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Abstract 
We present a parallel implementation of the block-tridiagonal divide-and-conquer algorithm that 

computes eigen-solutions of symmetric block-tridiagonal matrices to reduced accuracy. In our 
implementation, we use mixed data/task parallelism to achieve data distribution and workload balance. 
Numerical tests show that our implementation is efficient, scalable and computes eigenpairs to prescribed 
accuracy. We compare the performance of our parallel eigensolver with that of the ScaLAPACK divide-
and-conquer eigensolver on block-tridiagonal matrices.  

1. Introduction 
Real symmetric eigenvalue problems frequently arise from scientific and engineering 
computations. The structures of the matrices and the requirements for the eigen-solutions vary by 
application. For instance, many matrices generated from electronic structure calculations in 
quantum mechanics have strong locality properties. Some of them are block-tridiagonal; some are 
dense but with larger elements close to the diagonals and a decrease in the magnitudes of 
elements as they move away from the diagonal. In many situations, the second type of matrices 
can be approximated by block-tridiagonal matrices with very low computational cost [2].  
 One of the most popular methods in electronic structure calculations is the Hartree-Fock 
method [3, 22]. The Hartree-Fock method relies on solving a non-linear generalized symmetric 
eigenvalue problem. Typically, the non-linear eigenvalue problem is solved iteratively by the 
self-consistent field (SCF) method. Lower accuracy is usually sufficient in earlier iterations of the 
SCF with higher accuracy required for the last several iterations as the SCF nears convergence 
[22]. The SCF method is also widely used in other areas of electronic structure computation, such 
as density functional theory [16, 18] and configuration interaction [20, 22].  
 Traditional symmetric dense eigensolvers compute eigen-solutions to full accuracy, which in 
many situations may exceed users’ requirements. These eigensolvers decompose a real symmetric 
matrix in three steps [13, 17]: 1) Reduce the original matrix into a symmetric tridiagonal form 
using orthogonal transformations; 2) Compute eigenpairs of the tridiagonal matrix; 3) Back 
transform eigenvectors of the tridiagonal matrix to the original matrix. Due to the computational 
complexity and to data access patterns for most large dense matrices, step 1 is considerably more 
time consuming than the other two steps combined [24]. 

The block-tridiagonal divide-and-conquer algorithm developed by Gansterer and Ward et al. 
[10, 11] provides an eigensolver that addresses the above issues. Their algorithm computes all the 
eigenvalues and eigenvectors of a block-tridiagonal matrix to reduced accuracy with a similar  
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reduction in execution time for most applications. In addition, their algorithm does not require the 
tridiagonalization step, which greatly reduces the problems associated with data access and 
locality.  

      One of the challenges in the state-of-art simulation of atoms and molecules in the framework 
of the SCF method is that the matrix sizes are usually very large and exceed the limitation of 
single processor architecture. Thus, parallel computation becomes necessary. The block-
tridiagonal divide-and-conquer algorithm is considered inherently parallel because the initial 
problem can be divided into smaller sub-problems and solved independently. We are thus 
motivated to implement an efficient, scalable parallel block-tridiagonal divide-and-conquer 
eigensolver with the ability to compute eigen-solutions to a user-specified accuracy. In particular, 
the parallel eigensolver becomes more efficient as accuracy requirement becomes lower.  

In the following we briefly describe in Section 2 the sequential block-tridiagonal divide-and-
conquer algorithm. In Section 3, we first list major issues in its parallel implementation and then 
present the details of our algorithm. Numerical tests are presented in Section 4 with conclusions 
given in Section 5. 

2. Sequential block-tridiagonal divide-and-conquer (BD&C) algorithm  
Given a symmetric block-tridiagonal matrix  
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and tolerance τ  ( 0.1machε τ≤ < ), where  q  is the number of diagonal blocks, iB  for 1 i q≤ ≤  are 
the diagonal blocks and iC  for 1 1i q≤ ≤ −  are the off-diagonal blocks, the BD&C algorithm 
computes approximate eigenpairs of M  to the prescribed accuracy tolerance τ . That is, we 
compute V̂  and Λ̂  such that 

               ˆ ˆ ˆ TM V V≈ Λ  
where V̂ contains the approximate eigenvectors, the diagonal matrix Λ̂  contains the approximate 
eigenvalues, V̂  and Λ̂  satisfy  

( )22
ˆ ˆ ˆ TM V V O Mτ− Λ = , 

and V  is numerically orthogonal, i.e.,  

                                            ( ) ( )
21,2, ,

ˆ ˆmax T
i mach

i n
VV I e O nε

=
− =

"
  

for 1 i n≤ ≤  where ie  is the i-th column of the identity matrix. 
There are three major steps in the BD&C algorithm [11]: problem subdivision, sub-problem 

solution and synthesis of sub-solutions.  

