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Abstract.  Many models employed to solve problems in quantum mechanics, such as electronic 
structure calculations, result in both linear and nonlinear eigenproblems.  Solutions to the nonlinear 
problems, such as the Self-Consistent Field method, typically involve iterative schemes requiring the 
solution of a large symmetric linear eigenproblem during each iteration.  This paper evaluates the 
performance of various popular and new parallel symmetric linear eigensolvers applied to such 
eigenproblems in electronic structure calculations on the IBM distributed memory supercomputer at the 
Oak Ridge National Laboratory.  Results using established routines from ScaLAPACK and vendor 
optimized packages are presented, as well as from three recently developed parallel eigensolvers, two 
implementations of the Multiple Relatively Robust Representations algorithm and the block divide-and-
conquer algorithm.  This paper updates an earlier version of this work reported in University of Tennessee 
Technical Report UT-CS-05-560 by Ward, Bai & Pratt in 2005 [33]. 
 
 

1. Introduction.  The problem of describing the motion of N electrons in the field of 
M fixed nuclear point charges is a central problem in quantum chemistry.  It translates 
into the task of finding and describing approximate solutions of the electronic 
Schrödinger equation 
 OH EΦ = Φ . (1) 
The solutions to this equation involving the electronic Hamiltonian operator H are the 
electronic wave functions Φ, which describe the motion of electrons, and the electronic 
energy operator EO.  The wave function for a single particle is called an orbital.   
 

Using the Hartree-Fock approximation [29, 31] in the electronic Schrödinger equation 
leads to the nonlinear Hartree-Fock equation, a spatial integro-differential equation for 
the orthonormal Hartree-Fock orbitals and the corresponding orbital energies. The N 
orbitals with the lowest energies are called the occupied orbitals.  In practice, the 
solutions of this equation are approximated by introducing a finite set of n basis 
functions, expanding the unknown molecular orbitals in terms of this basis, and 
converting the Hartree-Fock equation to a set of algebraic equations.  The problem of 
computing the molecular orbitals then reduces to the problem of computing the matrix C 
of expansion coefficients, which can be formulated as the Roothaan equations 
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with the Hermitian (usually real symmetric) n x n matrices S (overlap matrix) and F 
(Fock matrix).  S is positive definite with unit entries along the diagonal, and its off- 
diagonal entries satisfy 1ijS <  for i j≠ .  E is a diagonal matrix that contains the orbital 
energies along the diagonal, and C contains the expansion coefficients columnwise. 
 

1.1  The Self-Consistent Field Method.  The Roothaan equations (2) establish a 
generalized eigenproblem with the unknowns E and C as the eigenvalues and 
eigenvectors, respectively.  Since F depends on the coefficient matrix C, this is a 
nonlinear eigenproblem.  Its solution is a very central and time-consuming task arising in 
many quantum chemistry applications. We have described the problem as it is normally 
derived in Hartree-Fock theory, however, very similar equations occur in density 
functional theory [26, 14] and in semi-empirical quantum chemistry [28, 10]. 
 

The standard approach in quantum chemistry for solving (2) is the self-consistent field 
(SCF) method, summarized in Algorithm 1.1.  After reduction of the generalized 
nonlinear eigenvalue problem (2) to a standard nonlinear eigenproblem, for example, 
using a Cholesky factorization of the overlap matrix S, this nonlinear problem is 
transformed into a linear eigenproblem using an initial guess C0 for the expansion 
coefficients. The linear eigenproblem is solved, the new expansion coefficients C1 are 
computed from the eigenvectors of the linear eigenproblem, and a new linear 
eigenproblem is formulated. This procedure is iterated until self-consistency, i.e., 
convergence, has been achieved.  As a convergence criterion, it is common to require that 

the difference between two successive values of the total energy ( ) ( )1
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or the expansion coefficients ( 1k kC C −− )  be bounded by a tolerance δ. A value of δ 
=10-6 is adequate for most purposes [31].   
 
 

Input:  guess initial values C0
1. factorize S = U UT 
2. transform (2) into a standard problem A(C) V = V E 
3. repeat k =1,2, … 

(i) compute  A(Ck-1) 
(ii) solve A(Ck-1) V = V Ek 
(iii) compute  Ck = U-T V 

 until converged 
 Output: electronic energy, orbitals 

Algorithm 1.1  Self-Consistent Field Method 
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The iterative Algorithm (1.1) does not always converge, for example, if the initial 
guess is poor. Various techniques have been suggested for ensuring or accelerating 
convergence [22].   

1.2 Synopsis.  The purpose of this paper is to report on the performance of various 
parallel standard symmetric eigensolvers as they solve linear eigenproblems in electronic 
structure calculations. Most of the test matrices in this study result from applying the SCF 
method to molecules from various types of materials, then solving the linear 
eigenproblem given by Step 3(ii) in the first iteration of Algorithm 1.1, thereby updating 
a previous similar study [33]. One family of test matrices, the Tetra-
Cyanoquinodimethane (TCNQ) family, results from transforming the Schrödinger 
equation (1) directly into a linear eigenproblem.  The computer used will be the IBM 
pSeries distributed memory supercomputer located in the National Center for 
Computational Sciences (NCCS) [1] at the Oak Ridge National Laboratory (ORNL).   

