
A New Approach and Faster Exact Methods for the Maximum
Common Subgraph Problem∗

W. Henry Suters†§, Faisal N. Abu-Khzam‡§ , Yun Zhang¶,
Christopher T. Symons‖, Nagiza F. Samatova‖∗∗ and Michael A. Langston¶∗∗

Abstract

The Maximum Common Subgraph (MCS) problem appears in many guises and in a wide variety of
applications. The usual goal is to take as inputs two graphs,of orderm andn, respectively, and find
the largest induced subgraph contained in both of them. MCS is frequently solved by reduction to the
problem of finding a maximum clique in the ordermn association graph, which is a particular form
of product graph built from the inputs. In this paper a new algorithm, termed “clique branching,” is
proposed that exploits a special structure inherent in the association graph. This structure contains a
large number of naturally-ordered cliques that are presentin the association graph’s complement. A
detailed analysis shows that the proposed algorithm requiresO((m + 1)n) time, which is a superior
worst-case bound to those known for previously-analyzed algorithms in the setting of the MCS problem.

1 Introduction

A popular metric for the similarity of two graphs is the size of their Maximum Common Subgraph (MCS),
which is most frequently defined as the largest graph isomorphic to some induced subgraph in each of them.
Deciding MCS isNP-complete. It has been studied in bioinformatics [21], chemistry [16, 19], pattern
recognition [7, 15], and an assortment of other applicationareas. A vast literature exists for approximating
the size of an MCS. Notably, it isNP-hard to guarantee solutions even within|V | ε, whereε > 0 and|V |
is the size of the MCS [13]. Here we focus on exact MCS algorithms. These can be roughly classified into
three main categories: clique-based methods, non-clique-based backtracking strategies, and various other
techniques.

Clique-based methods are the most widely used in the literature. These depend on finding a maximum
clique in the association graph (see, for example, [5]). We will define this and other terms in the sequel. Let
us just say for now that the association graph is a particularform of product graph built from the two original
input graphs. Many clique-based algorithms employ maximalclique enumeration procedures [6, 19], and
so are not particularly well suited for maximum clique finding. The general purpose maximum clique

∗Research sponsored by the Laboratory Directed Research andDevelopment Program of Oak Ridge National Laboratory, man-
aged by UT-Battelle, LLC, for the U. S. Department of Energy under Contract DE–AC05–00OR22725, by the U.S. National
Science Foundation under grant CCR–0311500, by the Office ofNaval Research under grant N00014–01–1–0608, and by the U.S.
Department of Energy’s Genomes to Life program under the ORNL-PNNL project “Exploratory Data Intensive Computing for
Complex Biological Systems.”

†Department of Mathematics and Computer Science, Carson-Newman College, CN Box 71958, Jefferson City, TN 37760, USA
‡Division of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
§These two authors contributed equally to this work.
¶Department of Computer Science, University of Tennessee, Knoxville, TN 37996–3450, USA
‖Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831–6367,

USA
∗∗Communicating authors: samatovan@ornl.gov, langston@cs.utk.edu

algorithm of [20] has a time complexity ofO(1.19 mn), wherem andn denote the respective sizes of the
input graphs. An example of a non-clique-based backtracking strategy is that of [17], which was developed
over two decades ago but rarely used today. In fact it is knownto perform well only on graphs of small size
[10]. An improved backtracking algorithm has recently beenproposed with time complexityO(m n+1n)
[14]. Other techniques include algorithms designed for special classes of inputs. One example of this is
the dynamic programming approach of [4], which has been proposed for “almost trees of bounded degree.”
Other methods rely on a set of known graphs against which matching is to be performed [8, 18]. For more
information we refer the interested reader to [9].