2.1. Subdivision 
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The off-diagonal blocks iC  of sizes 1i ib b+ ×  are approximated by lower rank matrices using their 
singular value decompositions: 
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where iρ  is the chosen approximate rank of iC  based on the accuracy requirement, 1i ib
iU ρ+ ×∈\   

is the orthogonal matrix containing the first iρ  left singular vectors, i ib
iV ρ×∈\   contains the first 

iρ   right singular vectors, iΣ  is the diagonal matrix that contains the largest iρ  singular values 
of iC , and 1, 2, , 1i q= −" . 

The approximate ranks of the off-diagonal blocks in the subdivision step of BD&C typically 
become smaller as the accuracy requirement becomes lower, which reduces the computational 
complexity (see Section 3.5 for computational complexity). 

Using the above factorizations, the block tridiagonal matrix M can now be represented as an 
updated block diagonal matrix as follows: 
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2.2. Sub-problems solutions  

Each diagonal block iB�  is factorized: 

                                            ,T
i i i iB Z D Z=�    for  1, 2, ,i q= " ,    (2.2) 

from which we obtain 
                                           TM ZDZ=� ,      (2.3) 
where  

1 2{ , , , }qZ diag Z Z Z= "  is a block diagonal orthogonal matrix, and 1 2{ , , , }qD diag D D D= "  is a 
diagonal matrix.        

Note that traditional algorithms may be applied to compute the eigen-decomposition of the 
diagonal blocks. Typically, the number of diagonal blocks q  in a block tridiagonal matrix is 
much greater than 2 and the block sizes ib  are small compared to the matrix size n . Thus, the 

eigen-decomposition of each sub-problem iB�  in Equation 2.2, which involves only the much 
smaller diagonal block, yields better data access time pattern than traditional decomposition 
methods on the much larger full matrix. 
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2.3. Synthesis of sub-solutions 

From Equations 2.1 and 2.3 we have: 
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where T
i iY Z W=  . 

2.3.1. Merging operations 

Denoting 
1
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q
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= ∑  in the synthesis step, S is represented as a sequence of 

ρ  rank-one modifications of D. The iρ  rank-one modifications ( )Ti i
j jD y y+  for 1, 2, , ij ρ= "  

corresponding to an off-diagonal block iC  are called one merging operation, where { }i
jy  are the 

vectors that determine iY . Thus, the algorithm performs a total of 1q −  such merging operations. 
For each rank-one modification in the i-th merging operation, the modified matrix is first 

decomposed: ( ) ( )T Ti i i i i
j j j j jD y y V V+ = Λ , and the eigenvector matrix from this decomposition is 

then multiplied onto the accumulated eigenvector matrix starting with the block diagonal 
eigenvector matrix Z . The accumulation of an intermediate eigenvector matrix for each rank-one 
modification involves matrix-matrix multiplications.  

2.3.2. Deflation 

Deflation happens when there is either a zero (or sufficiently small) component in i
jy or two equal 

(or close) elements in D  [5, 8]. If the k-th component in i
jy  is zero, then the k-th diagonal kd  of 

D  is an eigenvalue of  ( )Ti i
j jD y y+ and the corresponding eigenvector is ke , the k-th column of 

the identity matrix. If there are two equal elements on the diagonal of D , a Givens rotation is 
used to zero out one of the corresponding elements in i

jy , and corresponding eigenpairs can be 
computed as the former case. When deflation occurs, no computation is required to compute and 
accumulate the corresponding eigenvector. For a rank-one modification of order m, the total 
number of deflated values δ  divided by m is called the ratio of deflation for that rank-one 
modification. 