 
The algorithms are briefly described in Section 2, the test matrices in Section 3, and 

the supercomputer and testing environment in Section 4.  Section 5 presents the test 
results, and some conclusions are given in Section 6. 
 

2. Parallel Eigensolvers.  For our performance tests, we include the two parallel 
eigensolvers that are readily available to the users of the distributed memory 
supercomputers located in ORNL’s NCCS.  Both of these have been tuned for improved 
performance through the use of BLAS and PBLAS optimized by the computer vendor. In 
addition, we will include parallel implementations of two recent algorithms: the method 
of Multiple Relatively Robust Representations and the block divide-and-conquer 
algorithm.  The salient features of each algorithm will be given below with algorithmic 
and parallel implementation details provided in the cited references. 

 
2.1  PDSYEVD.  The parallel eigensolver, PDSYEVD, used in our experiments is 

found in ScaLAPACK [8] and is based upon the divide-and-conquer algorithm [9].  It 
consists of the classical three steps: reduction to symmetric tridiagonal form, eigen-
decomposition of the tridiagonal matrix, and back-transformation of the eigenvectors.  
The eigen-decomposition of the tridiagonal matrix is computed by the Tisseur-Dongarra 
parallel implementation [32] of the divide-and-conquer algorithm using the Gu-Eisenstat 
method [19] for stably computing the eigenvectors.  The reduction to tridiagonal form 
does not incorporate some of the more recent methods [7, 15] designed to increase the 
number of BLAS3 operations.  Algorithms implementing all three steps use a vendor-
optimized version of BLAS.  Memory requirements for PDSYEVD involve 4n2 (A, V, 
and 2n2 workspace) + O(n). 

 
2.2  PDSYEVX.  The parallel eigensolver, PDSYEVX, used in our experiments is 

found in PESSL [3], which is a library of parallel solvers for scientific problems supplied 
by IBM.  PESSL incorporates optimizations for the intended computational platform.  
PDSYEVX also consists of the classical three steps described above but uses a different 
algorithm for the eigen-decomposition of the symmetric tridiagonal matrix.  The 
bisection method [23] is used for computing its eigenvalues and inverse iteration (with 
re-orthogonalization for tightly clustered eigenvalues) [23] is used for computing its 
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eigenvectors.  The same algorithms as in PDSYEVD are used for the reduction and back-
transformation steps.  Memory requirements for PDSYEVX also involve 4n2 (A, V, and 
2n2 workspace) + O(n), although exact requirements are unknown in advance due to the 
unknown number of eigenvectors that must be re-orthogonalized. 

 
2.3  PDSYEVR and PMR3.  Significant progress has been made in computing the 

eigensystem of symmetric tridiagonal matrices. The method of Multiple Relatively 
Robust Representations (MRRR) [25, 11, 24, 12, 13] has greatly improved the efficiency 
of these solvers while maintaining accuracy and obtaining eigenvector orthogonality.  
The MRRR provides an O(n2) algorithm for computing the n eigenpairs to full accuracy 
and the eigenvectors to numerical orthogonality.  Since the solution to the full 
eigenvector problem generally requires the computation of n2 values, this algorithm is 
generally considered optimal. 

 
We test two parallel implementations of the MRRR algorithm: PDSYEVR and 

PMR3.  PDSYEVR, as described in [2], is a near-final version of the implementation 
expected to be in the next release of ScaLAPACK.  PMR3, as described in [6], is the first 
parallel implementation of an MRRR algorithm and was obtained from the PLAPACK 
researchers at the University of Texas. The same basic algorithms as used in PDSYEVD 
and PDSYEVX, but with different implementations, are used in these two algorithms to 
reduce the full matrix to tridiagonal form and back-transform the eigenvectors of the 
tridiagonal matrix to those of the original matrix [18].  Memory requirements for 
PDSYEVR currently involve 4n2 (A, V, and 2n2 workspace) + O(n), but future 
ScaLAPACK implementations should be able to reduce this to its theoretical requirement 
of 2n2 (A and V) + O(n) as the PMR3 implementation requires. 

 
2.4  PDSBTDC.  The recently developed block divide-and-conquer algorithm [17, 

16] has proven very attractive for computing eigensystems of symmetric, block 
tridiagonal matrices with reduced accuracy requirements, that is, accuracy less than 
machine precision, or with most of its largest elements near the diagonal, for example, 
representing a physical system with strong locality properties.  This algorithm has been 
used with good results in electronic structure calculations[16].  A parallel implementation 
of this algorithm [4] has recently been developed.  Parallel algorithms for reducing dense 
matrices to block tridiagonal form [5] have also been developed so that PDSBTDC can 
now be tested on the same matrices as the other algorithms described above; however, we 
will use reduced accuracy of  for this algorithm since that is its typical application 
and is especially relevant in electronic structure calculations. Note that all matrices are 
trivially in block tridiagonal form with two blocks, but in this paper we will only consider 
matrices with the number of diagonal blocks greatly exceeding two.  As expected, 
PDSBTDC requires similar storage to PDSYEVD, that is 4n

610−

2 (A, V, and 2n2 workspace) 
+ O(n). 

