
An O∗(2O(k)) FPT Algorithm for the Undirected Feedback Vertex
Set Problem∗

Frank Dehne†, Michael R. Fellows‡, Michael A. Langston§,
Frances A. Rosamond‡ and Kim Stevens¶

Abstract

We describe an algorithm for the FEEDBACK VERTEX SET problem on undirected graphs, param-
eterized by the size k of the feedback vertex set, that runs in time O(ckn3) where c = 10.567 and
n is the number of vertices in the graph. This improves on the best previous FPT algorithms due to

[RSS02, KPS04] and [RS05] that have running times of the form O ∗(2O(k lg lg k)) and O∗(2O(k lg k
lg lg k)),

respectively. These previous algorithms were based on the method of bounded search trees, branching
on short cycles. Our algorithm is based on the relatively new FPT technique of iterative compression,
and we prove our main result for a more general “annotated” form of the problem, where a subset of
the vertices may be marked as not to belong to the feedback vertex set. We also establish “exponential
optimality” for our algorithm; we prove that no FPT algorithm with a running time of the form O ∗(2o(k))
is possible, unless there is an unlikely collapse of parameterized complexity classes, FPT = M [1].

1 Introduction

Our focus in this paper is on the following parameterized problem that generalizes the familiar FEEDBACK

VERTEX SET problem by allowing some annotation of a problem instance:

FEEDBACK VERTEX SET (FVS)

Instance: An undirected graph G = (V,E)
(loops and multiple edges are allowed),
an annotated subset U ⊆ V of vertices,
and a positive integer k.

Parameter: k
Question: Is there a subset S of the vertices not in U , S ⊆ V − U ,

of size at most k, |S| ≤ k, such that G − S is acyclic?

The FEEDBACK VERTEX SET problem is NP-complete for both directed and undirected graphs [GJ79].
There are numerous applications of the problem in areas such as circuit testing, deadlock resolution, analyz-
ing manufacturing processes and computational biology [BGNR98, ENSS98, FHPSS04, FHS03, KW90].
The minimization version of the problem is approximable within a factor of 2 in polynomial time [BBF99].

∗This research has been supported in part by the U.S. National Science Foundation under grant CCR–0075792, by the U.S. Office
of Naval Research under grant N00014–01–1–0608, and by the U.S. Department of Energy under contract DE–AC05–00OR22725.

†School of Information and Communication Technologies, Griffith University, Brisbane QLD 4111, Australia;
frank@dehne.net

‡School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan NSW 2308, Australia;
{mfellows,fran}@cs.newcastle.edu.au

§Department of Computer Science, University of Tennessee, Knoxville TN 37996-3450 and Computer Science and Mathematics
Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164 U.S.A.; langston@cs.utk.edu

¶The Mechanics Institute, Bob’s Farm NSW 2316, Australia; wonganellawines@telstra.com

1

The FVS problem has been extensively studied from the parameterized point of view [BBG00, Bod94,
DF92, DF99, KPS04, RSS02, RS05]. A parameterized problem is said to be fixed-parameter tractable
(FPT) if it can be solved in time f(k)nc for some function f (unrestricted), where n is the total input size,
k is the declared parameter and c is a constant independent of k and n. This running time may be written as
O∗(f(k)) in the notation introduced by Woeginger [Woe03] that focuses attention on the exponential time
costs due to the parameter and ignores the polynomial time costs due to the overall input size. Highlights of
previous research on the FVS problem in the parameterized framework include:
• A randomized FPT algorithm due to Becker et al. [BBG00] running in time O(4kkn) finds a minimum
feedback vertex set of size k with probability at least 1 − (1 − 4−k)c4

k
for an arbitrary constant c.

• After several rounds of improvement, the best previous deterministic FPT algorithm, due to Kanj et al.
[KPS04], has a running time of O((2 lg k + 2 lg lg k + 18)kn2), or expressed qualitatively O∗(2O(k lg lg k)).
(This algorithm depends substantially on a previous algorithm due to Raman et al. [RSS02] having a similar
qualitative running time.) The basic idea for these algorithms is to branch on short cycles in a bounded
search tree approach (see [Nie02] for a survey of FPT techniques). A recent algorithm in [RS05] has a

running time of O∗(2O(k lg k
lg lg k

)),
A number of problems concerning FVS have notably remained open:
(1) Is there an O∗(2O(k)) FPT algorithm for FVS on undirected graphs?
(2) Is there a polynomial-time algorithm that kernelizes FVS on undirected graphs to a kernel of size

polynomial in k? (See [Nie02] for a discussion of kernelization and FPT.)
(3) Is the FVS problem in FPT for directed graphs?
In this paper we answer the first of these by an approach based on the relatively new technique of

iterative compression [RSV03, DFRS04].
In the next section we provide a brief discussion of this approach and its application to the FVS problem.

