the traditional separation of form and matter, we may say

that computation uses material processes to accomplish formal manipulation of abstract

forms.

The forms manipulated by a computation must be materially realized in some way, but

the characteristic of computation that distinguishes it from other physical processes is that
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it is independent of specific material realization.  That is, although a computation must be

materially realized in some way, it can be realized in any physical system having the re-

quired formal structure.  (Of course, there will be practical differences between different

physical realizations, but I will defer consideration of them until later.)  Therefore, when

we consider computation qua computation, we must, on the one hand, restrict our atten-

tion to formal structures that are physically realizable, but, on the other, consider the

processes independently of any particular physical realization.

These observations provide a basis for determining whether or not a particular physical

system (in the brain, for example) is computational (MacLennan 1994b, 2004).  If the

system could, in principle at least, be replaced by another having the same formal prop-

erties and still accomplish its purpose, then it is reasonable to consider the system com-

putational.  For example, it seems likely that primary visual cortex performs a Gabor

wavelet transform on the image from the lateral geniculate nucleus (see MacLennan 1991

and citations therein).  If this is so, then it could be replaced, in principle, by an artificial

device performing the same computation but with a completely different physical reali-

zation.  (We have the beginnings of such substitutions in cochlear implants and similar

devices.)  On the other hand, if a system can fulfill its purpose only by control of par-

ticular substances or particular forms of energy, then it cannot be purely computational.

For example, a feedback control system regulating the quantity of a certain hormone in

the blood would not accomplish that purpose if the quantity were represented in a differ-

ent medium, such as electrical charge density; therefore this control system is not purely

computational.  Similarly, the immune system, although it processes information, is not

purely computational, since its chemical realization is essential to its function.  To give a

technological example, a radio transmitter cannot be purely computational, because its

purpose is to produce electromagnetic radiation of a certain frequency; it could not ac-

complish its purpose by manipulating information represented in a different medium,

such as light.  These examples illustrate that while some systems are purely computa-

tional, many, especially in biology, accomplish non-computational purposes as well.

Also, a computational system will not be able to accomplish its purpose unless it can in-

terface properly with its environment; this is a topic I will consider later.

Based on the foregoing considerations, I have proposed the following definition of com-

putation:

Definition: Computation is a physical process, the purpose of which is the
abstract manipulation of abstract objects.

Alternately, we may say that computation accomplishes the formal manipulation of for-

mal objects by means of their material embodiment.  Next I will define the relation be-

tween the physical and abstract processes:

Definition: A physical system realizes a computation if, at the level of ab-
straction appropriate to its purpose, the abstract manipulation of the abstract
objects is a sufficiently accurate model of the physical process.  Such a
physical system is called a realization of the computation.

That is, the physical system realizes the computation if we can see the material process as

a sufficiently accurate embodiment of the formal structure, where the sufficiency of the

accuracy must be evaluated in the context of the system’s purpose.  Next I will suggest a
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definition by which we can classify various systems, both natural and artificial, as com-

putational:

Definition: A physical system is computational if its purpose is to realize a
computation.

Finally, for completeness:

Definition: A computer is an artificial computational system.

Thus I restrict the term “computer” to intentionally constructed computational devices; to

call the brain a computer is a metaphor.  These definitions raise a number of issues,

which I will discuss briefly; no doubt the definitions can be improved.

First, these definitions make reference to the purpose of a system, but philosophers and

scientists are justifiably wary of appeals to purpose, especially in a biological context.

However, I claim that the use of purpose in the definition of computation is unproblem-

atic, for in most cases of practical interest, purpose is easy to establish.

First consider computers, which I have defined as artificial computational systems, that

is, artificial systems whose purpose is to realize the abstract manipulation of abstract ob-

jects.  Since computers are designed by human beings, we can simply ask the designers

what their purpose was in constructing the device.  Here I am making the commonsense

assumption that people know why they have undertaken a project, which is unproblem-

atic in most circumstances.