 
3. Test Matrices.  The test matrices used in this eigensolver performance study 

come from various molecule families and derivation schemes.  A brief description of 
each is given in the subsections below along with a picture of the normalized Fock matrix 
or Hamiltonian matrix used in our tests from each family.  Except for the impure 
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hydrogen and TCNQ families where the zero-nonzero structure is shown, the picture uses 
a color to indicate the magnitude of the exponent of the element in that matrix position.  
The color-coded scale bar to the right of the picture shows the value of the exponent.  
Pictures of different matrices in the same family are very similar. The major difference in 
test matrices in most of the families comes from the number of molecules in the model 
and result in matrices of different orders.  We report in this paper results from testing 
only the largest matrix in each family - except for the TCNQ family, which is our source 
for very large matrices.  Note that the orders of the matrices range from 3,014, very small 
for parallel computers, to 63,504, very large. 
 
 

3.1  Alkane Family.  The alkane family consists of acyclic hydrocarbons in which 
the molecule has the maximum number of hydrogen atoms – hence has no double bonds.  
The general formula for alkanes is CnH2n+2.  The nonlinear eigenproblem for this family 
has been derived from the semi-empirical method CNDO, and as such, does not have an 
overlap matrix.  Thus, there is no normalization (steps 1 and 2 of Algorithm 1.1) of the 
Fock matrix. 
 

The Fock matrix from the C502H1006 alkane with n = 3014 was included in our 
performance study.  Figure 3.1 provides a picture of the element magnitudes. 
 

 
 

Figure 3.1  Element Magnitudes of the Initial Fock matrix for the 
C502H1006 Molecule in the Alkane Family 

 
 

3.2  Polyalanine Family.  The matrices in this family were formed from modeling 
polypeptides made solely from alanine.  Linear polyalanine chains of differing lengths 
were constructed, and then a classical force field was used to randomize the chain 
conformations so that the molecules were no longer linear.  The MINDO method was 
then used to construct the Fock matrices, all of which had a bandwidth of 79. 
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Our performance study includes the Fock matrix from a polyalanine chain of length 

200, resulting in a matrix size of 5027.  Figure 3.2 shows a picture of this matrix.  
 

 
 

Figure 3.2  Element Magnitudes of the Fock matrix for the 
Polyalanine Chain of Length 200 

 
 

3.3  Silicon Crystal Family.  This family of test matrices has been generated using 
the PBE form [27] of Density Functional Theory on Silicon crystals with differing 
numbers of atoms.  We denote the different problems in the family by the number of unit 
cells in each of the x, y, and z directions.  Thus, the 111 problem has one unit cell in each 
of the directions, and the 432 problem has 4 unit cells in the x direction, 3 in the y 
direction, and 2 in the z direction. Each unit cell has 8 atoms using 104 basis functions 
from the Double Zeta basis set.  Thus, the 111 problem models 8 atoms with 104 basis 
function resulting in an eigenproblem of order 104, and the 443 problem models 384 
atoms with 4992 basis functions resulting in an eigenproblem of size 4992.   
 

We include the Fock matrix derived by 544 Silicon crystals in our tests, which yields 
a matrix of order 8320.  Figure 3.3 shows a picture of this test matrix.  
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Figure 3.3  Element Magnitudes of the Initial Normalized Fock matrix 
for the 544 Lattice in the Silicon Crystals Family 

 
 

3.4  Hydrogen Molecules with Impurities.  These test matrices are derived from a 
finite-basis representation of the vibrational Hamiltonian of a randomly close, packed 
solid sample of hydrogen molecules H2 in which 0.1% of the molecules have been 
replaced by impurities [20].  The solid is represented by a collection of 21 x 24 x 26 
molecules on a lattice with periodic boundary conditions imposed in all three 
dimensions.  The off-diagonal elements represent couplings between nearby H2 
molecules and decrease in magnitude the further they appear from the diagonal.   
Different matrices in this family are produced by including more distant neighbors in the 
model.  All the matrices are of order 13,104. 
 

The matrix used in our tests from this family involves multiple layers of molecular 
couplings.  The matrix contains 716,273 nonzero elements (that is, 0.42% sparse), and all 
the nonzero elements are between -10 and -0.015.  Its zero-nonzero structure is given in 
Figure 3.4.  We test our dense parallel solvers on this matrix in spite of its obvious 
sparsity.  Other matrices in this family are more dense but, as expected, produce very 
similar timing results.   
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Figure 3.4  Zero-Nonzero Structure of Hamiltonian from Impure Hydrogen 
Lattice with 0.42% sparsity (Blue for nonzero, White for zero) 

 
3.5  trans-Polyacetylene Family.  Polyacetylene (PA) has been the subject of 

intensive investigation for many years.  It shows a very fast response time upon laser 
excitation, making it a candidate for fast-optical switching and optical computation.  Our 
test matrix comes from the trans-form of PA with a C-H chain sufficiently long that end 
effects may be ignored.  The SSH Hamiltonian[30], which is a tight-binding 
approximation and includes only nearest neighbor atoms, is used within the Hartree-Fock 
approximation framework.  As a tight-binding approximation, each cell unit has only one 
basis function; therefore, the size of the matrix is the number of atoms being modeled. 
 

Our test matrix from this family models 16,000 atoms.  Figure 3.5 presents a picture 
of the magnitude of the elements in the initial Fock matrix produced from this problem.   