In §3 we describe our FPT algorithm for the solution-compression form of the FVS problem. In §4 we prove
an “optimality” result for our algorithm (giving a lower bound on the possibility of improvements). In §5
we conclude with a review of open problems.

2 Iterative Compression Applied to FVS

The FPT technique of iterative compression seems first to have appeared in an FPT algorithm devised by
Reed, Smith and Vetta for the problem of deleting k vertices to render a graph bipartite [RSV03]. The
approach was articulated as a general FPT design technique in [DFRS04]. Some applications of the method
can be found in [RSV03, DFRS04, Ma04].

Here we use this approach to solve the FVS decision problem by recursively solving the following
constructive solution-compression form of the problem:

SOLUTION COMPRESSION FOR FEEDBACK VERTEX SET

Instance: An undirected graph G = (V,E)
(loops and multiple edges are allowed),
an annotated subset U ⊆ V of vertices,
a solution set S ⊆ V − U such that G − S is acyclic,
where |S| = k + 1.

Parameter: k
Output: Either: (1) a solution set S′ of size k, or

(2) NO (i.e., no solution of size k is possible).

We employ an FPT algorithm for the above compression form of the FVS problem in the following way.
We recursively solve a constructive form of the problem of deciding whether a graph G = (V,E) admits a

2

feedback vertex set of size k with vertices to be chosen from V −U . In this constructive form of the decision
problem we are required either to produce a solution of size k, if one exists, or to return NO otherwise.

Given an instance (G = (V,E), U ⊆ V, k), we recursively address the constructive decision problem
for the instance (G−v, U, k) where v is an arbitrarily chosen vertex in V −U . If this recursive call on G−v
returns NO, that is, no k-vertex solution for G − v is possible, then clearly the correct answer for G is NO
as well.

Alternatively, if the recursive call on the instance (G − v, U, k) returns a k-element solution S ⊆ V −
U , then S ∪ {v} is a solution of size k + 1 for G. We now employ as a subroutine the FPT algorithm
for the solution compression problem. If f(k)nc is the running time we have achieved for SOLUTION

COMPRESSION FOR FVS, then our recursive solution to the constructive decision problem runs in time
f(k)nc+1, where n is the number of vertices in the graph G.

In the next section we describe our FPT algorithm for the problem of SOLUTION COMPRESSION FOR

FVS.

3 An FPT Algorithm for FVS Solution Compression

We will use the following reduction rules that can be easily applied to simplify (or summarily decide) an
instance of the problem. Recall that some vertices (the vertices in U in the problem definition) may be
annotated as not to belong to a solution set.

Rule 1: The Degree One Rule. If v is a vertex (annotated or not) of degree 1 in G, then delete v and adjust
the rest of the input data accordingly.

Rule 2: The Degree Two Rule. If v is a vertex (annotated or not) of degree 2 in G, with neighbors a and
b (allowing possibly a = b), then modify G by replacing v and its two incident edges with a single edge
between a and b (or a loop on a = b) and adjust the rest of the input data accordingly.

Rule 3: Annotation Contraction. If u and v are adjacent annotated vertices (that is, u, v ∈ U) then contract
one of the edges between u and v and adjust the rest of the input data accordingly.

Rule 4: The Loop Rules. If there is a loop on an annotated vertex v then answer NO. If there is a loop on an
unannotated vertex v ∈ V −U then take v into the solution set, that is, reduce to the instance (G−v, U, k−1).

Rule 5: Multiedge Reduction. If there are more than two edges between u and v (annotated or not) then
delete all but two of these.

Rule 6: Multiedge Selection. If there is an annotated vertex u that is connected by two edges to an
unannotated vertex v, then take v into the solution set, that is, reduce to the instance (G − v, U, k − 1).

The soundness of all these reduction rules is self-evident. In time O(n) we can determine if any of the
above reduction rules can be applied to a problem instance. Note that applications of the rules may cascade.
We say that an instance is reduced if none of the reduction rules can be applied.

