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Abstract

The Maximum Common Subgraph (MCS) problem appears in masegwand in a wide variety of
applications. The usual goal is to take as inputs two graphgrderm andn, respectively, and find
the largest induced subgraph contained in both of them. Md&quently solved by reduction to the
problem of finding a maximum clique in the ordein association graph, which is a particular form
of product graph built from the inputs. In this paper a newodthm, termed “clique branching,” is
proposed that exploits a special structure inherent in #seaation graph. This structure contains a
large number of naturally-ordered cliques that are presetiie association graph’s complement. A
detailed analysis shows that the proposed algorithm regaif(m + 1)™) time, which is a superior
worst-case bound to those known for previously-analyzgorihms in the setting of the MCS problem.

1 Introduction

A popular metric for the similarity of two graphs is the siZdleir Maximum Common Subgraph (MCS),
which is most frequently defined as the largest graph isohotp some induced subgraph in each of them.
Deciding MCS isNP-complete. It has been studied in bioinformatics [21], clety [16, 19], pattern
recognition [7, 15], and an assortment of other applicaieas. A vast literature exists for approximating
the size of an MCS. Notably, it i8P-hard to guarantee solutions even withif| ¢, wheree > 0 and|V|

is the size of the MCS [13]. Here we focus on exact MCS algorghThese can be roughly classified into
three main categories: clique-based methods, non-chiqged backtracking strategies, and various other
techniques.

Cligue-based methods are the most widely used in the literafThese depend on finding a maximum
clique in the association graph (see, for example, [5]). Wed&fine this and other terms in the sequel. Let
us just say for now that the association graph is a parti¢atar of product graph built from the two original
input graphs. Many clique-based algorithms employ maxicligbe enumeration procedures [6, 19], and
so are not particularly well suited for maximum clique firglinThe general purpose maximum clique
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algorithm of [20] has a time complexity @p(1.19 ™"), wherem andn denote the respective sizes of the
input graphs. An example of a non-clique-based backtrackirategy is that of [17], which was developed
over two decades ago but rarely used today. In fact it is knimwgerform well only on graphs of small size
[10]. An improved backtracking algorithm has recently beeoposed with time complexity) (m "*1n)
[14]. Other techniques include algorithms designed focspelasses of inputs. One example of this is
the dynamic programming approach of [4], which has beengmeg for “almost trees of bounded degree.”
Other methods rely on a set of known graphs against whichhmagas to be performed [8, 18]. For more
information we refer the interested reader to [9].

In this paper, we present and analyze a new algorithm forxhetéVICS problem. To solve clique on
the association graph, we actually exploit a special clgjuecture that we have identified as inherent in the
complement of the association graph. There we employ anegffitee search technique designed to branch
on this structure. The resultant “clique branch” algorittsmused to solve vertex cover in the complement
and hence clique in the association graph itself. It requirfdm + 1) ™) time, which (with inputs of course
set to ensure that is at least as large ag is a better asymptotic worst-case bound than®te: "*1n)
limit of [14] and that known for other previously-analyzelg@ithms in the setting of the MCS problem.

2 The Association Graph and its Properties

2.1 Definitions

In this section we provide some formal definitions relatethtioMCS problem. All graphs are assumed to
be simple, finite, and undirected. Two graghis andG, are said to bésomorphicif there is a one-to-one
correspondence between their vertex sets that preseeasljdicency of vertices. A gragll is amaximum
common subgrapthenceforthA/ C'S) of graphsG; andGs if M consists of the largest number of vertices
and is isomorphic to induced subgraphs(sf and GGo. Such definition of the\/C'S is often referred to
as themaximum common induced subgra@d C15). If M consists of the largest number of edges then
the MCS is referred as thenaximum common edge subgra@ii C ES) [17]. Throughput this paper, the
MCS graph denotes th&/C'IS graph. Note that tha/C'S is neither unique nor connected.