 
 

Figure 3.5  Element Magnitudes of the Fock matrix for a trans-
Polyacetylene with 16,000 atoms 
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3.6 Tetra-Cyanoquinodimethane (TCNQ) Family. TCNQ is an electron-accepting 
molecule used in organic conductors. The test matrices are generated from applying the 
Hubbard model [21] to a one-dimensional TCNQ chain where the electron correlation is 
considered important. The Hubbard model is based on a tight-binding approximation with 
the nearest neighboring electron interaction included. For our generated test matrices, the 
TCNQ chain length L is 10, which means there are 10 atoms, and the electron filling is 
one-half, indicating that we have 10 electrons in the system. The chain length L 
determines the size of the Hamiltonian matrix, which is {L!/[(L/2)!(L/2)!]}2. For 
example, with L = 10, the corresponding matrix size is 63,504.  
 

To reduce the matrix size, Hamiltonian matrices may be truncated via a density-
matrix renormalization group method [34] where only the most important eigenstates are 
reserved and used to generate a density matrix.  The truncation is controlled by the 
number of states kept in the density matrix. With less truncation (more states), more 
electron correlation effects are included, which leads to a larger matrix.  

 
We use two test matrices from this family: the full Hamiltonian without truncation (n 

= 63,504) and the truncated Hamiltonian keeping 120 states in the density matrix (n = 
29,296).  Figures 3.6 and 3.7 show the zero-nonzero structure for these matrices.  As with 
the impure hydrogen matrices, we apply our dense eigensolvers to these matrices even 
though sparse or band solvers may be more appropriate. 

 
 

Figure 3.6  Zero-Nonzero Structure of 120-State Truncated Hamiltonian from 
TCNQ (Blue for nonzero, White for zero) 
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Figure 3.7  Zero-Nonzero Structure of the full Hamiltonian from TCNQ (Blue for 

nonzero, White for zero) 
 

4. Supercomputer and Testing Environment.  The test cases were run on the IBM 
pSeries distributed-memory supercomputer in the National Center for Computational 
Sciences at the Oak Ridge National Laboratory.  The system, installed in 2002 and 
nicknamed Cheetah, consists of twenty-seven p690 nodes.  Each node contains sixteen 
chips with two 1.3 GHz IBM Power4 processors per chip for a total of 864 processors.  
The nodes are connected via IBM’s Federation interconnect.  With each processor having 
a peak rating of 5.2 GFlops, the peak computational power of the system is 4.5 TFlops.  
The system has a peak LINPACK rating of 2.3 TFlops. 
 

Twenty of the nodes have 32 GBytes of SMP memory each, five nodes have 64 
GBytes, and two have 128 GBytes; thus, the total available main memory on the system 
is 1.2 TBytes.  Access to data residing off-node is via the interconnect at a slower speed, 
resulting in a non-uniform memory access (NUMA) system.  In addition, 14 nodes have 
160 GB of local temporary disk space. 

 
The Power4 memory hierarchy consists of 3 levels of cache with prefetching.  The 

first and second levels are on-chip.  The split L1 instruction and data caches are 128 
KBytes and 64 KBytes respectively or 64 KBytes and 32 KBytes respectively per 
processor.  The unified L2 cache is 1.5 MBytes and is shared between the 2 processors.  
The L3 cache also shared by the 2 processors is 32 MBytes and is located on a separate 
chip.  
 

Our tests on Cheetah invoked the Fortran versions of PDSYEVD, PDSYEVX, 
PDSYEVR and PDSBTDC through version 8.1 of IBM’s xlf compiler and C versions 
of PMR3 and PLAPACK through version 6 of IBM’s xlc compiler.  Both compilers 
were set to the default 32-bit compile mode and linked to the 32-bit PESSL library. The 
compiler options for PDSYEVD, PDSYEVX, PDSYEVR and PDSBTDC were:  
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-O4 –qstrict -qarch=auto -qcache=auto –qtune=auto  
-bmaxdata:0x70000000, 

and for PMR3 and PLAPACK: 
-O4 –qstrict -qtune=pwr4 -qarch=pwr4  

-bmaxdata:0x70000000. 
 

5. Test Results.  The wall-clock times (in seconds) for the different algorithms 
using consecutive powers of 2 as the number of processors are given in tabular form and 
graphically for each test matrix.  For the smaller matrices, we start with 4 processors and 
go up to 512 and start with more processors for the larger matrices. 

 
PMR3 ran into some difficulty on some of the test cases and did not complete the 

computations, ending with an error.  A reasonable amount of effort was spent trying to 
solve the problems without success.  The errors did not consistently appear in any one of 
the three steps (reduction, tridiagonal solver or back-transformation) and are likely a 
portability problem since some of these tests ran successfully on different clusters. These 
tests are shown with a DNF (did not finish) tag for the wall clock time.  We anticipate 
these problems will disappear if PLAPACK is formally ported to the Cheetah architecture 
and results for those cases would be consistent with its performance on the other tests.  
 

5.1.Timing Results.  Table and Figure 5.1 present the timing results for C502H1006.  
The size of this matrix (n = 3014) is rather small for parallel computation, and assigning 
more than 16 processors to the computation yields very little change in the required time. 
All the algorithms reach the point in our tests where adding processors actually increases 
the time due to the overhead of parallel computation.  
 