The deflation criteria can be relaxed if the accuracy tolerance is greater than full accuracy 
[11]. Numerical experiments have shown that as accuracy decreases, the higher ratio of deflation 
and lower ranks for off-diagonal blocks lead to high efficiency of the BD&C algorithm [11]. 

2.3.3. Balanced merge versus unbalanced merge 

A merging operation is a balanced one if the sizes 1b  and 2b of the two blocks to be merged are 
approximately the same, i.e., 1 2b b≈ . If 1 2b b�  or 1 2b b� , then the merging operation is an 
unbalanced one. It has been shown that the time complexity for the most unbalanced merging 
operation is less than that for the most balanced one but with a higher rank – even an increase in 
rank of only one [11]. Therefore, an off-diagonal block with low rank is preferred for the final 
merging operation, regardless of the relative sizes of the blocks being merged.  
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3. Parallel block-tridiagonal divide-and-conquer (PBD&C) implementation 
Although the BD&C algorithm has the potential of parallelism in that it is divide-and-conquer 
and recursive in nature, due to the differences in the size of each sub-problem and the amount of 
work needed for solving each of those sub-problems, PBD&C algorithm may encounter workload 
imbalance and data storage imbalance.  

Suppose we have a block tridiagonal matrix n nM ×∈ \ with q  diagonal blocks as shown in 

Figure 1 and p  processors. The size of the i-th diagonal block iB  is ib  where 
1

q

i
i

b n
=

=∑ . The i-th 

off-diagonal block iC  has size 1i ib b+ × , and let its approximate rank be iρ . We design a mixed 
data/task parallel implementation to maintain both workload and data balance. Some major issues 
in such an implementation are: 1) assignment of processors to sub-problems and distribution of 
data; 2) overhead of data redistribution before each merging operation; 3) order of the merging 
sequence; and 4) handling of deflation. These issues are discussed in this section in the context of 
our PBD&C implementation, as well as its computational and communication complexities.  

 

 

 

 

 

 

 

 

 

 

 

 
                                Figure 1. Block-tridiagonal matrix M  with q  diagonal blocks. 

 
In analyses of computational and communication costs, γ  denotes the time for one 

floating-point operation, α  denotes the latency for one communication, β  denotes the 
time to transfer one double precision number, and we define LCM as the least common 
multiple. 

3.1. Processor allocation and data distribution 

There are different ways to distribute a matrix on a processor grid. Data parallelism distributes 
data evenly to all the processors and invokes all relevant processors to work on the same task as 
the algorithm proceeds. Task parallelism assigns each processor to a different task in the 
algorithm working simultaneously whenever possible. While these two data distribution models 
have their advantages and disadvantages [4], neither of them is completely suitable for the 
distribution of a block-tridiagonal matrix for the PBD&C algorithm. 
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Our solution is to split the p processors available into q groups. The ip  processors in each 
group are configured into a 2D processor sub-grid i i ir c= ×G  where ir  and ic  are the number of 
rows and columns in the processor sub-grid and 1 i q≤ ≤ . The number of processors ip  
in the i-th sub-grid iG  is determined by 

                                          
3

3

1

i
i q

i
i

b
p p

b
=

=

∑
      (3.1) 

since the computational complexity for solving each sub-problem is ( )3
iO b . Each processor sub-

grid is assigned to a pair of diagonal and off-diagonal blocks as shown in Figure 2. On each sub-
grid, matrix blocks are distributed in 2D block cyclic pattern as shown in Figure 3. We also use 
the ip  processors assigned to iB   for 1 1i q≤ ≤ −  to compute the approximate rank of the off-

diagonal blocks iC  using the singular value decomposition T
i i i iC U V= Σ  as shown in Figures 1 

and 2. 
 
 
 
 
 

 

 

 

 
 
 
 
 
 
 

                         Figure 2. Each diagonal block iB  is assigned processor sub-grid iG . 

     

                                             
 

                Figure 3. Data distribution of diagonal block 1B  on a 2 2×  processor sub-grid 1G .       
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3.2. Data redistribution 

Due to the matrix distribution pattern described in Section 3.1, before the merging operation of 
two sub-solutions, corresponding sub-grids that hold the sub-matrices of eigenvectors must be 
combined and re-configured into a super-grid. Consequently, matrix sub-blocks must be  
redistributed from their original sub-grids to the super-grid. Figures 4 and 5 illustrate the 
redistribution of two sub-matrices, one from a 2 2×  grid and the second from a 2 4×  grid, to a 
3 4×  grid. This type of data redistribution is executed periodically, and the communication cost 
invoked is non-trivial as shown below.  
 