In this paper, we present and analyze a new algorithm for the exact MCS problem. To solve clique on
the association graph, we actually exploit a special cliquestructure that we have identified as inherent in the
complement of the association graph. There we employ an efficient tree search technique designed to branch
on this structure. The resultant “clique branch” algorithmis used to solve vertex cover in the complement
and hence clique in the association graph itself. It requiresO((m + 1) n) time, which (with inputs of course
set to ensure thatm is at least as large asn) is a better asymptotic worst-case bound than theO(m n+1n)
limit of [14] and that known for other previously-analyzed algorithms in the setting of the MCS problem.

2 The Association Graph and its Properties

2.1 Definitions

In this section we provide some formal definitions related tothe MCS problem. All graphs are assumed to
be simple, finite, and undirected. Two graphsG1 andG2 are said to beisomorphicif there is a one-to-one
correspondence between their vertex sets that preserves the adjacency of vertices. A graphM is amaximum
common subgraph(henceforthMCS) of graphsG1 andG2 if M consists of the largest number of vertices
and is isomorphic to induced subgraphs ofG1 andG2. Such definition of theMCS is often referred to
as themaximum common induced subgraph(MCIS). If M consists of the largest number of edges then
theMCS is referred as themaximum common edge subgraph(MCES) [17]. Throughput this paper, the
MCS graph denotes theMCIS graph. Note that theMCS is neither unique nor connected.

Given two undirected graphsG1 = (V1, E1) andG2 = (V2, E2), theassociation graphG = (V,E) is
an undirected graph defined on the vertex setV = V1 × V2 with two vertices(u1, v1) and(u2, v2) being
adjacent whenever:

u1 6= u2 andv1 6= v2, and

either(u1, u2) ∈ E1 and(v1, v2) ∈ E2 or (u1, u2) /∈ E1 and(v1, v2) /∈ E2.

From this point on, we denote byG1 andG2 the two input graphs of MCS. Moreover, we shall assume
thatn = |G1| ≤ |G2| = m.

2.2 Preliminaries

From the definition of the association graph, we know that twovertices(u1, v1) and(u2, v2) are adjacent
in G only if u1 6= u2 andv1 6= v2. In other words, any two vertices(ui, vj), (ui, vk) are not adjacent
for ∀ui ∈ V1 andvj , vk ∈ V2, and any two vertices(ui, vj), (uk, vj) are not adjacent for∀vj ∈ V2 and
ui, uk ∈ V1. Therefore, we have the following theorem.

Theorem 1 If two graphsG1 = (V1, E1) andG2 = (V2, E2) are used to create an association graph then,
for anyu ∈ V1 and anyv ∈ V2, each of the sets{u} × V2 andV1 × {v} forms a clique in the complement
of the association graph.

2

V1 × V2 v1 v2 · · · vm

u1 (u1, v1) (u1, v2) · · · (u1, vm)
u2 (u2, v1) (u2, v2) · · · (u2, vm)
...

...
...

. . .
...

un (un, v1) (un, v2) · · · (un, vm)

Proof. Let |V1| = n and |V2| = m. If we view V = V1 × V2 as a table as follows. Then, because
of the first two conditions of the definition of the association graph, for∀ui ∈ V1, the set of vertices
(ui, v1), . . . , (ui, vm) in G forms an independent set, and for∀vj ∈ V2, the set of vertices(u1, vj), . . . , (un, vj)
in G also forms an independent set. Thus, in the complement graph, each row and column of the table will
form a clique.

Let k be the size of a common subgraph ofG1 andG2. We can restrict our search for a minimum vertex
cover to covers with sizes that are at leastnm − n and at mostnm − k. Because the maximum value ofk
is unknown upfront, it could be the size of any common subgraph that is trivially found (e.g. the graph with
the minimum of the sizes of two independent sets ofG1 andG2 or induced paths of equal size).

Theorem 2 Letk be the size of any common subgraph ofG1 andG2, and letG be their association graph.
Then any vertex cover of the complement ofG must contain at leastnm− min{n,m} and at mostnm − k
vertices.