For biological systems the appeal to purpose is more problematic.  Nevertheless, biolo-

gists routinely investigate the purpose of biological systems, such as the digestive system

and immune system, and make empirically testable hypotheses about their purposes.  Ul-

timately such claims of purpose are reduced to the selective advantage to a particular spe-

cies in that species’ environment of evolutionary adaptedness, that is, the environment in

which it has historically evolved, but in most cases we can appeal to more familiar ideas

of purpose.  When we are dealing with organ systems, such as the nervous system, estab-

lishing purpose is relatively unproblematic.

However, I should mention one problem that does arise in biology and can be expected to

arise in our biologically-inspired robots.  That is, while the distinction between computa-

tional and non-computational systems is significant for us, it does not seem to be espe-

cially significant to biology.  The reason may be that we are concerned with the multiple
realizability of computations, that is, with the fact that they have alternative realizations.

For this property allows us to consider the implementation of a computation in a different

technology, for example in electronics rather than neurons.  In nature, typically, the reali-

zation is given, since natural life is built upon a limited range of substances and proc-

esses.  On the other hand, there is usually selective pressure in favor of exploiting a bio-

logical system for as many purposes as possible.  Therefore, in a biological context, we

expect physical systems to serve multiple purposes, and therefore many such systems will

not be purely computational; they will fulfill other functions besides computation.  From

this perspective, it is remarkable how free the nervous systems of all animals are from

non-computational functions.



8

4.2 Autonomy
It is important to realize that in natural computation, as well as in many other applications

of computers, the computation of a mathematical function is not the most appropriate

standard for evaluating computational paradigms.  Certainly, the idea of a computation

that is given an input and eventually produces an output was an appropriate idea for un-

derstanding effective calculability and decidability in formal systems and as a model of

batch computation, but it is not appropriate for systems, such as autonomous agents, in

continuous real-time interaction with their environments.  Nor is it especially suited for

dealing with situations, such as those found in natural computation, in which there is

large and unavoidable error and uncertainty in sensor inputs and in actuator effects.

Therefore, computation needs to be interpreted in a broader sense than the computation of

mathematical functions.  Real-time control systems and soft constraint maintenance sys-
tems are more appropriate models for many applications.

4.3 Transduction
I have emphasized that the purpose of computation is the abstract manipulation of ab-

stract objects, but obviously this manipulation will be pointless unless the computational

system interfaces with its environment in some way.  Certainly our computers need input

and output interfaces in order to be useful.  So also computational systems in the brain

must interface with sensory receptors, muscles, and many other noncomputational sys-

tems in order to be useful.  In addition to these practical issues, the computational inter-

face to the physical world is also relevant to the symbol grounding problem, the philoso-

phical question of how abstract symbols can have real-world content (Harnad 1990,

1993; MacLennan 1993).  Therefore we need to consider the interface between a compu-

tational system and its environment, which interface comprises input and output trans-
ducers.

Consider first input transducers, for which we can take a photo sensor as a concrete ex-

ample.  Its job is to take a light intensity and translate it into a computational representa-

tion.  For example, if we are dealing with electronic analog computation, then the job of

this input transducer is to translate a light intensity into a voltage, for example.  On the

other hand, if we were dealing with a fluidic analog computer, the job of the input trans-

ducer might be to translate light intensity into water pressure.  In principal, we can use

any physical system with the appropriate formal properties to implement this analog

computation, and so the input transducer must re-represent its input in the corresponding

medium of computation (for example, voltage or water pressure).  The output of an input

transducer is computational, and so it is multiply realizable, just like the rest of the com-

putation.  On the other hand, the input to the input transducer is physically determined by

the purpose of the computation; for example if it responds to air pressure rather than light

intensity, the computational system will not be able to serve its function.

The same of course applies on the output side, for the task of an output transducer is to

translate from the generic computational medium to the specific physical output required

to serve the computational system’s purpose.

The relation of transduction to computation is easiest to see in the case of analog comput-

ers.  The inputs and outputs of the computational system have some physical dimensions

(light intensity, air pressure, mechanical force, etc.), because they must have a specific
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physical realization for the system to accomplish its purpose.  On the other hand, the

computation itself is essentially dimensionless, since it manipulates pure numbers.  Of

course, these internal numbers must be represented by some physical quantities, but they

can be represented in any appropriate physical medium.  In other words, computation is

generically realized, that is, realized by any physical system with an appropriate formal

structure, whereas the inputs and outputs are specifically realized, that is, constrained by

the environment with which they interface to accomplish the computational system’s

purpose.