 

                                    
       Figure 4. The first submatrix held by a 2 2×  grid, the second submatrix held by a 2 4×  grid.       

 

 

                                 
                                  Figure 5. Two submatrices in Figure 4 redistributed to a 3 4×  supergrid. 

 

 



 8

To assess the communication costs, assume k processors numbered from 0 to 1k −  
redistribute their data in a canonical order without pipelining, that is, processor 0 sends its data to 
processors 1, 2, , 1k −… , then processor 1 sends its data to processors 0, 2, , 1k −… , and so on 
until finally processor 1k −  sends its data to processors 0,1, , 2k −… . Then, the total 
communication cost for the redistribution of two matrix sub-blocks from two sub-grids with ip  
and 1ip +  processors to its super-grid union with p∪  processors, where 1i ip p p += +∪  with r∪  
rows and c∪  columns in its 2D processor grid, is [1] 

             
[ ]

( )
1 1

2 2
1

( , ) ( , ) ( , ) ( , )

.

redistr i i i i

i i

t LCM r r LCM c c LCM r r LCM c c

b b

α

β

+ +

+

= +

+ +

∪ ∪ ∪ ∪
                      (3.2)  

As Equation 3.2 shows, when the number of rows and columns of a super-grid and its 
corresponding sub-grids are mutually prime, there are 2p∪  communications to accomplish the data 
transfer, and the accumulative startup time for these communications is high. However, this is 
typically not the case for careful assignment of processors to sub-grids. In the best case, the 
frequency of communications can be reduced to 2 p∪  if the two sub-grids have the same number 
of processors. The PBD&C algorithm is designed for execution with an arbitrary number of 
processors. However, the communication overhead for data redistribution is close to minimal if 
each sub-problem is of similar size and assigned the same number of processors. Of course, the 
communication cost also depends on the computer and network specifications as well as the 
shapes of sub-grids and super-grid. 

3.3. Merging sequence 

The synthesis step of PBD&C may be represented as a binary tree of merging operations with the 
bottom of the tree labeled merge level 0 as illustrated in Figure 6.  The leaves are the eigen-
solutions of the modified sub-problems 1 2, , , qB B B� � �"  with iB�  distributed on sub-grid iG  with ip  

processors. Recall that the order of iB�  is given by ib . Each pair of eigen-solutions on the same 
level are merged simultaneously. If the off-diagonal block for the final merging operation has 
index f, then the matrix sub-blocks indexed from 1 to f construct a left sub-tree, while the 
matrix sub-blocks indexed from f+1 to q construct a right sub-tree. 
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                                                    Figure 6. Merging tree and level of merging. 

In the sequential implementation of BD&C, merging starts from off-diagonal blocks with the 
highest rank, leaving the off-diagonal block with the lowest rank for the final merging operation 
to reduce the computational complexity of BD&C. This merging sequence is sequential in nature. 
A parallel merging sequence in such an order may lose workload balance and lead to longer 
execution time [1]. The most time-consuming merging operation is the final one. It counts for up 
to 75% of the total computational time [1]. In order to choose an optimal final merging operation, 
we evaluate both the complexity of floating point operations and processor idle time for two 
different final merges: the off-diagonal block in the middle of the original matrix (a balanced 
merge) and the off-diagonal block with the lowest rank.  We then choose the one that leads to the 
minimum total execution time.  

To be specific, for a block-tridiagonal matrix M, we assume the off-diagonal block yielding a 
balanced final merging operation is located at position m , the rank of mC  is mρ , and mh  denotes 
the height of the balanced merging tree. Due to variation in the ranks for off-diagonal blocks and 
unknown deflation rate, a higher sub-tree may finish all its merging operations earlier than a 
lower sub-tree. Thus, we will denote by mh′  the height of the side of the merging tree, left or right, 
that takes longer to complete its merges.  We use corresponding notation with subscript l for the 
final merge based upon the off-diagonal block with the lowest rank.  An unbalanced final 
merging operation with the lowest rank has less total execution time per processor than a 
balanced final merging operation with higher rank only when [1]  
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and 1
4 32 2m i i mK j K−= − + . 