Proof. Let H1 andH2 be subgraphs ofG1 andG2 that are isomorphic. If|H1| = |H2| = k, then the
ordered pairs of the set{(u, v) : u ∈ H1 andv ∈ H2} form a clique of sizek in G, the association graph of
G1 andG2. So the complement ofG has an independent set of sizek. This proves the claim concerning the
mn − k upper bound.

For the lower bound, we know the size of the MCS is bounded above bymin{n,m}, which implies the
size of the maximum clique of the association graphG does not exceedmin{n,m}. This implies any vertex
cover of the complement ofG has at least(nm − min{n,m}) vertices.

3 The Structural Decomposition Algorithm

In order to motivate our approach it is important to observe that, for a clique of sizek, any vertex cover must
have at leastk − 1 vertices. Moreover, if any one of the vertices is excluded from the vertex cover, all of its
neighbors must be included. In the complement of the association graph, each vertex(u, v) is involved in
at least two cliques that only overlap at this vertex. The twocliques correspond to the row and column that
intersect at(u, v) in aforementioned table.

We shall refer to these two cliques by the row-clique and the column-clique of(u, v). If (u, v) is to be
excluded from the cover, then all vertices in both of these cliques must be included in the cover. Moreover,
any other vertices that are adjacent to this vertex will alsobe included in the cover. This means the size of
the problem is greatly reduced when we decide to exclude a vertex from the vertex cover.

We show that our vertex cover branching algorithm can do at least as well as any other known algorithm
for MCS. For this purpose, we present vertex cover branchingin a way that makes use of the presence of
row-cliques and column-cliques in the complement of the association graph.

The idea is that when we attempt to find a vertex cover, we can select at most one vertex from each
clique to be excluded from the cover. Thus, in a row-clique ofsizem, there arem + 1 possible choices for
any vertex cover;m choices each exclude one of the vertices while the remainingchoice includes all the

3

vertices. This forms the basis for our clique branching algorithm below.

algorithm CliqueBranch(G)
Input: the complement of the association graphG created from two graphsG1 andG2 of sizesn andm
respectively
Output: a minimum vertex cover of the association graph’s complement

begin
MinimumCover= G
CurrentCover= G
NumberExcluded= 0
ExcludeColumns= ∅
i = 1
Branch(i)
outputMinimumCover

end

function Branch(i)
begin

if i > n then
if |CurrentCover| < |MinimumCover| then

MinimumCover= CurrentCover
else

NumberExcluded= NumberExcluded+ 1
loop over allvj ∈ V2 wherej /∈ ExcludedColumns

if (ui, vj) has a neighbor(uk, vl) /∈ CurrentCoverthen
do nothing

else
addj to ExcludedColumns
remove(ui, vj) from CurrentCover
Branch(i + 1)
removej from ExcludedColumns
add(ui, vj) to CurrentCover

NumberExcluded= NumberExcluded- 1
Branch(i + 1)

end

Theorem 3 The clique branching algorithm,CliqueBranch(G), produces a minimum vertex cover of the
complement of the association graphG.

Proof. We walk through the rows of the aforementioned table, branching at each row. Since a row rep-
resents a clique, we could select either to exclude exactly one of its vertices from the vertex cover or to
include all of them. We cannot, however, choose a vertex thatbelongs to a column from which a vertex was
selected at a previous branching since each column also represents a clique. The clique branching algorithm
examines all possible vertex covers that satisfy these conditions and selects the one with minimum size, thus
it produces a minimum vertex cover.

In order to get a rough estimate of the complexity of the algorithm, consider the vertex table established
in Theorem 1. Branching on the cliques represented by each row, we have two possibilities. If no vertex is
excluded from the cover then we have identifiedm vertices as belonging to the vertex cover. If we select
to exclude a particular vertex(u, v), then this vertex will have at leastm + n − 2 neighbors that must be

4

included in the cover; there arem − 1 other vertices in the same row-clique andn − 1 other vertices in the
same column-clique of(u, v).