The three ScaLAPACK algorithms performed roughly the same with both PMR3 and 
PDSBTDC requiring longer computational time.  Even though some benefiting 
magnitude structure exists in the matrix as illustrated in Figure 3.1, the block-
tridiagonalization algorithm transforming the matrix into block tridiagonal form in 
PDSBTDC resulted in off-diagonal blocks with rather large ranks. Deflation could not 
offset this high computational complexity. The poor performance of PMR3 is almost 
solely a result of the time required to transform the full matrix into tridiagonal form, as 
shown in Table 5.8 in Section 5.2. 
 

# procs PDSYEVX PDSYEVD PDSYEVR PMR3 PDSBTDC 
4 21.8 19.1 21.6 37.4 63.0 
8 11.5 11.2 12.7 25.2 42.3 
16 7.2 7.9 8.5 DNF 26.0 
32 5.0 5.5 6.5 DNF 15.3 
64 4.2 4.5 5.5 DNF 12.5 
128 4.0 4.2 5.0 11.9 10.2 
256 3.9 4.5 5.6 14.5 8.9 
512 5.0 5.4 6.6 17.1 9.0 

Table 5.1  Wall Clock Time in Seconds for C502H1006
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Figure 5.1  Plot of Wall Clock Time for C502H1006

 
Table and Figure 5.2 present the timings for a polyalanine chain of length 200 

yielding a matrix of size 5027.  Again, this matrix is rather small for parallel 
computation, and significant reductions in time do not result when using more than 32 
processors. 

 
The ScaLAPACK algorithms again perform roughly equivalently.  The magnitude 

structure of the matrix is sufficiently “heavy” around the diagonal that PDSBTDC 
performs very well on this matrix. Again, PMR3 suffers from poor scalability in the 
reduction-to-tridiagonal step. 
 

# procs PDSYEVX PDSYEVD PDSYEVR PMR3 PDSBTDC 
4 105.2 75.6 88.4 85.2 49.2 
8 61.4 47.1 48.3 51.3 23.0 
16 33.0 31.1 32.7 DNF 16.2 
32 18.8 17.6 19.7 DNF 8.8 
64 12.3 13.4 15.5 DNF 6.3 
128 9.6 10.0 12.1 29.3 5.1 
256 8.4 10.0 12.0 32.5 3.5 
512 9.4 10.4 12.6 38.2 4.8 

Table 5.2  Wall Clock Time in Seconds for Polyalanine Chain of Length 200 
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Figure 5.2  Plot of Wall Clock Time for Polyalanine Chain of Length 200 

 
The Silicon crystal using a 544 lattice results in a matrix of size 8320, which begins 

to stress the available memory on standard serial computers required by eigensystem 
algorithms.  Results for this matrix are shown in Table and Figure 5.3 and are similar to 
the results from the alkane family matrix except PMR3 is a competitive algorithm for 
small number of processors.  Similar algorithmic results are also obtained from the 
hydrogen molecule with impurities as shown in Table and Figure 5.4.  This matrix is of 
order 13,104, has 716,273 nonzeros and could be called sparse, although it is treated as a 
dense matrix in this study.  On both matrices PMR3 poor performance again results from 
the poor scalability of the reduction step, and PDSBTDC’s performance suffers from the 
large ranks of the off-diagonal blocks.  Note that PDSBTDC appears to scale slightly 
better than the three ScaLAPACK algorithms.  This is likely due to the larger 
computational complexity of PDSBTDC. 
 

# procs PDSYEVX PDSYEVD PDSYEVR PMR3 PDSBTDC 
4 595.7 408.7 363.2 351.6 959.6 
8 277.3 208.6 222.8 204.1 581.0 
16 128.2 124.9 127.1 DNF 385.6 
32 68.2 68.6 70.8 87.2 170.3 
64 37.5 44.9 48.9 DNF 97.8 
128 25.3 27.9 33.9 73.4 63.4 
256 19.3 22.9 29.1 80.5 43.5 
512 19.1 21.2 27.4 87.8 34.8 

Table 5.3  Wall Clock Time in Seconds for 544 Silicon Crystal Lattice 
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Figure 5.3  Plot of Wall Clock Time for 544 Silicon Crystal Lattice 

 
 

# procs PDSYEVX PDSYEVD PDSYEVR PMR3 PDSBTDC 
8 1271.1 969.2 809.2 890.5 3763.0 
16 685.7 466.0 492.5 487.1 2071.8 
32 282.4 269.7 258.6 284.4 639.1 
64 127.6 151.2 155.2 DNF 334.9 
128 74.5 78.0 86.0 169.6 175.8 
256 48.3 59.7 68.7 179.0 110.2 
512 41.6 45.0 58.8 196.7 76.3 

Table 5.4  Wall Clock Time in Seconds for Impure Hydrogen 
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Figure 5.4  Plot of Wall Clock Time for Impure Hydrogen 
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The trans-polyacetylene family produces a very interesting case.  For these matrices, 
there is considerable magnitude structure with all the larger elements appearing close to 
the diagonal.  PDSBTDC performs extremely well on these matrices since the ranks of 
the off-diagonal blocks are typically small and considerable deflation occurs during 
matrix multiplications stage of the algorithm.  Table and Figure 5.5 present the results.  
Note that PDSBTDC provides an order of magnitude improvement for this test case. 
 