Therefore, we choose the unbalanced final merging operation with the lowest rank only when 
Equation 3.3 is satisfied. Otherwise, we choose the most balanced final merging operation.  

3.4 Deflation 

The efficiency of BD&C algorithm greatly relies on deflation. With lowered accuracy 
requirement, the frequency of deflation is very high and the amount of computation in the 
eigenvector accumulation is significantly reduced [10, 11]. 

When a deflation occurs during the decomposition of T TD yy V V+ = Λ (see Section 2.3.2), a 
permutation matrix deflatP  is used to move the deflated components of y  to the bottom of y , and 

another permutation matrix typeP  is used to re-group the columns in T T
deflatZ ZG P=

�
 according to 

their structures [14, 19, 23].  Thus, 
                    ( )T T T T T T T T

deflat type type deflat deflat type type deflatM ZG P P P P G D yy G P P P P GZ= + , 
where Z starts as a block diagonal eigenvector matrix of sub-problems and G is an orthogonal 
matrix that accumulates all Givens rotations to deflate values in TD yy+ .  

The structure of T T T

deflat typeZG P PZ =�  for the first rank-one modification of a merging operation is 
shown in Figure 7 and for subsequent rank-one modifications in Figure 8.  

In a sequential implementation, the cost of matrix permutation is trivial compared to the 
computational cost. In a parallel implementation, the cost of communication between processors 
cannot be neglected for frequent swaps of matrix columns. The strategy used in the ScaLAPACK 
subroutine PDSYEVD for symmetric tridiagonal eigenvalue problems is to permute columns of 
Z
�

 that reside local on each processor column into four groups shown in Figure 7, instead of a 
global permutation [23]. In that implementation, the deflation implemented is the minimum of the 
deflation on each processor. Good speedup is obtained even though the matrix multiplications 
performed are not of minimal size [23]. We adopt this strategy in our implementation of PBD&C 
with flexible accuracy tolerance. In our test cases of PBD&C using this strategy for matrix re-
grouping, an average of only 5% less number of deflations than in the sequential BD&C 
algorithm is observed [1], which does not significantly degrade the performance of PBD&C. 

3.5. Complexity of PBD&C 

Assume that matrix n nM ×∈\  is a real symmetric block tridiagonal matrix with q diagonal blocks, 
n is divisible by q and each block has the same size b n q= . To simplify the time complexity 
analysis, we further assume that each off-diagonal block has the same rank ρ  and the ratio of 
deflation is 0%, that is, no deflation is found. 

For the sequential BD&C algorithm, the dominant part of the computational time is the 
matrix multiplications to accumulate eigenvectors during the merging operations. The complexity 
of all other computations, such as solving secular equations and computing eigenvectors, is 

2( )O n  or less for reasonable values of q. Therefore, the leading term in the computational 
complexity of BD&C is [1, 11] 

                                                3
&

8
3BD Ct nρ γ≈  . 
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                            Figure 7. Structure of  �Z  for the first rank-one modification  
                                            in a merging operation. 
 

 

 

 

 

 

 

 

 

 

     

 
                        Figure 8. Structure of �Z  for rank-one modifications after the 
                                         first one in a merging operation. 
 
                       
 

For the parallel BD&C algorithm, the communication cost cannot be ignored. The leading 
terms in the computational and communication costs are [1] 
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Here the term 4κα  is the initialization costs for data re-distributions at the beginning of merging 
operations. In the best case where each sub-grid has the same number of processors, pκ = . In 
the worst case where the rows and columns of each pair of processor sub-grids and super-grid are 
mutually prime, 2 2pκ = .  
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4. Numerical experiments 
Our numerical experiments include performance tests and accuracy tests. We compare PBD&C 
subroutine PDSBTDC with ScaLAPACK divide-and-conquer subroutine PDSYEVD for 
computing full eigensystems of symmetric block-tridiagonal matrices. All tests were run on the 
IBM p690 system nicknamed Cheetah at the Oak Ridge National Laboratory. System 
specifications and important system parameters are listed in Table 1 [9, 25]. The Fortran compiler 
on Cheetah is IBM's xlf version 8.1. Codes were compiled in the default 32-bit compile mode and 
linked to the 32-bit PESSL library [15], which includes the vendor optimized version of BLAS. 
The compiler options used are:  
                  -O4 -qarch=auto -qcache=auto –qtune=auto -bmaxdata:0x70000000. 
 