We can also describe transduction in terms of form and matter, where by matter I mean

any physical instantiation.  In effect, computation is purely formal because, although it

must be physically realized, the material substrate of the computation is irrelevant so long

as it supports the formal structure.  A pure input transduction, therefore, translates a

physical configuration into the computational medium, that is, it preserves the form while

changing its material embodiment.  If we neglect the physical realization of the computa-

tion, we can think of a pure input transduction as acquiring the form of the input and

leaving the matter behind.  Similarly, a pure output transduction takes a form produced

by the computation and imposes it on the specific material substrate required for output.

So we can think of pure transduction as changing matter while leaving form unchanged,

and computation as transforming form independently of matter.  In fact, most transduc-

tion is not pure, for it modifies the form as well as the material substrate, for example, by

filtering.  Likewise, transductions between digital and analog representations (D-A and

A-D converters) transform the signal between discrete and continuous spaces.

4.4 Classification of Computational Processes

I have tried to frame this definition of computation quite broadly, to make it topology-
neutral, so that it encompasses all the forms of computation found in natural and artificial

systems.  It includes, of course, the familiar computational processes operating in discrete

steps and on discrete state spaces, such as in ordinary digital computers.  It also includes

continuous-time processes operating on continuous state spaces, such as found in con-

ventional analog computers.  However, it also includes hybrid processes, incorporating

both discrete and continuous computation, so long as they are mathematically consistent.

As we expand our computational technologies outside of the binary electronic realm, we

will have to consider these other topologies of computation.  This is not so much a prob-

lem as an opportunity, for many important applications, especially in natural computa-

tion, are better matched to these alternative topologies.

4.5 Approximate Realization

In connection with the classification of computational processes in terms of their topolo-

gies, it is necessary to say a few words about the relation between computations and their

realizations.  A little thought will show that a computation and its realizations do not have

to be of the same type, for example, discrete or continuous.  For instance, the discrete

computations performed on our digital computers are in fact realized by continuous

physical systems obeying Maxwell’s equations.  The realization is approximate, but exact

enough for practical purposes.  Conversely a discrete system can approximately realize a
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continuous system, much like numerical integration on a digital computer.  In comparing

the topologies of the computation and its realization, we must describe the physical proc-

ess at the relevant level of analysis, for a physical system that is discrete on one level may

be continuous on another.  (See MacLennan 2004 for more on the classification of com-

putations and realizations.)

5 Expanding the Range of Physical Computation

5.1 General Guidelines

Next I will discuss the prospects for expanding the range of physical processes that can

be applied to computation.  I will consider some general guidelines, new concepts of gen-

eral-purpose computers, and natural computation.  But why should we want to expand the

concept of computation?

A powerful feedback loop has amplified the success of digital VLSI technology to the

exclusion of all other computational technologies.  The success of digital VLSI encour-

ages and finances investment in improved tools and technologies, which further promote

the success of digital VLSI.  Unfortunately this powerful feedback loop is rapidly be-

coming a vicious cycle.  We know that there are limits to digital VLSI technology, and,

although estimates differ, we will reach them soon.  We have assumed there will always

be more bits and more MIPS, but that is false.  Unfortunately, alternative technologies

and models of computation remain undeveloped and largely uninvestigated, because the

rapid advance of digital VLSI has surpassed them before they could be adequately devel-

oped.  Investigation of alternative computational technologies is further constrained by

the assumption that they must support binary logic, because that is the only way we know

how to compute, or because our investment in this computational paradigm is so large.

Nevertheless, we must break out of this vicious cycle or we will be technologically un-

prepared when digital VLSI finally, and inevitably, reaches its limits.