# procs PDSYEVX PDSYEVD PDSYEVR PMR3 PDSBTDC 
16 1027.8 802.2 892.4 787.5 53.5 
32 589.5 482.8 459.6 488.8 32.4 
64 256.0 301.5 259.1 DNF 22.9 
128 135.3 136.8 124.4 259.6 15.3 
256 83.4 89.5 91.5 262.1 10.7 
512 64.3 63.7 80.3 288.2 9.1 

Table 5.5  Wall Clock Time in Seconds for16K-Atom trans-PA 
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Figure 5.5  Plot of Wall Clock Time for 16K-Atom trans-PA 

 
The results of tests on our two largest matrices, the matrices from the TCNQ family, 

are given below.  Scalability of PDSYEVR becomes a concern on these large matrices 
due to the time required by the tridiagonal solver.  Assigning clusters to processors 
becomes a more difficult task for large matrices with a large number of clusters.  Clearly, 
PDSBTDC was not competitive – again due to the large ranks of the off-diagonal blocks. 
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# procs PDSYEVX PDSYEVD PDSYEVR PMR3 PDSBTDC 

64 1738.7 1746.48 1813.5 1528.9 4994.8 
128 888.5 797.3 856.0 1119.6 2613.6 
256 417.4 447.8 549.0 882.8 1452.8 
512 276.4 242.1 374.4 875.7 774.3 

Table 5.6  Wall Clock Time in Seconds for the 120-State Truncated Hamiltonian  from 
TCNQ 
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Figure 5.6  Plot of Wall Clock Time in Seconds for the 120-State Truncated Density 

Matrix  from TCNQ 
 

Since PDSBTDC performed poorly for the trancated TCNQ matrix given above, we 
did not test that algorithm on the larger TCNQ matrix.  We expect similarly poor or 
worse performance due to the larger matrix size. 

 
# procs PDSYEVX PDSYEVD PDSYEVR PMR3 

256 5456.3 4564.7 5214.2 5689.3 
512 2699.5 2294.0 2964.5 4564.8 

Table 5.7  Wall Clock Time in Seconds for full Hamiltonian from TCNQ 
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Figure 5.7  Plot of Wall Clock Time in Seconds for full Hamiltonian from TCNQ 

 
5.2  Timing for the Classical 3-Steps in Eigensolvers.  As mentioned earlier, many 

eigensolvers, including PDSYEVR, PDSYEVD, PDSYEVX and PMR3, involve the 
three major steps: (1) reduction to symmetric tridiagonal form, (2) eigen-decomposition 
of the tridiagonal matrix, and (3) back-transformation of the eigenvectors.  During our 
tests, the time required for each step was recorded for PDSYEVR, PDSYEVD and 
PMR3.  We were unable to include PDSYEVX in this test since the source code was not 
available for the insertion of proper timing statements.  These timing results are given in 
Tables 5.8-5.14. 
 

# procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
4 9.9 3.3 5.9 9.9 5.5 6.2 26.0 3.7 7.7
8 5.7 2.3 3.2 5.7 3.8 3.2 20.5 1.8 2.9
16 4.4 1.4 2.1 4.0 2.6 1.9 DNF DNF DNF
32 3.2 1.1 1.2 3.2 2.1 1.2 DNF DNF DNF
64 3.0 0.8 0.7 2.9 1.8 0.7 DNF DNF DNF
128 3.2 0.7 0.4 3.0 1.6 0.4 10.9 0.2 0.8
256 3.5 0.6 0.3 3.6 1.7 0.3 13.2 0.1 1.1
512 4.5 0.6 0.3 4.6 1.8 0.2 15.6 0.1 1.5

PDSYEVD PDSYEVR PMR3

 
Table 5.8 Wall Clock Time in Seconds for the 3 Steps Solving C502H1006 
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# procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
4 37.5 11.7 26.4 42.2 17.2 28.9 50.7 10.3 24.2
8 21.7 9.0 16.4 22.3 12.2 13.8 34.0 5.1 12.2
16 17.6 4.8 8.7 19.1 4.3 9.3 DNF DNF DNF
32 10.0 3.0 4.6 10.1 5.0 4.6 DNF DNF DNF
64 8.7 2.1 2.7 8.6 4.2 2.8 DNF DNF DNF
128 6.9 1.6 1.4 6.9 3.8 1.4 26.7 0.4 2.2
256 7.6 1.3 1.0 7.4 3.6 1.0 29.9 0.2 2.4
512 8.4 1.3 0.6 8.3 3.6 0.7 35.4 0.1 2.7

PDSYEVD PDSYEVR PMR3

 
Table 5.9 Wall Clock Time in Seconds for the 3 Steps Solving Polyalanine Chain 

 

# procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
4 203.3 66.8 138.5 166.9 66.0 130.3 196.6 21.3 133.7
8 101.4 33.8 73.4 109.5 39.3 74.0 127.7 11.6 64.8
16 68.3 20.7 35.9 64.3 25.2 37.7 DNF DNF DNF
32 36.8 11.5 20.2 37.0 14.8 18.9 66.1 3.1 18.0
64 27.7 7.2 10.0 27.9 11.0 10.0 DNF DNF DNF
128 17.5 5.1 5.2 19.2 9.4 5.3 66.0 0.9 6.6
256 15.9 3.7 3.2 17.4 8.5 3.3 74.2 0.6 5.8
512 16.1 3.2 1.9 17.4 8.1 1.9 81.4 0.3 6.2