Given two undirected graphs; = (V4, E1) andG, = (Va, E»), theassociation graplG = (V, E) is
an undirected graph defined on the vertexiéet V; x V3 with two vertices(uy, v1) and (ug, v2) being
adjacent whenever:

U1 75 ug andv; 75 v9, and
either(ul,uQ) e b and(’l)l,’l)g) € Es or (ul,u2) §7§ Eq and(’l)l,’l)g) §7§ FEs.

From this point on, we denote iy, andG, the two input graphs of MCS. Moreover, we shall assume
thatn = ’Gly < ’GQ‘ =m.

2.2 Preliminaries

From the definition of the association graph, we know that vexices(u;,v1) and(uq, v) are adjacent
in G only if u; # up andv; # vy. In other words, any two verticeS:;, v;), (u;, vx) are not adjacent
for Vu; € Vi andvj, v, € Vs, and any two verticesu;, v;), (ux, v;) are not adjacent forv; € V5 and
ui, u € V1. Therefore, we have the following theorem.

Theorem 1 If two graphsG, = (V4, F1) and G, = (Vs, E5) are used to create an association graph then,
foranyu € V; and anyv € V43, each of the setéu} x V, andV; x {v} forms a clique in the complement
of the association graph.



Vi xVy U1 V9 ce Um
Uy (ur,v1)  (ur,v2) - (u1,vm)
U2 (ug,v1)  (ug,v2) - (ug,vm)
Un (umvl) (umv2) (umvm)

Proof. Let |[Vi| = n and|Va] = m. If we viewV = V; x V5 as a table as follows. Then, because
of the first two conditions of the definition of the associatigraph, forvu; € Vi, the set of vertices
(ui,v1),- .., (ui, vy) in G forms anindependent set, and far; € 15, the set of verticegu1, v;), . . ., (un, vj)

in G also forms an independent set. Thus, in the complement geagh row and column of the table will
form a cliquem

Let & be the size of a common subgraph(éf andGs. We can restrict our search for a minimum vertex
cover to covers with sizes that are at least — n and at mostim — k. Because the maximum value bof
is unknown upfront, it could be the size of any common subgthpt is trivially found (e.g. the graph with
the minimum of the sizes of two independent set&ofandGs or induced paths of equal size).

Theorem 2 Letk be the size of any common subgraplizgfand G5, and letG be their association graph.
Then any vertex cover of the complementrahust contain at leastm — min{n, m} and at mostm — k
vertices.

Proof. Let H; and Hy be subgraphs off; and G- that are isomorphic. IfH,| = |Hs| = k, then the
ordered pairs of the séfu,v) : u € Hy andv € H,} form a clique of size: in G, the association graph of
G andG,. So the complement @ has an independent set of sizeThis proves the claim concerning the
mn — k upper bound.

For the lower bound, we know the size of the MCS is bounded @bgwin{n, m}, which implies the
size of the maximum clique of the association gréptoes not exceediin{n, m}. This implies any vertex
cover of the complement @f has at leastnm — min{n, m}) vertices.m

3 The Structural Decomposition Algorithm

In order to motivate our approach it is important to obsehag,tfor a clique of sizé, any vertex cover must
have at leask — 1 vertices. Moreover, if any one of the vertices is excludemnfthe vertex cover, all of its
neighbors must be included. In the complement of the assacigraph, each vertefu, v) is involved in

at least two cliques that only overlap at this vertex. The thigques correspond to the row and column that
intersect atu, v) in aforementioned table.

We shall refer to these two cliques by the row-cliqgue and tieron-clique of(u, v). If (u,v) is to be
excluded from the cover, then all vertices in both of thesguels must be included in the cover. Moreover,
any other vertices that are adjacent to this vertex will &lsancluded in the cover. This means the size of
the problem is greatly reduced when we decide to excludetexvom the vertex cover.

We show that our vertex cover branching algorithm can doast las well as any other known algorithm
for MCS. For this purpose, we present vertex cover branchirggway that makes use of the presence of
row-cliques and column-cliques in the complement of theeiation graph.