Note that if we reduce an instance (G,U, k) to an instance (G′, U ′, k′) by a series of applications of the
above reduction rules, then given a solution S′ of size k′ for G′, we can in time O(n) recover a solution S
of size k for G. We will always harmlessly assume that the instance we are working with is reduced.

Algorithm for SOLUTION COMPRESSION FOR FVS

Input: A reduced instance (G = (V,E), U ⊆ V, k), and a solution S ⊆ V − U of size k + 1.
Output: Either a solution of size at most k, or NO if none exists.

Step 1: Branch on all 2k+1 subsets of S. The branch corresponding to a subset A ⊆ S represents the search
for a size k solution S′ that includes the vertices of A, that is, A ⊆ S′, and that does not include any of the
vertices of S − A = A′.

3

Thus, in the instance (G′, U ′, k′) that represents this branch:
(1) the vertices of A are deleted,
(2) the vertices of A′ are annotated,
(3) k′ = k − |A|, and
(4) the instance is further reduced according to Reduction Rules (1-6).

We will argue below that for the reduced instance (G′ = (V ′, E′), U ′, k′) considered on any of these
2k+1 branches of Step 1, we have either:
(i) |V ′ − U ′| ≤ 4k, or
(ii) we can immediately determine that the answer is NO..

Step 2: On each branch of Step 1, exhaustively analyze the resulting reduced instance by checking each
k′-element subset of the unannotated vertices to see if any provides a solution.

Step 2 requires checking at most
(
4k
k

)
subsets. A simple bound on the running time of our algorithm is

O(ckn2) where c = 18.963, since (
4k
k

)
≈ (9.4815)k

A more refined version of our algorithm, detailed in §3.3, runs in time O∗(10.567k).

3.1 The Reduced Instance Bound for Step 1.

The correctness of the algorithm is obvious because of its extreme simplicity. What is less obvious is the
claimed 4k bound on the number of unannotated vertices on the reduced instance branches generated in Step
1 that need to be considered further.

Let A ⊆ S and A′ = S − A as in the description of Step 1. The immediate instance graph G′ on the
A-branch of Step 1 consists of two sets of vertices:
(1) The (now) annotated vertices of A′, where we have the bound |A′| ≤ k + 1.
(2) The other vertices, which we denote F . Some of these may be annotated.

This immediate branch instance is further reduced, and this reduction process may result in some mod-
ification of the above picture. For example, connected components of the subgraph generated by A′ would
be contracted to a single vertex, by repeated applications of Rule 3. To simplify the argument, we will
assume that the immediate branch instance is already reduced so that our description of the vertices of G′

as partitioned into A′ and F is accurate (these sets would be modified by further reduction, but a bipartition
with the same properties we make use of below would result in any case). The following structural claims
hold.

Lemma 1 The subgraph 〈F 〉 induced by F is acyclic.

Proof. Otherwise S would not be a solution for G.

Henceforth we may use F (for convenience) to denote also the forest induced by the vertices in the
vertex set F .

Lemma 2 Each leaf l of the forest F is adjacent to at least two distinct vertices in A′.

Proof. In view of Lemma 1 and Reduction Rules 1 and 2, there must be at least two edges connecting l to
vertices in A′. Reduction Rule 6 would apply if l were connected to only one vertex of A′.

4

The vertices in the forest F can be partitioned into three sets. Let L denote the leaves of F , let J be the
vertices that have degree 2 in the forest subgraph 〈F 〉. We will refer to the vertices of J as the subdivision
vertices of F . Let B, the branch vertices of F , be the vertices of degree at least 3 in the subgraph 〈F 〉.

Lemma 3 Each vertex j ∈ J is connected to at least one vertex of A′.

Proof. Otherwise, in view of Lemma 1, Reduction Rule 2 would apply.

Definition 1 Let F be a forest with vertex set partitioned into the three sets: (1) the leaves L, (2) the
subdivision vertices J , and (3) the branch vertices B of F . A matching of the J-vertices of F of size r
consists of:
(1) r mutually disjoint 2-element subsets {xi, yi} ⊆ J , 1 ≤ i ≤ r,
(2) for each i, 1 ≤ i ≤ r, a path ρi in F from xi to yi, subject to the requirement that for i 	= j, the paths
ρi and ρj are vertex disjoint. The potential π(F) of the forest F is defined to be the sum of the number of
leaves |L| of F and the size of a maximum matching of the J-vertices. (See Figure 1 for an example.)