PDSYEVD PDSYEVR PMR3

 
Table 5.10 Wall Clock Time in Seconds for the 3 Steps Solving 544 Silicon Crystal 

 

# procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
8 574.3 129.6 265.3 508.1 65.0 236.1 592.3 38.0 260.1

16 250.8 67.2 148.0 293.7 44.7 154.2 329.8 18.7 138.7
32 159.7 38.7 71.3 158.6 29.5 70.6 210.2 10.2 63.9
64 92.5 22.5 36.3 94.9 22.8 37.5 DNF DNF DNF
128 46.6 14.1 17.3 49.6 18.9 17.5 147.8 2.6 19.2
256 39.4 10.0 10.3 41.2 17.3 10.2 163.5 1.4 14.1
512 32.2 7.2 5.6 35.7 16.6 6.4 184.5 0.8 11.4

PDSYEVD PDSYEVR PMR3

 
Table 5.11 Wall Clock Time in Seconds for the 3 Steps Solving Impure Hydrogen 
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# procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
16 467.7 92.5 242.0 576.7 59.5 256.1 527.8 30.6 229.2
32 311.1 51.1 120.7 311.9 27.6 120.2 356.5 15.1 117.2
64 207.4 29.3 64.8 180.2 14.4 64.5 DNF DNF DNF
128 87.0 18.3 31.4 83.6 9.4 31.4 222.0 3.5 34.0
256 60.3 11.8 17.4 63.9 9.8 17.8 237.8 2.1 22.2
512 45.3 9.2 9.2 46.4 24.7 9.3 270.1 1.0 17.2

PDSYEVD PDSYEVR PMR3

 
Table 5.12 Wall Clock Time in Seconds for the 3 Steps Solving 16K-Atom trans-PA 

 

# procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
64 1200.7 177.0 368.8 1224.4 209.4 379.8 1163.4 20.3 345.1

128 512.7 99.2 185.3 503.6 165.1 187.3 906.2 10.5 202.9
256 292.5 57.6 97.8 293.2 158.9 97.0 766.8 6.4 109.6
512 155.5 38.1 48.5 157.3 168.2 49.0 805.3 3.1 67.3

PDSYEVD PDSYEVR PMR3

 
Table 5.13 Wall Clock Time in Seconds for the 3 Steps Solving Truncated TCNQ 

Hamiltonian 

 

# procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
256 3429.7 256.6 878.4 3595.5 719.3 899.4 4673.5 29.3 986.5
512 1692.0 155.7 446.2 1760.8 742.4 461.2 4005.6 15.2 543.9

PDSYEVD PDSYEVR PMR3

 
Table 5.14 Wall Clock Time in Seconds for the 3 Steps Solving full TCNQ Hamiltonian 

 
 

The below area charts present the average for each algorithm over all test matrices of 
the percentage of time spent in each step as a function of the number of processors.  As is 
obvious, the reduction step continues to dominate eigensolvers.  The below charts also 
illustrate the fact that PMR3’s reduction step did not perform as well as PDSYEVD’s or 
PDSYEVR’s on most test cases, which is one reason PMR3 did not usually perform as 
well as those two algorithms.  The tridiagonal solver in PMR3 was extremely efficient 
and was almost always the fastest tridiagonal solver of the three.  Certainly part of its 
speed in comparison to PDSYEVR is due to the latter incorporating some recent 
theoretical results in an effort to compute more accurate eigenvectors.  
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 (a) PDSYEVR (b) PDSYEVD 
 

 
(c) PMR3 

Figure 5.8  Mean Percentage of Solver Time Spent in the Three Steps as 
a Function of the Number of Processors 

 
PDSBTDC has three similar steps when the matrix is not already in block tridiagonal 

form, although the first and third steps may employ different algorithms for different 
matrices.  Most of the work is done in the second step, the block tridiagonal eigensolver, 
and we include a figure similar to the above for completeness.  Figure 5.9 presents the 
percentage breakdown for the test cases that required all three steps, that is, the 544 
Silicon Crystal, Impure Hydrogen and Truncated TCNQ Hamiltonian. 
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Figure 5.9  Mean Percentage of Solver Time Spent in the Three Steps of 

PDSBTDC as a Function of the Number of Processors 
 
 

5.3 Accuracy of Computed Eigensystems.  For an estimate of the accuracy of the 
computed eigensystem, we will use the following two scaled values: 

R = 
, 1,2, ,
max maxT

iiiji j n i
A VEV E

=
⎡ ⎤−⎣ ⎦   

O = 
, 1,2, ,
max T

iji j n
V V I n

=
⎡ ⎤−⎣ ⎦  , 

where A is the Fock matrix or Hamiltonian matrix, V is the computed eigenvector matrix, 
and E is the computed diagonal matrix of eigenvalues.  We use R and O as accuracy 
indicators rather than including the eigenvalue gaps [23] since these measures are 
frequently used in applications and are deemed sufficient in most cases.  (Note that 
PDSBTDC was given a R accuracy request of 10-6 for all test matrices.) 
 

R and O for all the test matrices, number of processors and algorithms are plotted 
below in Figures 5.10 and 5.11.  Plots go from smallest number of processors to the 
largest from left to right for each matrix application.   
 