The idea is that when we attempt to find a vertex cover, we clattsat most one vertex from each
cligue to be excluded from the cover. Thus, in a row-cliqusiném, there aren + 1 possible choices for
any vertex coverm choices each exclude one of the vertices while the remaictimgce includes all the



vertices. This forms the basis for our clique branching etlym below.

algorithm CliqueBrancHG)

Input: the complement of the association gr&pltreated from two graph&; andG- of sizesn andm
respectively

Output: a minimum vertex cover of the association graphfegiement

begin
MinimumCover= G
CurrentCover GG
NumberExcluded 0
ExcludeColumns ()
=1
BrancHz)
outputMinimumCover
end

function BrancHzq)
begin
if i > nthen
if |CurrentCovér< |MinimumCovefthen
MinimumCover= CurrentCover
else
NumberExcluded¢ NumberExcluded 1
loop over allv; € V, wherej ¢ ExcludedColumns
if (ui,v;) has a neighbofuy, v;) ¢ CurrentCovethen
do nothing
else
addj to ExcludedColumns
remove(u;, v;) from CurrentCover
Branch(i + 1)
remove;j from ExcludedColumns
add(u;, v;) to CurrentCover
NumberExcluded¢ NumberExcluded 1
Branch(i + 1)
end

Theorem 3 The clique branching algorithmCliqueBranchG), produces a minimum vertex cover of the
complement of the association gragh

Proof. We walk through the rows of the aforementioned table, bramgcht each row. Since a row rep-
resents a clique, we could select either to exclude exaaityds its vertices from the vertex cover or to
include all of them. We cannot, however, choose a vertextiblaings to a column from which a vertex was
selected at a previous branching since each column alseseqts a clique. The clique branching algorithm

examines all possible vertex covers that satisfy theseittonsl and selects the one with minimum size, thus
it produces a minimum vertex cova.

In order to get a rough estimate of the complexity of the allgor, consider the vertex table established
in Theorem 1. Branching on the cliques represented by eaghare have two possibilities. If no vertex is
excluded from the cover then we have identifiedvertices as belonging to the vertex cover. If we select
to exclude a particular vertej, v), then this vertex will have at least + n — 2 neighbors that must be
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included in the cover; there are — 1 other vertices in the same row-clique amd- 1 other vertices in the
same column-clique dfu, v).

We can branch recursively until we arrive at the final row @& thatrix. Since there will ba levels of
branching, each with at most + 1 possible paths, this produces an algorithm that is at @&t + 1) ™).
This bound is not tight, since once we select a vertex to eglits neighbors cannot be selected for a
similar role in a later branching. Thus, for a later branghkirthere will be fewer tham + 1 choices.

Moreover, the number of neighbors of a vertex is more thamtmeber of vertices in its corresponding
row and column cliques. This is guaranteed by the followimgrna. A formal proof of the computational
complexity will be shown in Section 4.

Lemmal If the neighborhood of a vertéx, v) is confined to its row-clique and column-clique, then either
u andv are both isolated or both connected to all the vertices inheafd7; and G5, respectively.

Proof. Assume the neighborhood condition as stated (@ng « andv’ # v). Then(u,v) is connected
to all vertices(u/, v’) in the association graph @f; andG,. Assumeu is neither isolated nor connected
to all vertices. Then we can find andw” such that(w,«’) is an edge of7; while (u,«”) is not an edge.
If v has an edgév,v’) (or a non-edgév, v”)) then (u,v) is not joined to(w”,v") (or (u,v) is not joined
to (v/,v”)). This is a contradiction. So our assumption abeheither isolated nor connected to all ver-
tices) is wrong. The same argument proves thaisfnot isolated, then it's connected to all vertices6f m

So if such a pair of verticegu, v) is found inG; x Gs, they are associated together as part of any
common subgraph. Moreover, we could detect their presentteeioriginal graphs without searching the
association graph. So, as a pre-processing rule appliedtprany branching step, our algorithm detects the
presence of such paifs, v) and reduces the problem size by not including them in theexexver.