We can branch recursively until we arrive at the final row of the matrix. Since there will ben levels of
branching, each with at mostm+1 possible paths, this produces an algorithm that is at mostO((m+1) n).
This bound is not tight, since once we select a vertex to exclude, its neighbors cannot be selected for a
similar role in a later branching. Thus, for a later branchings, there will be fewer thanm + 1 choices.

Moreover, the number of neighbors of a vertex is more than thenumber of vertices in its corresponding
row and column cliques. This is guaranteed by the following lemma. A formal proof of the computational
complexity will be shown in Section 4.

Lemma 1 If the neighborhood of a vertex(u, v) is confined to its row-clique and column-clique, then either
u andv are both isolated or both connected to all the vertices in each ofG1 andG2, respectively.

Proof. Assume the neighborhood condition as stated (andu′ 6= u andv′ 6= v). Then(u, v) is connected
to all vertices(u′, v′) in the association graph ofG1 andG2. Assumeu is neither isolated nor connected
to all vertices. Then we can findu′ andu” such that(u, u′) is an edge ofG1 while (u, u”) is not an edge.
If v has an edge(v, v′) (or a non-edge(v, v”)) then(u, v) is not joined to(u”, v′) (or (u, v) is not joined
to (u′, v”)). This is a contradiction. So our assumption aboutu (neither isolated nor connected to all ver-
tices) is wrong. The same argument proves that ifv is not isolated, then it’s connected to all vertices ofG2.

So if such a pair of vertices(u, v) is found inG1 × G2, they are associated together as part of any
common subgraph. Moreover, we could detect their presence in the original graphs without searching the
association graph. So, as a pre-processing rule applied prior to any branching step, our algorithm detects the
presence of such pairs(u, v) and reduces the problem size by not including them in the vertex cover.

Figure 1 shows an example of the clique branching algorithm applied to two graphsG1 andG2, where
|V1| = 4 and|V2| = 3. The complement of the association graph has 12 vertices andcan be listed as a4× 3
array. Starting from the first row, there are3 + 1 = 4 choices (branches). Three of these select a single
vertex to be excluded from the cover. The fourth branch does not exclude any vertices. For the first three
branches (selecting one), the remaining graphs are much smaller than the original complement graph. This
is especially true for the latter two branches. Taking the second branch as an example, excluding vertexaf
from the cover forces verticesbf, cf, df , in its column,ae, ag, in its row, andbg, cg, dg, in its neighborhood,
into the cover. This leaves a graph containing only the threeverticesbe, ce, de. The next step along this
branch will have only two choices: excluding or including vertex be. The fourth branch, which excludes
no vertices from the first row, still reduces the graph by including all vertices in the first row in the cover,
resulting in a3 × 3 array remaining. The next step of this worst-case branch would still have3 + 1 = 4
choices.

4 Complexity Analysis

The following theorem is used to determine the complexity ofthe clique branching algorithm.

Theorem 4 The complexity of performing the clique branching algorithm on the association graph con-
structed from two graphs of sizesn andm is

n
∑

i=0

m!

(m − n + i)!

(

n
i

)

. (1)

5

a b

c d

e f

g

G1 G2

be

ce

de

be

ce

de

ae∉ VC

af ∉ VC

ag ∉ VC

{ ae, af, ag}
⊂ VCThe complement of the association

graph built from G1 and G2

∅∅∅∅be∉ VC

bf ∉ VC

bg ∉ VC

{ be, bf, bg}
⊂ VC

ae af ag

be bf bg

ce cf cg

de df dg

bf bg

cf cg

df dg

bf bg

cf cg

df dg

be

ce

de

cf cg

df dg

ce

de

cf

df

cg

dg

VC = { ae, af, ag, bf,
bg, ce, de, cf, cg, df,
dg}, a valid but not
optimal solution

Figure 1: An example of the clique branching algorithm.