Figure 1: A maximum matching of the subdivision vertices (“J vertices”) of the forest F , showing that
π(F) = 11 + 3 = 14.

Lemma 4 Suppose that for the reduced instance (G′, U ′, k′) with vertex set partitioned into A′ and F as
above we have π(F) ≥ k′ + |A′|. Then the answer for this instance is NO.

Proof. If it were a YES-instance (for k′) then there would be a feedback vertex set S′ consisting of at most
k′ unannotated vertices. But then there would necessarily be at least |A′| leaves and J −matching paths ρi

in F having empty intersection with S′. Since S′ ∩ A′ = ∅ (because the vertices of A′ are annotated), there
are at least |A′| virtual edges or virtual loops connecting the vertices of A′ through F − S′. (For example,
if a leaf l of F is not in S′, then by Lemma 2 it is adjacent to two vertices a and b in A′, which we consider
here as a virtual edge between a and b. If the path ρi in F from the J-vertex xi to the J-vertex yi does
not contain any vertices in S′, then together with the connections of xi and yi to the set A′ guaranteed by
Lemma 3, we have what can be considered either a virtual edge between A′ vertices — or a virtual loop, in

5

case the A′-adjacencies guaranteed for xi and yi by Lemma 3 connect these vertices to the same vertex of
A′.) Joining the vertices of A′ by |A′| virtual edges or virtual loops necessarily implies that there is a cycle
not including any vertices of S′, that is, that S′ is not a feedback vertex set, a contradiction.

Lemma 5 For any forest F on m vertices, π(F) ≥ (m + 1)/2.

The proof of Lemma 5 is somewhat involved, and we defer the discussion to the next subsection.

Lemma 6 If on the A-branch of Step 1 we have a reduced instance (G′, U ′, k′) where the vertices of G′ are
partitioned into A′ and F as in the discussion above, and where |F | ≥ 4k + 1, then this is a NO-instance.

Proof. By Lemma 5, π(F) ≥ 2k + 1. The rest follows by Lemma 4, since |A′| ≤ k + 1 and k′ ≤ k.

3.2 The Proof of Lemma 5

Lemma 5 states that any forest F on n vertices has potential π(F) ≥ (n + 1)/2.

Proof. There are two parts to the argument:
(1) We prove the Lemma for trees of maximum degree 3. The proof is by structural induction.
(2) We then prove the Lemma for arbitrary trees by minimum counterexample, using (1) essentially as

the base case. The Lemma for arbitrary forests follows almost trivially.
As it is simpler, we treat the second step first, assuming (1) for the moment. Let T be a counterexample

tree having a minimum number of vertices, |T | = m. By (1), T must have at least one vertex v of degree
4 or more. We consider breaking T into two trees T1 and T2 as illustrated in Figure 2. The vertex v is
“broken” into two copies by choosing an incident edge e and “detaching” T1 as the subtree joined to the rest
of T at v by the edge e, and by making one of the copies of v a leaf in T1. The tree T2 consists of T with e
and the subtree (T1) attached by e removed. Thus in T2, the degree of (the other copy of) v is decreased by
1, and we have |T1| + |T2| = |T | + 1.

Figure 2: Breaking T into T1 and T2 at v.

6

Let mi = |Ti| for i = 1, 2. Thus m1 + m2 = m + 1. The Lemma must hold for each of the trees Ti,
since T is presumed to be a minimum counterexample. Therefore π(Ti) = (mi + 1)/2 for i = 1, 2. Choose
suitable Ji-matchings in the Ti that witness this. Combining these witness structures in T (“putting T back
together”) gives

π(T) ≥ (m1 + 1)/2 + (m2 + 1)/2 − 1

with the −1 term because a leaf is lost when the two copies of v are fused back together. (Note that the copy
of v in T2 has degree at least 3 in T2 and therefore does not belong to J2, so that there are no other losses in
combining the two witness structures.) This gives:

π(T) ≥ (m + 3)/2 − 1 = (m + 1)/2

and the Lemma is proved, assuming (1).
To prove the Lemma for trees of maximum degree 3, we induct on the structure of such trees. Each such

tree T is considered to be rooted at a vertex r, where either: (1) r is a leaf of T , or (2) r has degree 2 in T .
We will refer to (1) and (2) as the types of the rooted trees we discuss.