Therefore, as a means of breaking out of this vicious cycle, I will step back and look at

computation and computational technologies in the broadest sense.  What sorts of physi-

cal processes can we reasonably expect to use for computation?  Based on my preceding

remarks, we can see that any mathematical process, that is, any abstract manipulation of

abstract objects, is a potential computation.  Of course, not all of these are useful, but

mathematical models in science and engineering offer many possibilities.  Aside from de
novo applications of mathematical techniques to practical problems, mathematical models

of computation in natural systems may be applied to our computational needs.  Certainly,

a computation must be physically realizable, which means that we need to find at least

one physical process for which the desired computation is a good model.  Nevertheless,

in principle, any reasonably controllable, mathematically described, physical process can
be used for computation.

In some sense, this approach is a return to old notion of analog computation, according to

which we find some appropriate physical analog to the system of interest.  However, in

this sense, all computation is analog computation, for even digital computers are physical

realizations of the abstract structure of some system of interest.  (Note that we must dis-

tinguish “analog” in the sense of physical realization from “analog” in the sense of con-
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tinuous computation, which is opposed to “digital” in the sense of discrete computation.

The two senses of “analog” are independent.)

Of course, there are practical limitations on the physical processes usable for computa-

tion, but the range of possible computational technologies is much broader than might be

suggested by a narrow definition of computation.  Considering some of the requirements

for computational technologies will reveal some of the possibilities as well as the limita-

tions.

One obvious issue is speed.  The rate of the physical process may be either too slow or

too fast for a particular computational application.  That it might be too slow is obvious,

for conventional computing technology has been driven by speed.  Nevertheless, there are

many applications that have limited speed requirements, for example, if they are inter-

acting with an environment with its own limited rates.  Conversely, these applications

may benefit from other characteristics of a slower technology, such as energy efficiency;

insensitivity to uncertainty, error, and damage; and the ability to adapt or repair itself.

Another consideration that may supersede speed is whether the material substrate is

suited to the application: Is it organic or inorganic?  Living or nonliving?  Chemical, op-

tical, or electrical?

It might be less obvious that a physical realization might be too fast for an application,

but that is because we are stuck in our batch processing mentality, according to which we

want the output from our job as quickly as possible.  However, many applications of

natural computation are more like control processes, in which it may be more important

that the speed of computation is matched to the system’s environment.  A system may be

too responsive, leading to instability and other problems, although such an overly respon-

sive system may be dampened.

A second requirement is the ability to implement the transducers required for the appli-

cation.  Although the computation is theoretically independent of its physical embodi-

ment, its inputs and outputs are not, and some conversions to and from a computational

medium may be easier than others.  For example, if the inputs and outputs to a computa-

tion are chemical, then chemical or molecular computation may permit simpler transduc-

ers than electronic computation.  Also, if the system to be controlled is biological, then

some form of biological computation may suit it best.

Finally, a physical realization should have the accuracy, stability, controllability, etc. re-

quired for the application.  Fortunately, natural computation provides many examples of

useful computations that are accomplished by realizations that are not very accurate, for

example, neuronal signals have at most about one digit of precision.  Also, nature shows

us how systems that are subject to many sources of noise and error may be stabilized and

thereby accomplish their purposes.

A key component of the vicious cycle is that we know so much about how to design

digital computers and how to program them.  We are naturally reluctant to abandon this

investment, which pays off so well, but so long as we restrict our attention to existing

methods, we will be blind to the opportunities of other technologies.  But no one is going

to invest much time or money in technologies that we don’t know how to use.  How to

break the cycle?
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I believe that natural computation provides the best opportunity for making a new start.

Nature provides many examples of useful computations based on different models from

digital logic.  When we understand these processes in computational terms, that is, as ab-

stractions independent of their physical realizations in nature, we can begin to see how to

apply them to our own computational needs and how to implement them in alternative

physical processes.  As examples we may take information processing and control in the

brain, and emergent self-organization in animal societies, both of which have been ap-

plied already to a variety of computational problems.  (I am thinking of artificial neural

networks, genetic algorithms, ant colony optimization, etc.)  But there is much more that

we can learn from these and other natural computation systems, and we have not made

much progress in developing computers better suited to them.  More generally we need to

increase our understanding of computation in nature and keep our eyes open for physical

processes with useful mathematical structure. Therefore, one important step toward a

more broadly based computer technology will be a library of well-matched computational

methods and physical realizations.