Proof. Let R(m,n) be the computational complexity of processing ann × m array of vertices. The first
branching will eliminate one row of the array, resulting in(n − 1) rows remaining. Also, there are(m + 1)
possible paths at this branching. There arem paths, each selects a vertex to exclude from the vertex cover,
which also eliminates a column from future consideration, resulting in(m−1) remaining columns. The final
path does not exclude any vertices from the cover, resultingin m remaining columns. These observations
result in the following recurrence relation.

R(m,n) = mR(m − 1, n − 1) + R(m,n − 1) (2)

with initial conditionR(j, 0) = 1, for 0 ≤ j ≤ m.
We next need to demonstrate that the formula

R(m,n) =
k

∑

i=0

m!

(m − k + i)!

(

k
i

)

R(m − k + i, n − k), for 0 ≤ k ≤ n (3)

satisfies the recurrence relation.
We do inductively. First, ifk = 0 observe that

k
∑

i=0

m!

(m − k + i)!

(

k
i

)

R(m − k + i, n − k) = R(m,n).

Next, we need to show that

R(m,n) =

k
∑

i=0

m!

(m − k + i)!

(

k
i

)

R(m − k + i, n − k) (4)

6

implies

R(m,n) =
k+1
∑

i=0

m!

(m − (k + 1) + i)!

(

k + 1
i

)

R(m − (k + 1) + i, n − (k + 1)). (5)

Notice that the recurrence relation (Equation 2) implies that

R(m − k + i, n − k) = (m − k + i)R(m − k + i − 1, n − k − 1) + R(m − k + i, n − k − 1). (6)

Combining Equation 6 with the induction hypothesis (Equation 4), we see that

R(m,n) =
k

∑

i=0

m!

(m − k + i)!

(

k
i

)

[(m − k + i)R(m − k + i − 1, n − k − 1)

+ R(m − k + i, n − k − 1)]

=

k
∑

i=0

m!

(m − k + i − 1)!

(

k
i

)

R(m − k + i − 1, n − k − 1)

+

k
∑

i=0

m!

(m − k + i)!

(

k
i

)

R(m − k + i, n − k − 1).

As long ask + 1 ≤ n we definel = k + 1, re-index the second sum, pull the first term from the first
sum and the last term from the second sum to get

R(m,n) =
m!

(m − l)!
R(m − l, n − l)

+
k−1
∑

i=1

m!

(m − l + i)!

[(

l − 1
i

)

+

(

l − 1
i − 1

)]

R(m − l + i, n − l) + R(m,n − l).

Since

(

l − 1
i

)

+

(

l − 1
i − 1

)

=

(

l
i

)

we can include the first and last terms to show

R(m,n) =

l
∑

i=0

m!

(m − l + i)!

(

l
i

)

R(m − l + i, n − l),

which is equivalent to Equation 5. This completes the inductive argument.

We now letk = n to show that

R(m,n) =

n
∑

i=0

m!

(m − n + i)!

(

n
i

)

R(m − n + i, 0).

Using the initial condition, this shows that

R(m,n) =

n
∑

i=0

m!

(m − n + i)!

(

n
i

)

.

7

To help interpret this result, notice that

(m + 1)n =

n
∑

i=0

mn−i

(

n
i

)

.

Also notice that in general
m!

(m − n + i)!
is much smaller thanmn−i. Finally notice that this is a worst case

calculation. In the more general case, there will be fewer thanm + 1 branches at many levels since some
potential branches would result in more neighbors being excluded from the vertex cover. This is guaranteed
by Lemma 1. Thus, in all cases, the performance will be much better than(m + 1) n.

5 Remarks

Association graphs are used to reduce MCS to the maximum clique problem. The main contribution of this
paper has been a careful analysis of a clique-branching algorithm designed to exploit the structure implicit
in the complement of the association graph. It is not clear, currently, whether direct maximum clique
algorithms that operate on the association graph itself cando significantly better. We do know, however, that
any such algorithm should not do worse than the time bound we derive in Equation 1, at least as long as it
performs a standard form of vertex branching. To illustrate, consider recursive backtracking algorithms such
as that of [20]. The following branching method is employed:at each node of the search tree, a highest-
degree vertexv is selected and two possible choices are explored: eitherv is in the clique or it is not. When
v is added to the clique, all vertices not adjacent to it are eliminated. Thus, the problem size may be reduced
considerably in this case. Whenv is not added to the clique,v alone can of course be deleted.