Trees of maximum degree 3 are generated by two operations on these rooted trees:
(i) A unary operation x(T) (extension of T) that can be applied to rooted trees of type either (1) or (2) and
that consists in adding a new vertex r′ connected to r, with r′ becoming the root of the resulting “extended”
tree.
(ii) A binary operation T1 ⊕ T2 (join of T1 and T2) that applies only when both T1 and T2 are of type (1),
that is, have roots of degree 1. In this operation, the roots of the two trees are identified, resulting in a rooted
tree of type (2).

The two operations are illustrated in Figure 3.

Figure 3: The parsing operations for trees of maximum degree 3.

An elementary induction shows that all trees of maximum degree 3 can be parsed in terms of these two
operations on (smaller) rooted trees. For a rooted tree of type (1) or type (2) our induction hypothesis is as
follows. Here we consider that the vertices of T are partitioned into the four sets: {r}, L, J and B, of the
root, the leaves, the subdivision vertices and the branch vertices, respectively, as in earlier discussions, but
with the exception of the root. In particular, here we do not consider that the root belongs to J , even for
rooted trees of type (2).

Induction Hypothesis. One of the following claims holds:
(1) |J | is even and the J-vertices of T admit a perfect matching in the sense defining π(T), or
(2) |J | is odd and the J-vertices can be matched in T with the exception of one vertex u ∈ J , and furthermore

7

the matching can be accomplished so that there is a path from u to the root r that is disjoint from the paths
in T that realize the J-matching.

The induction hypothesis is illustrated in Figure 4.

Figure 4: An example of the induction hypothesis for |J | odd.

It is straightforward to verify the several cases of the induction step for the two parsing operations. For
example, we can verify that for the operation T1 ⊕ T2 where both T1 and T2 satisfy case (2) of the induction
hypothesis with unmatched J-vertices, respectively, u1 and u2, the outcome T of the operation satisfies case
(1) of the induction hypothesis. In this outcome, the paths from the unmatched vertices ui to the joined roots
ri are combined to form a path matching u1 to u2 in T . We leave the other cases to the reader.

By the above inductive argument, it follows that there can be at most one unmatched J-vertex in a
maximum J-matching in an (unrooted) tree T of maximum degree 3, where the vertices of T are partitioned
into the three sets L, J and B. Since |B| = |L| − 2 and therefore

m = |L| + |J | + |B| = 2|L| + |J | − 2

we have
π(T) ≥ |L| + (|J | − 1)/2 = (m + 1)/2

which proves the Lemma for trees of maximum degree at most 3.

3.3 A More Efficient Version

Lemma 4 shows that there is a simple way to improve the efficiency of our algorithm. On the branch of Step
1 corresponding to a subset A of the (k +1)-sized solution S, we can answer NO if for the reduced instance
we have π(F) ≥ k′ + |A′|. Since k′ = k− |A| and |A′| = k + 1− |A|, and using Lemma 5, the total bound
on the number of possible solutions explored in Steps 1 and 2 is

k∑
i=0

(
k + 1

i

)(
2((k + 1 − i) + (k − i) − 1) − 1

k − i

)
=

k∑
i=0

(
k + 1

i

)(
4k − 4i − 1

k − i

)

Define

f(x, k) =
(

k

x

)(
4(k − x)
k − x

)

8

and suppose f(x, k) is maximized for x∗ = x(k). Then our sum above is bounded by (k +1) · f(x∗, k +1).
We next work out two estimates x1(k) and x2(k) such that

x1(k) ≤ x∗(k) ≤ x2(k)

and we will therefore have a bound on our sum of

(k + 1) ·
(

k + 1
x2(k + 1)

)(
4((k + 1) − x1(k + 1))
(k + 1) − x1(k + 1)

)

(The reason for the two estimates is that the first part of f(x, k) increases with x, and the second part
decreases with x.)

We study the ratio f(x, k)/f(x + 1, k). The maximizing value x∗ is located (essentially) at the point
where this ratio is equal to 1. Assuming that k is large, this ratio is approximately:

f(x, k)
f(x + 1, k)

≈
(

x + 1
k − x

)
(4)(4/3)3

This yields the estimates:
x1(k) = (27/283)k and
x2(k) = (28/283)k.

Using the well-known bound (based on Stirling’s approximation for n!) that
(

ak

bk

)
≤

(
aa

bb(a − b)a−b

)k

for constants a > b, we obtain the bound on our total cost sum of (k + 1)(10.567)k .