                                Table 1. Cheetah system specifications and benchmarks. 

Number of nodes 27 
Memory per node 32 GB for most of the nodes 
Processors per node 32 
CPU frequency 1.3 GHz 

Data 32 KB  
L1 cache Instruction 64 KB 
L2 cache 1.5 MB shared between 2 processors 
L3 cache 32 MB off chip 
Interconnect switch Federation 
Message passing latency 7 µs 
Message passing bandwidth 1400 MBs 
DGEMM  
GFLOPS per processor 

 
3.174 GFLOPS 

 
 
For a symmetric block-tridiagonal matrix ˆ ˆ ˆ TM V V= Λ , where V̂  is the computed 

approximate eigenvector matrix and Λ̂  is the diagonal matrix that contains the computed 
approximate eigenvalues, we use the scaled residual error  
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to evaluate the accuracy of results. 
For all the numerical tests, the number of processors used is a power of 2. We start from the 

smallest number of processors that provides sufficient memory to solve the problems and verify 
computational results, and then increment the number of processors by powers of 2 up to 512.  

4.1. Test matrices 

We use three types of matrices to test PDSBTDC: 1) block-tridiagonal matrices with specified 
eigenvalue distributions generated by LAPACK/ScaLAPACK test matrix generator [6]; 2) block-
tridiagonal matrices with random number entries; 3) matrices generated from electronic structure 
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calculations. Matrix sizes and block sizes are listed in Table 2. In the following, we briefly 
describe characteristics of all test matrices and their eigenvalue distributions. 
 
                                                                 Table 2. Test matrices 

Matrix Name Matrix Size Block Size 
M-rand 
M-geom 
M-arith 

 
4000, 8000, 12000, 16000, 20000 

 
20 

M-ala 5027 104 for the first and last block,  
79 for all other blocks 

M-tPA 8000, 16000 500 
 
 
M-geom: Matrix eigenvalues are distributed in a geometric sequence ranging from 1 to machε  

with random signs attached to eigenvalues, ( ) 1 1i n

i machλ ε − −= ± . 
M-arith: Matrix eigenvalues distributed in an arithmetic sequence ranging from 1 to machε  

with random signs attached to eigenvalues, ( )( ) ( )[ ]1 1 1 1i mach i nλ ε= ± − − − − . 

M-rand: Matrix entries are random numbers uniformly distributed in the interval ( )0,1 . 
M-ala: Matrices are generated from simulating polypeptide molecules made from alanine 

using the MNDO method [7]. Figures 9 and 10 show the magnitudes of the 
elements in the Fock matrix from a linear polyalanine chain of length 200 and its 
eigenvalue distribution. 

                M-tPA: Matrices are generated from simulating Trans-Polyacetylene (PA). Trans-PA   
                consists of a chain of CH units. It has the general molecular formula trans-(CH)n.  

                                The SSH Hamiltonian [21] is combined with the Hartree-Fock approximation to  
                produce test matrices in this family. Figures 11 and 12 show the magnitudes of  
                matrix elements of trans-(CH)8000 and its eigenvalue distribution. Matrices used in  
                our tests are generated from trans-(CH)8000 and trans-(CH)16000. Although the  
                original matrices are dense, our blocking does not affect the eigenvalue error more  
                than the accuracy tolerance in the tests since the matrix elements become very  
                small away from the diagonals.  

4.2. Test Results 

First we set the accuracy tolerance to 610− . Figures 13 – 15 show the execution times of 
PDSBTDC scaled by that of PDSYEVD for different matrices. Figure 13 shows that PDSBTDC 
is very efficient on M-geom matrices. With the prescribed tolerance, all the block tridiagonal 
matrices in M-geom have rank of 0 for the off-diagonal block in the final merging operation, 
which decouples the problem into two smaller ones. In addition, matrices with clustered 
eigenvalues tend to have very high ratio of deflation [11]. Those two factors lead to the high 
efficiency of PDSBTDC.   
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                                    Figure 9. 10log  of absolute value of matrix elements for  
                                                     linear polyalanine chain of length 200, 5, 027n = . 