Figure 1 shows an example of the clique branching algorithplied to two graphg>; andG,, where
|Vi| = 4 and|V,| = 3. The complement of the association graph has 12 verticesanbe listed as & x 3
array. Starting from the first row, there a3et+ 1 = 4 choices (branches). Three of these select a single
vertex to be excluded from the cover. The fourth branch de¢€xclude any vertices. For the first three
branches (selecting one), the remaining graphs are mudkesti@n the original complement graph. This
is especially true for the latter two branches. Taking tleed branch as an example, excluding veri¢x
from the cover forces verticéd, cf, df, in its column,ae, ag, in its row, andbg, cg, dg, in its neighborhood,
into the cover. This leaves a graph containing only the tesécesbe, ce, de. The next step along this
branch will have only two choices: excluding or includingtes be. The fourth branch, which excludes
no vertices from the first row, still reduces the graph byudatg all vertices in the first row in the cover,
resulting in a3 x 3 array remaining. The next step of this worst-case branchdwtill have3 + 1 = 4
choices.

4 Complexity Analysis
The following theorem is used to determine the complexitthefclique branching algorithm.

Theorem 4 The complexity of performing the clique branching algaritlon the association graph con-
structed from two graphs of sizesandm is

n

S i) ®

=0
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Figure 1: An example of the clique branching algorithm.

Proof. Let R(m,n) be the computational complexity of processingrar m array of vertices. The first
branching will eliminate one row of the array, resulting/in— 1) rows remaining. Also, there afen + 1)
possible paths at this branching. There ar@aths, each selects a vertex to exclude from the vertex cover
which also eliminates a column from future considerati@spiting in(m— 1) remaining columns. The final
path does not exclude any vertices from the cover, resuitting remaining columns. These observations
result in the following recurrence relation.

R(m,n) =mR(m—1,n—1)+ R(m,n — 1) (2)

with initial condition R(5,0) = 1, for0 < j < m.

We next need to demonstrate that the formula

k m! k .
R(m,n):;m<Z_)R(m—k:—l—z,n—k‘), foro<k<n 3

satisfies the recurrence relation.

We do inductively. First, ift = 0 observe that

k
m! k .

Next, we need to show that

R(m,n)zzm_#]{;i)!(lz)}%(m—k—l—i,n—k) (4)

k
=0



implies
k+1

B m)! k+1 )
R(m,n)—z;(m_(k_i_l)_i_z_)! < ; >R(m—(k¢+1)+z,n—(kz+1)). (5)

Notice that the recurrence relation (Equation 2) implieg th
Rm—-k+in—k)=(m—-k+i)Rm—k+i—1ln—k—-1)+Rm—k+in—k—1). (6)
Combining Equation 6 with the induction hypothesis (Equa#l), we see that
k m! k
R(m,n) :Zm < ; > [(m—-—k+i)Rm—k+i—1,n—k—1)

i
i=0
+R(m—k+in—Fk—1)]

k
m! k .
:Z(m—k:—l-i—l)!( Z,)R(m—k‘—l—z—1,n—k:—1)

+§:m+m<i>R(m—k+i,n—k—l).

As long ask + 1 < n we definel = k + 1, re-index the second sum, pull the first term from the first
sum and the last term from the second sum to get

m!

R(m.n) = " ROm — L= )
+§(m#'ﬂ), K l;1>+<§j >}R(m—l—|—i,n—l)—|—R(m,n—l).

Since( l_z,l > + < i:} > = < i > we can include the first and last terms to show

l m! l .
R(m,n)zzgm<Z,)R(m—l+z,n—l),

1=

which is equivalent to Equation 5. This completes the ingacrgument.

We now letk = n to show that

3

m!

. n .
R(m,n)—lzom< i )R(m—n—l—Z,O)
Using the initial condition, this shows that
" m! n
Rlmm) = 2 iy ( ; )-'



To help interpret this result, notice that

n
n __ n—u n
(m+1)" = Zm < ; ) .
i=0
! _
Also notice that in generazlmi'Jr_)' is much smaller tham™~*. Finally notice that this is a worst case
m-—n 7):

calculation. In the more general case, there will be fewanth + 1 branches at many levels since some
potential branches would result in more neighbors beintuebed from the vertex cover. This is guaranteed
by Lemma 1. Thus, in all cases, the performance will be muttebthan(m + 1) ™.