4 Optimality

Our FPT algorithm for the problem of SOLUTION COMPRESSION FOR FVS yields, by the approach of §2,
an FPT algorithm for the parameterized FEEDBACK VERTEX SET problem that runs in time O(ckn3) where
c = 10.567. In qualitative terms, we have given an algorithm with a running time of the form O∗(2O(k)).
We next show that this is, in a qualitative sense, “optimal” for the problem.

Theorem 1 There can be no FPT algorithm for FEEDBACK VERTEX SET with a running time of the form
O∗(2o(k)) unless FPT = M [1].

Proof. Determining whether a graph on n vertices has a vertex cover of size at most k log n, where the
parameter is k, termed the k log n VERTEX COVER problem, is complete for the parameterized complexity
class M [1] [DEFPR03, CF04]. The theorem follows because there is a simple linear-size and parameter-
preserving (i.e., k′ = k) polynomial-time reduction from VERTEX COVER to FEEDBACK VERTEX SET,
by simply replacing each edge of the VERTEX COVER instance with a pair of parallel edges. Thus if there
were an FPT algorithm for FEEDBACK VERTEX SET running in time O∗(2o(s)) where s is the size of the
feedback vertex set, then we would have an algorithm for the k log n VERTEX COVER problem running in
time O∗(2o(k log n)), but as shown in [CJ03], this is an FPT running time. By the completeness of the k log n
VERTEX COVER problem for M [1] [DEFPR03], we would have FPT = M [1].

Remark 1 The consequence FPT = M [1] is highly unlikely, since it is known that FPT = M [1] if and only
if satisfiability of 3SAT instances on n variables can be decided in time O∗(2o(n)). (See [DEFPR03, CF04]
for further information and discussion.)

9

Remark 2 A number of other “FPT optimality” results have been shown for various problems [DFR03,
CJ03]. A notable example is the parameterized PLANAR DOMINATING SET problem, for which there is an
FPT algorithm with a running time of O∗(2O(

√
k)) [ABFKN02]. It has been shown that there can be no FPT

algorithm for this problem with a running time of the form O∗(2o(
√

k)) unless FPT = M [1] [CJ03].

5 Open Problems

Is there a polynomial-time kernelization algorithm for FVS on undirected graphs that reduces an instance
(G, k) to (G′, k′) where k′ ≤ k and the size of G′ is bounded by a polynomial in k?

The reduction rules that we have employed here are all local and elementary in character. It would be
interesting to explore if global “crown type” reduction rules for the problem might be possible, as has turned
out to be usefully the case for VERTEX COVER [ACFLSS04]. Such reduction rules might also be of use in
addressing the above open problem.

The potential practical significance of our algorithm should also be investigated. Our approach to the
FVS problem here is a new one, and the branching in Step 1 is “not expensive”. The broad parallelism of
Step 1 might be usefully exploited in highly parallel implementations.

6 Recent Independent Work

Through recent email conversations we have just received a manuscript by Guo et.al. [GGHNW05] in
which they independently present an improved FVS algorithm that is very similar to ours and requires time
O(cknO(1)). Their independent result is also based on the iterative compression methodology. For our
method, the constant c is 10.567 whereas it’s value is not determined in [GGHNW05].

References

[ABFKN02] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks and R. Niedermeier. Fixed parameter algo-
rithms for Dominating Set and related problems on planar graphs. Algorithmica 33 (2002), 461–493.

[ACFLSS04] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H. Suters and C. T.
Symons. Kernelization algorithms for the vertex cover problem: theory and experiments. Proceedings
of the 6th Workshop on Algorithm Engineering and Experiments (ALENEX), New Orleans, January,
2004, ACM/SIAM, Proc. Applied Mathematics 115, L. Arge, G. Italiano and R. Sedgewick, eds.

[BBF99] V. Bafna, P. Berman and T. Fujito. A 2-approximation algorithm for the undirected feedback
vertex set problem. SIAM Journal on Discrete Mathematics 12 (1999), 289–297.

[BBG00] A. Becker, R. Bar-Yehuda and D. Geiger. Random algorithms for the loop cutset problem. Journal
of Artificial Intelligence Research 12 (2000), 219–234.

[BGNR98] R. Bar-Yehuda, D. Geiger, J. Naor and R. Roth. Approximation algorithms for the feedback
vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM Journal
on Computing 27 (1998), 942–959.