For example, for a particular model such as the continuous Hopfield network, we should

have available a growing repertoire of physical processes for which the Hopfield net is a

reasonably accurate model.  We would expect that they would include an assortment of

relaxation processes.  Therefore, if we have a problem for which the continuous Hopfield

net is a good computational solution, we can consider the available realizations according

to criteria such as those already mentioned: speed, stability, implementation medium,

availability or feasibility of transducers, and so forth.

5.2 General-purposes Computers

An important lesson learned from digital computer technology is the value of program-

mable general-purpose computers for prototyping of special-purpose computers as well

as for use in production system.  Therefore to make better use of an expanded range of

computational methodologies and technologies, it will useful to have general-purpose

computers in which the computational process is controlled by easily modifiable pa-

rameters.  That is, we will want generic computers capable of a wide range of specific

computations under the control of an easily modifiable representation.  As has been the

case for digital computers, the availability of such general-purpose computers will accel-

erate the development and application of new computational models and technologies.

We must be careful, however, lest we fall into the “Turing Trap,” which is to assume that

the notion of universal computation found in Turing machine theory is the appropriate

notion in all frames of relevance.  The criteria of universal computation defined by Tur-

ing and his contemporaries were appropriate for their purposes, that is, for studying ef-

fective calculability and derivability in formal mathematics.  For them, all that mattered

was whether a result was obtainable in a finite number of atomic operations and using a

finite number of discrete units of space.  Two machines, for example a particular Turing

machine and a programmed universal Turing machine, were considered to be of the same

power if they computed the same function by these criteria.  Notions of equivalence and

reducibility in contemporary complexity theory are not much different.

It is obvious that there are many important uses of computers, such as real-time control

applications, for which this notion of universality is irrelevant.  In such applications, one
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computer can be said to emulate another only if it does so at the same speed.  In other

cases, a general-purpose computer may be required to emulate a particular computer with

at most a fixed extra amount of a computational resource, such as storage space.  The

point is that in the full range of computer applications, in particular in natural computa-

tion, there may be considerably different criteria of equivalence than computing the same

mathematical function.  Therefore, in any particular application area, we must consider in

what ways the programmed general-purpose computer must behave the same as the com-

puter it is emulating, and in what ways it may behave differently, and by how much.

That is, each notion of universality comes with a frame of relevance, and we must un-

cover and explicate the frame of relevance appropriate to our application area.

Fortunately there has been some work in this area.  For example, theoretical analysis of

general-purpose analog computation goes back to Claude Shannon (1941), with more re-

cent work by Pour-El (1974) and Rubel (1981, 1993).  In the area of neural networks we

have several theorems based on Sprecher’s (1965) improvement of the Kolmogorov su-

perposition theorem, which defines one notion of universality for feed-forward neural

networks, although perhaps not a very useful one.  Also, I have done some work on gen-

eral-purpose field computers (MacLennan 1987, 1990, 1999).  In any case, much more

work needs to be done, especially towards articulating the relation between notions of

universality and their frames of relevance.

It is worth remarking that these new types of general-purpose computers might not be

programmed with anything that looks like an ordinary program, that is, a textual descrip-

tion of rules of operation.  Some general-purpose analog computers will be programmed

by specifying a pattern of interconnections, essentially a wiring diagram, for a fixed set of

analog devices; this is not too different from a conventional program.  General-purpose

neural networks may be programmed by specifying connection strengths, that is, by

means of an array of analog values.  For other analog computers, including field comput-

ers, computation is described by spatiotemporal continua of information, such as visible

or audible images.  Such an image might be used, for example, to govern a gradient de-

scent process.  In these cases, as I have discussed in some of my earlier papers (MacLen-

nan 1995, 2004), it becomes more appropriate to speak of a guiding image than a pro-

gram.  We are, indeed, quite far from universal Turing machines and the associated no-

tions of programs and computing, but non-Turing models are often more relevant in natu-

ral computation and other new domains of computation.