5 Remarks

Association graphs are used to reduce MCS to the maximumecfigoblem. The main contribution of this
paper has been a careful analysis of a clique-branchingitdgodesigned to exploit the structure implicit
in the complement of the association graph. It is not clearrently, whether direct maximum clique
algorithms that operate on the association graph itseltioasignificantly better. We do know, however, that
any such algorithm should not do worse than the time boundesgalin Equation 1, at least as long as it
performs a standard form of vertex branching. To illusiratesider recursive backtracking algorithms such
as that of [20]. The following branching method is employetleach node of the search tree, a highest-
degree vertex is selected and two possible choices are explored: eitigein the clique or it is not. When

v is added to the clique, all vertices not adjacent to it amaiekted. Thus, the problem size may be reduced
considerably in this case. Wheris not added to the clique,alone can of course be deleted.

In the association graph, a vertéx, v) € V whereu € Vi,v € V5 is a member of an independent set
containing all vertices whose first component:idt is also a member of another independent set consisting
of all vertices whose second component.isTherefore, when using a maximum-clique algorithnzifv)
is added to a (potential maximum) clique, then all such westiare deleted. So the following recursive
equation holds for the run timfB(nm):

T(nm)=T((n—1)(m—1))+T(nm—1).

And by Lemma 1, we know the equation can be made better simce thust be other neighbors of the
vertex(u, v). The second term of the above equation can be expended @sgoll

Tnm—1)<T((m—-1)(n—-1))+T(nm—2).
Combining the above two equations, we get
T(nm) <2T((n—1)(m —1)) + T(nm — 2),
which leads to
T(nm) <mT((n—1)(m—1)) +T(nm—m).

This proves that maximum clique algorithms could achieviéopeance similar to that of our clique branch
method. If we were to analyze (blindly) the run time of maximulique methods, without accounting
for the number of vertices that are eliminated at each biagcstep, the best known algorithm would be
assumed to take a running time@t2%) [20].

We often solve maximum clique by reducing it to the minimumtee cover problem, simply because a
clique in a graph is the complement of a vertex cover in gmpbmplement. Recent efficient vertex cover
algorithms based on the theory of fixed-parameter trait@Filll] have proved very useful, especially when
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the size of the clique is large [2]. Such algorithms targetghrameterized version of a problem. A natural
parameter that we could associate with the input of MCS issthe of the common subgraph. In other
words, the parameterized MCS problem can be posed as follows

Given: A pair of graphs(s; andG», and a positive integek.
Question: Do andG» have a common (induced) subgraph whose order is atA@ast

Let G be the association graph 6f; andG,. The search for a common subgraph of giz@r more)
is equivalent to the search forkaclique in G. Thus, as noted earlier, we look for a vertex cover of size
nm — k in the complement of7. Sincek is not larger tham, the size of the sought cover is bounded
below bynm — /nm, which is huge when compared ton. So the use of fixed-parameter vertex cover
algorithms may seem not feasible fefMCS. This is also supported by the fact that MCS is W[1]-hard
[11]. Nevertheless, our algorithm is a straightforwardniotang approach that achieves the best current
running time for MCS. The advantage of using parameterizztex cover algorithms (rather than direct
cligue algorithms) is mainly due to two observations. Fivsttex cover branching uses the same universal
strategy: if a vertex is not in the cover, then all its neigisbamust be in the cover. So the two algorithms
explore essentially the same search space. Second, wheledhee of each vertex in the complement
graph drops below a certain constanfdue to the continual removal of vertices during branchirigg
resulting graph must have a vertex cover whose size is smhﬂe% of the resulting graph size. (This
being true since a graph of maximum degreleave an independent set of size at leBst of the graph
size). Thus, parameterized vertex cover techniques, supheprocessing and kernelization [1, 3], may be
applied together with branching to reduce the size of thechespace and produce better run times. Finally,
for completeness it probably worth pointing out that, if daelealing with labeled graphs, then MCS is
potentially an easier problem. Simpler maximum clique athms are often used on labeled and other
restricted types of association graphs [7, 12] to achietebperformance.
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