Except for two test cases (the TCNQ matrix of order 63,504 using 256 and 512 
processors), PDSYEVX returned the error warning: “Eigenvectors corresponding to one 
or more clusters of eigenvalues could not be reorthogonalized because of insufficient 
workspace.”  Only in one of the test cases receiving this warning (Impure Hydrogen 
using 512 processors) was the residual and orthogonality errors deem sufficiently 
unacceptable to rerun with additional workspace.  The results for this test case shown in 
Figures 5.10 and 5.11 reflect this second run.  For all the test cases except this one re-run, 
PDSYEVX was given the amount of workspace recommended by the code developers.  It 
should also be noted that if sufficient workspace was given to reorthogonalize all the 
eigenvectors requiring this extra computation, then the execution time would have 
increased over the times given in Section 5.1.  
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Figure 5.10  Residuals for Tested Matrices, Algorithms and Number of Processors 

 

 
Figure 5.11  Orthogonality Errors for Tested Matrices, Algorithms and Number of 

Processors 

 
6. Conclusions.  Some obvious conclusions can be drawn from the test results. The 

three ScaLAPACK algorithms perform roughly the same with PDSYEVR, the latest code 
implementing the new MRRR algorithm, scaling slightly worse.  Memory requirements 
for these three algorithms are currently the same, but it is expected that the MRRR 
version, PDSYEVR, will eventually be implemented requiring only 2n2 + O(n) memory 
locations.  When this occurs, PDSYEVR will have a significant advantage over the other 
two.  PDSYEVX had the significant drawback of the amount of workspace required to 
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ensure re-orthogonalized eigenvectors being unknown in advance and of the possibility 
of unacceptable results returned due this problem. 
 

PMR3 was competitive on the smaller number of processors, that is, when n divided 
by the number of processors was large.  The PLAPACK algorithm reducing a matrix to 
tridiagonal form did not scale well.  Since this step is typically the most time consuming, 
PMR3 did not perform well on the larger number of processors even though its 
tridiagonal solver was very efficient.  PMR3 had the nice property of requiring only 2n2 
+O(n) memory locations; thus, larger problems could be solved on a smaller number of 
processors. 

 
PDSBTDC was very efficient on matrices with most of the larger elements near the 

diagonal, which produced low ranks in some of the off-diagonal blocks.  These matrices 
are called “heavy” diagonal matrices and occur in applications with significant locality 
properties.  On the matrices with off-diagonal blocks near full rank, the algorithm did not 
perform as well as the others tested.  The deflation encountered for these test cases could 
not offset its higher computational complexity. 

 
The divide-and-conquer algorithms, PDSYEVD and PDSBTDC, typically computed 

eigenvectors with better orthogonality properties – a positive reflection upon the Gu-
Eisenstat method [19] for computing eigenvectors.  The residuals for PDSBTDC could 
not be directly compared to the other algorithms, but PDSYEVD typically produced 
results with smaller residuals as well.  PMR3 typically produced larger residuals and 
orthogonality errors, although some of these results may be influenced by the same 
problems that prevented PMR3 from producing a computed eigensystem for some test 
cases. 
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	The Fock matrix from the C502H1006 alkane with n = 3014 was included in our performance study.  Figure 3.1 provides a picture of the element magnitudes.
	We include the Fock matrix derived by 544 Silicon crystals in our tests, which yields a matrix of order 8320.  Figure 3.3 shows a picture of this test matrix. 
	The matrix used in our tests from this family involves multiple layers of molecular couplings.  The matrix contains 716,273 nonzero elements (that is, 0.42% sparse), and all the nonzero elements are between -10 and -0.015.  Its zero-nonzero structure is given in Figure 3.4.  We test our dense parallel solvers on this matrix in spite of its obvious sparsity.  Other matrices in this family are more dense but, as expected, produce very similar timing results.  
	Twenty of the nodes have 32 GBytes of SMP memory each, five nodes have 64 GBytes, and two have 128 GBytes; thus, the total available main memory on the system is 1.2 TBytes.  Access to data residing off-node is via the interconnect at a slower speed, resulting in a non-uniform memory access (NUMA) system.  In addition, 14 nodes have 160 GB of local temporary disk space.
	The Power4 memory hierarchy consists of 3 levels of cache with prefetching.  The first and second levels are on-chip.  The split L1 instruction and data caches are 128 KBytes and 64 KBytes respectively or 64 KBytes and 32 KBytes respectively per processor.  The unified L2 cache is 1.5 MBytes and is shared between the 2 processors.  The L3 cache also shared by the 2 processors is 32 MBytes and is located on a separate chip. 
	The below area charts present the average for each algorithm over all test matrices of the percentage of time spent in each step as a function of the number of processors.  As is obvious, the reduction step continues to dominate eigensolvers.  The below charts also illustrate the fact that PMR3’s reduction step did not perform as well as PDSYEVD’s or PDSYEVR’s on most test cases, which is one reason PMR3 did not usually perform as well as those two algorithms.  The tridiagonal solver in PMR3 was extremely efficient and was almost always the fastest tridiagonal solver of the three.  Certainly part of its speed in comparison to PDSYEVR is due to the latter incorporating some recent theoretical results in an effort to compute more accurate eigenvectors. 