In the association graph, a vertex(u, v) ∈ V whereu ∈ V1, v ∈ V2 is a member of an independent set
containing all vertices whose first component isu. It is also a member of another independent set consisting
of all vertices whose second component isv. Therefore, when using a maximum-clique algorithm, if(u, v)
is added to a (potential maximum) clique, then all such vertices are deleted. So the following recursive
equation holds for the run timeT (nm):

T (nm) = T ((n − 1)(m − 1)) + T (nm − 1).

And by Lemma 1, we know the equation can be made better since there must be other neighbors of the
vertex(u, v). The second term of the above equation can be expended as follows:

T (nm − 1) ≤ T ((m − 1)(n − 1)) + T (nm − 2).

Combining the above two equations, we get

T (nm) ≤ 2T ((n − 1)(m − 1)) + T (nm − 2),

which leads to
T (nm) ≤ mT ((n − 1)(m − 1)) + T (nm − m).

This proves that maximum clique algorithms could achieve performance similar to that of our clique branch
method. If we were to analyze (blindly) the run time of maximum-clique methods, without accounting
for the number of vertices that are eliminated at each branching step, the best known algorithm would be
assumed to take a running time ofO(2

nm

4) [20].
We often solve maximum clique by reducing it to the minimum vertex cover problem, simply because a

clique in a graph is the complement of a vertex cover in graph’s complement. Recent efficient vertex cover
algorithms based on the theory of fixed-parameter tractability [11] have proved very useful, especially when

8

the size of the clique is large [2]. Such algorithms target the parameterized version of a problem. A natural
parameter that we could associate with the input of MCS is thesize of the common subgraph. In other
words, the parameterized MCS problem can be posed as follows:

Given: A pair of graphs,G1 andG2, and a positive integerk.

Question: DoG1 andG2 have a common (induced) subgraph whose order is at leastk?

Let G be the association graph ofG1 andG2. The search for a common subgraph of sizek (or more)
is equivalent to the search for ak-clique in G. Thus, as noted earlier, we look for a vertex cover of size
nm − k in the complement ofG. Sincek is not larger thann, the size of the sought cover is bounded
below bynm − √

nm, which is huge when compared tonm. So the use of fixed-parameter vertex cover
algorithms may seem not feasible fork-MCS. This is also supported by the fact that MCS is W[1]-hard
[11]. Nevertheless, our algorithm is a straightforward branching approach that achieves the best current
running time for MCS. The advantage of using parameterized vertex cover algorithms (rather than direct
clique algorithms) is mainly due to two observations. First, vertex cover branching uses the same universal
strategy: if a vertex is not in the cover, then all its neighbors must be in the cover. So the two algorithms
explore essentially the same search space. Second, when thedegree of each vertex in the complement
graph drops below a certain constantc (due to the continual removal of vertices during branching), the
resulting graph must have a vertex cover whose size is smaller than c−1

c
of the resulting graph size. (This

being true since a graph of maximum degreec have an independent set of size at least1/c of the graph
size). Thus, parameterized vertex cover techniques, such as preprocessing and kernelization [1, 3], may be
applied together with branching to reduce the size of the search space and produce better run times. Finally,
for completeness it probably worth pointing out that, if oneis dealing with labeled graphs, then MCS is
potentially an easier problem. Simpler maximum clique algorithms are often used on labeled and other
restricted types of association graphs [7, 12] to achieve better performance.

References

[1] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W. H. Suters, and C. T. Symons.
Kernelization algorithms for the vertex cover problem: Theory and experiments. InProceedings,
Workshop on Algorithm Engineering and Experiments (ALENEX), 2004.