5.3 Natural Computation
Let’s consider some of the applications of the foregoing ideas in specific computational

frameworks.  Computation in nature gives us many examples of the matching of physical

processes to the needs of natural computation, and so we may learn valuable lessons from

nature.  First, we may apply the actual natural processes in our artificial systems, for ex-

ample using biological neurons or populations of microorganisms for computation.  Sec-

ond, by understanding the formal structure of these computational systems in nature, we

may realize them in alternative physical systems with the same abstract structure.  For

example, neural computation or insect colony self-organization might be realized in an

optical system.
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5.4 Nanocomputation
Our broadened view of computation also provides new opportunities for nanocomputa-

tion; we do not have to limit ourselves to attempting to implement binary digital elec-

tronics at the nanoscale.  Rather, we can take our physical understanding of nanoscale

processes and use them as direct realizations of non-Turing computations.  In order to

make effective use of these nanoscale processes we will need models of computation that

are oriented toward massive, fine-grain, asynchronous, continuous-time parallelism, and

that are effective in the presence of reversibility and a high probability of error and noise.

By matching nanoscale processes to computational applications, many of these properties

can be changed from problems into assets.

5.5 Quantum and Quantum-like Computation
Next I would like to say a few words about quantum computation.  Current proposals

combine the ability to do parallel computation in linear superposition with conventional

binary computation.  Quantum decoherence is a formidable problem, especially for a

non-trivial number of qubits, but there is slow progress.  Because it is not my specialty, I

will not discuss that research here, but I will mention two somewhat different approaches

to quantum computation.

First, I would like to point out that current approaches to quantum computation under-

utilize the representational capabilities of the wave-function.  A wave-function is a com-

plex-valued spatially extended continuous function, an element of an infinite-dimensional

Hilbert space.  Therefore its information capacity is much greater than one bit!  To be

able to use this capacity we will need procedures to shape the wave-function, in order to

imprint information onto it, and the ability to control the linear dynamics of the wave-

function.  Such an approach may be especially suited to image processing and other ap-

plications with image-like data.  Of course, such an approach to quantum computation

faces the same problem of quantum decoherence as the qubit approach.  On the other

hand, since more efficient use is made of the wave-function’s representational capacity, it

may be possible to accomplish the same purposes with smaller quantum systems.

The definition of computation that I have proposed suggests quite a different way to use

the idea of quantum computation, which may be called quantum-like computation (QLC).

To understand it, observe that in a quantum system the wave-function evolves according

to a certain linear differential equation.  That is, this differential equation and the wave-

function on which it operates are realized by the physical quantum system.  We can ac-

complish the same computation by any other physical system that realizes the same

mathematical structure.  One’s immediate reaction might be that the quantum realization

is unique, but this is not the case.  As we know, physicists routinely simulate the evolu-

tion of the wave equation on ordinary digital computers.  The simulations are slow and

approximate, because they involve the numerical integration of partial differential equa-

tions, but the fact that it is done demonstrates that non-quantum physical systems can re-
alize the mathematics of quantum mechanics.

The goal of quantum-like computation, then, is to design non-quantum physical systems

that obey the equations of quantum mechanics, but proceed sufficiently quickly to be use-

ful and also satisfy the other requirements for practical realizations previously discussed.

To this end, it may be convenient to separate the complex wave equation into its real and
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imaginary parts.  The separated parts of the wave-function can be realized by various

real-valued physical quantities, such as electrical charge, light intensity, and so forth.

Since the system is linear, it will be capable of parallel computation in linear superposi-

tion.  If nothing else, quantum-like computing may give us the ability to explore the tech-

nology of quantum computation in advance of the development of true quantum comput-

ers.

6 Conclusions
The historical roots of Church-Turing computation remind us that the theory exists in a

frame of relevance, which is not well suited to natural computation, nanocomputation, or

quantum and quantum-like computation.  Therefore we need to supplement it with new

models based on different assumptions and suited to answering different questions.  Cen-

tral issues include continuity, indeterminacy, and parallelism.  Finally, I argued that once

we understand computation in a broader sense than the Church-Turing model, we begin

to see new possibilities for using natural processes to achieve our computational goals.

These possibilities will increase in importance as we approach the limits of electronic bi-

nary logic as a basis for computation.  They will also help us to understand computational

processes in nature.
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