[Bod94] H. Bodlaender. On disjoint cycles. International Journal of Foundations of Computer Science 5
(1994), 59–68.

10

[CF04] Y. Chen and J. Flum. On miniaturized problems in parameterized complexity theory. Proceedings of
the First International Workshop on Parameterized and Exact Computation, Springer-Verlag, Lecture
Notes in Computer Science vol. 3162 (2004), 108–120.

[CJ03] L. Cai and D. Juedes. On the existence of subexponential parameterized algorithms. Journal of
Computer and System Sciences 67 (2003), 789–807.

[DEFPR03] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez and F. Rosamond. Cutting up
is hard to do: the complexity of k-cut and related problems. Electronic Notes in Theoretical Computer
Science 78 (2003), 205–218.

[DF92] R. Downey and M. Fellows. Fixed-parameter tractability and completeness. Congressus Numeran-
tium 87 (1992), 161–187.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

[DFR03] F. Dehne, M. Fellows and F. Rosamond. An FPT algorithm for set splitting. Proceedings of the
29th Workshop on Graph Theoretic Concepts in Computer Science (WG 2003), Springer-Verlag, Lec-
ture Notes in Computer Science 2880 (2003), 180–191.

[DFRS04] F. Dehne, M. Fellows, F. Rosamond and P. Shaw. Greedy localization, iterative compression and
modeled crown reductions: new FPT techniques, an improved algorithm for set splitting and a novel 2k
kernelization for vertex cover. Proceedings of the First International Workshop on Parameterized and
Exact Computation, Springer-Verlag, Lecture Notes in Computer Science vol. 3162 (2004), 271–280.

[ENSS98] G. Even, J. Naor, B. Scheiber and M. Sudan. Approximating minimum feedback sets and multi-
cuts in directed graphs. Algorithmica 20 (1998), 151–174.

[FHS03] M. Fellows, M. Hallett and U. Stege. Analogs and duals of the MAST problem for sequences and
trees. Journal of Algorithms 49 (2003), 192–216.

[FHPSS04] C. Fried, W. Hordijk, S.J. Prohaska, C.R. Stadler and P.F. Stadler. The footprint sorting problem.
J. Chem. Inf. Comput. Sci., 44 (2), 332 -338, 2004

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, 1979.

[GGHNW05] J. Guo, J. Gramm, F. Hueffner, R. Niedermeier, S. Wernicke. Improved Fixed-Parameter
Algorithms for Two Feedback Set Problems. Manuscript.

[KPS04] I. Kanj, M. Pelsmajer and M. Schaefer. Parameterized algorithms for feedback vertex set. Proceed-
ings of the First International Workshop on Parameterized and Exact Computation, Springer-Verlag,
Lecture Notes in Computer Science vol. 3162 (2004), 235–247.

[KW90] A. Kunzmann and H. Wunderlich. An analytical approach to the partial scan problem. Journal of
Electronic Testing: Theory and Applications 1 (1990), 163–174.

[Ma04] D. Marx. Chordal deletion is fixed-parameter tractable. Manuscript, 2004.

[Nie02] R. Niedermeier. Invitation to fixed-parameter algorithms, Habilitationschrift, University of Tubin-
gen, 2002. (Electronic file available from R. Niedermeier.)

11

[RSS02] V. Raman, S. Saurabh and C. Subramanian. Faster fixed-parameter tractable algorithms for undi-
rected feedback vertex set. In Proceedings of the 13th Annual International Symposium on Algorithms
and Computation, Springer, Lecture Notes in Computer Science vol. 2518 (2002), 241–248.

[RS05] V. Raman and S. Saurabh. Faster algorithms for feedback vertex set. To appear in Proceedings of the
2nd Brazilian Symposium on Graphs, Algorithms and Combinatorics, (GRACO 2005), April 27-29,
2005.

[RSV03] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations Research Letters 32
(2004), 299–301.

[Woe03] G. J. Woeginger. Exact algorithms for NP-hard problems: a survey. Proceedings of 5th Inter-
national Workshop on Combinatorial Optimization-Eureka, You Shrink! Papers dedicated to Jack
Edmonds, M. Junger, G. Reinelt, and G. Rinaldi (Festschrift Eds.) Springer-Verlag, Lecture Notes in
Computer Science 2570 (2003), 184-207.

12