                         
                                       Figure 10. Eigenvalue distribution of matrix in Fig. 9. 

 



 15

                    

                              Figure 11. 10log  of absolute value of matrix elements for  
                                                 trans-PA molecule, 8, 000n = . 

 

                                   
                                        Figure 12. Eigenvalue distribution of matrix in Fig. 11. 
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Figure 14 shows the performance of PDSBTDC on M-arith matrices. Since the eigenvalues 
are evenly distributed, deflation rates are relatively low. In addition, the ranks of the off-diagonal 
blocks are much higher than those in the M-geom matrices. Although PDSBTDC still computes 
its eigensystem faster than PDSYEVD, those two factors contribute to a slower performance than 
observed on M-geom. The performance of PDSBTDC on matrices M-rand is better than that on 
M-arith but still slower than that on M-geom as Figure 15 shows.  

In Figure 16 we display the relative execution time of PDSBTDC on application matrices M-
ala and M-tPA. With a tolerance 610τ −= , Figure 16 shows that PDSBTDC is very efficient for 
both matrices M-ala and M-tPA.  The good performance is due to a very high ratio of deflation 
for M-ala and very low ranks for the off-diagonal blocks in M-tPA.  

                        
                      Figure 13. Execution time of PDSBTDC relative to PDSYEVD  
                                         in log scale for M-geom matrices.  

                   
                      Figure 14. Execution time of PDSBTDC relative to PDSYEVD  
                                        for M-arith matrices.  
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                      Figure 15. Execution time of PDSBTDC relative to PDSYEVD  
                                        for M-rand matrices.               

 

                   
                      Figure 16. Execution time of PDSBTDC relative to PDSYEVD  
                                        for application matrices M-ala and M-tPA.               

 

Maximum residual R  and orthogonality errors O  for all test matrices are plotted in Figure 
17. All maximum residuals are of order 610− , and all orthogonality errors are of order 1810− .  

To test performance of PDSBTDC with different accuracy requirements, we use matrix M-
arith with size 12,000 and M-ala and set the accuracy tolerance to different values: 410− , 610− , 

810 − , 1010−  and 1210− . Figures 18 and 19 reveal two pieces of important information. Firstly, as 
the tolerance decreases, execution time increases due to less deflation and higher ranks for the 
off-diagonal blocks. When the tolerance reaches 1010−  and less, PDSBTDC is no longer   
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           Figure 18. Execution times of PDSBTDC and PDSYEVD on matrix M-arith, 12, 000n = .  
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           Figure 19. Execution times of PDSBTDC and PDSYEVD on matrix M-ala, 5, 027n = .  

 
competitive in comparison to PDSYEVD. Secondly, the execution time of PBD&C decreases as 
the number of processors increases. This illustrates the scalability of the PBD&C implementation.   

  5. Conclusion 
A mixed data/task parallel implementation of the block-tridiagonal divide-and-conquer 

algorithm is presented. In this implementation, processors are divided into sub-grids and each 
sub-grid is assigned to a sub-problem. Because of the data distribution pattern, at the beginning of 
each merging operation, matrix sub-blocks must be re-distributed. The communication overhead 
of data re-distribution not only depends on interconnection of processors, but also on the topology 
of processor sub-grids. Both floating-point operation count and workload balance are evaluated 
for the final merging operation to determine a merging sequence with the shortest execution time. 
Deflations are handled as in the ScaLAPACK tridiagonal divide-and-conquer subroutine 
PDSYEVD to minimize communication cost.  

Accuracy tests show that PDSBTDC computes eigen-solutions of block-tridiagonal matrices 
to required accuracy. Complexity analyses and performance tests show that for a low accuracy 
such as 610τ −= , PDSBTDC is very efficient on block tridiagonal matrices with either relatively 
low ranks for off-diagonal blocks or high ratio of deflation during the merging operations or both.  

The mixed data/task parallel implementation of the BD&C algorithm has the potential of 
losing workload balance when the ratio of deflation for pairs of sub-problems on the same level 
of the merging tree vary drastically. Although the workload imbalance problem caused by 
unfavorable deflation distribution is not unique to our method [1, 12, 23], such cases are 
exceptionally rare in real applications. 
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