[2] F. N. Abu-Khzam, M. A. Langston, and P. Shanbhag. Scalable parallel algorithms for difficult combi-
natorial problems: A case study in optimization. InProceedings, International Conference on Parallel
and Distributed Computing and Systems (PDCS), pages 563–568, 2003.

[3] F. N. Abu-Khzam and M. A. Langston W. H. Suters. Effectivevertex cover kernelization: A tale
of two algorithms. InProceedings, ACS/IEEE International Conference on Computer Systems and
Applications (AICCSA), 2005.

[4] T. Akutsu. A polynomial time algorithm for finding a largest common subgraph of almost trees of
bounded degree.IEICE Trans. Fundamentals, E76-A:1488–1493, 1993.

[5] I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum clique problem. In D. Z. Du
and P. M. Pardalos, editors,Handbook of Combinatorial Optimization, volume 4. Boston MA: Kluwer
Academic Publishers, 1999.

[6] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph.Communications of the ACM,
16:575–577, 1973.

9

[7] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento. A comparison of algorithms for
maximum common subgraph on randomly connected graphs. InProc. IAPR Workshop on Structural
and Syntactic Pattern Recognition, 2002.

[8] K. Shearer H. Bunke and S. Venkatesh. Video indexing and similarity retrieval by largest common
subgraph detection using decision trees.Pattern Recognition, 34:1075–1091, 2001.

[9] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pattern recognition.
International Journal of Pattern Recognition and Artificial Intelligence, 18(3):265–298, 2004.

[10] D. Conte, C. Guidobaldi, and C. Sansone. A comparison ofthree maximum common subgraph algo-
rithms on a large database of labeled graphs. In E. Hancock and M. Vento, editors,IAPR Workshop
GbRPR 2003, LNCS 2726, pages 130–141, 2003.

[11] R. G. Downey and M. R. Fellows.Parameterized Complexity. Springer-Verlag, 1999.

[12] P.J. Durand, R. Pasari, J.W. Baker, and Chun che Tsai. Anefficient algorithm for similarity analysis of
molecules.Internet Journal of Chemistry, 2, 1999.

[13] V. Kann. On the approximability of the maximum common subgraph problem. InSTACS ’92: Pro-
ceedings of the 9th Annual Symposium on Theoretical Aspectsof Computer Science, pages 377–388.
Springer-Verlag, 1992.

[14] E. B. Krissinel and K. Henrick. Common subgraph isomorphism detection by backtracking search.
Software Practice and Experience, 34:591–607, 2004.

[15] A. Massaro and M. Pelillo. Matching graphs by pivoting.Pattern Recognition Letters, 24(8):1099–
1106, 2003.

[16] J. McGregor and P. Willett. Use of a maximal common subgraph algorithm in the automatic identifica-
tion of the ostensible bond changes occurring in chemical reactions.Journal of Chemical Information
and Computer Science, 21:137–140, 1981.

[17] J. J. McGregor. Backtrack search algorithms and the maximal common subgraph problem.Software
Practice and Experience, 12:23–34, 1982.

[18] B. T. Messmer.Efficient Graph Matching Algorithms for Preprocessed ModelGraphs. Phd, University
of Bern, 1995.

[19] J. W. Raymond and P. Willett. Maximum common subgraph isomorphism algorithms for the matching
of chemical structures.Journal of Computer-Aided Molecular Design, 16:521–533, 2002.

[20] J. M. Robson. Finding a maximum independent set in timeO(2n/4). Technical Report 1251-01,
Universite Bordeaux I, LaBRI, 2001.

[21] A. Yamaguchi, K. F. Aoki, and H. Mamitsuka. Finding the maximum common subgraph of a partial
k-tree and a graph with a polynomially bounded number of spanning trees. Information Processing
Letters, 92(2):57–63, 2004.

10

