
Performance of Parallel Eigensolvers on
Electronic Structure Calculations II

Robert C. Ward1,2 and Yihua Bai1,2

Technical Report UT-CS-06-5723

University of Tennessee

September 2006

Abstract. Many models employed to solve problems in quantum mechanics, such as electronic
structure calculations, result in both linear and nonlinear eigenproblems. Solutions to the nonlinear
problems, such as the Self-Consistent Field method, typically involve iterative schemes requiring the
solution of a large symmetric linear eigenproblem during each iteration. This paper evaluates the
performance of various popular and new parallel symmetric linear eigensolvers applied to such
eigenproblems in electronic structure calculations on the IBM distributed memory supercomputer at the
Oak Ridge National Laboratory. Results using established routines from ScaLAPACK and vendor
optimized packages are presented, as well as from three recently developed parallel eigensolvers, two
implementations of the Multiple Relatively Robust Representations algorithm and the block divide-and-
conquer algorithm. This paper updates an earlier version of this work reported in University of Tennessee
Technical Report UT-CS-05-560 by Ward, Bai & Pratt in 2005 [33].

1. Introduction. The problem of describing the motion of N electrons in the field of
M fixed nuclear point charges is a central problem in quantum chemistry. It translates
into the task of finding and describing approximate solutions of the electronic
Schrödinger equation
 OH EΦ = Φ . (1)
The solutions to this equation involving the electronic Hamiltonian operator H are the
electronic wave functions Φ, which describe the motion of electrons, and the electronic
energy operator EO. The wave function for a single particle is called an orbital.

Using the Hartree-Fock approximation [29, 31] in the electronic Schrödinger equation
leads to the nonlinear Hartree-Fock equation, a spatial integro-differential equation for
the orthonormal Hartree-Fock orbitals and the corresponding orbital energies. The N
orbitals with the lowest energies are called the occupied orbitals. In practice, the
solutions of this equation are approximated by introducing a finite set of n basis
functions, expanding the unknown molecular orbitals in terms of this basis, and
converting the Hartree-Fock equation to a set of algebraic equations. The problem of
computing the molecular orbitals then reduces to the problem of computing the matrix C
of expansion coefficients, which can be formulated as the Roothaan equations

 1Department of Computer Science, University of Tennessee, 203 Claxton Complex, 1122 Volunteer
Blvd., Knoxville, TN 37996-3450.
 2This work was partially supported by Oak Ridge National Laboratory’s Computing and
Computational Sciences Directorate and the University of Tennessee’s Science Alliance Program.
 3Available from: http://www.cs.utk.edu/~library/TechReports.html .

 1

http://www.cs.utk.edu/%7Elibrary/TechReports.html

 ()F C C S C E= (2)

with the Hermitian (usually real symmetric) n x n matrices S (overlap matrix) and F
(Fock matrix). S is positive definite with unit entries along the diagonal, and its off-
diagonal entries satisfy 1ijS < for i j≠ . E is a diagonal matrix that contains the orbital
energies along the diagonal, and C contains the expansion coefficients columnwise.

1.1 The Self-Consistent Field Method. The Roothaan equations (2) establish a
generalized eigenproblem with the unknowns E and C as the eigenvalues and
eigenvectors, respectively. Since F depends on the coefficient matrix C, this is a
nonlinear eigenproblem. Its solution is a very central and time-consuming task arising in
many quantum chemistry applications. We have described the problem as it is normally
derived in Hartree-Fock theory, however, very similar equations occur in density
functional theory [26, 14] and in semi-empirical quantum chemistry [28, 10].

The standard approach in quantum chemistry for solving (2) is the self-consistent field
(SCF) method, summarized in Algorithm 1.1. After reduction of the generalized
nonlinear eigenvalue problem (2) to a standard nonlinear eigenproblem, for example,
using a Cholesky factorization of the overlap matrix S, this nonlinear problem is
transformed into a linear eigenproblem using an initial guess C0 for the expansion
coefficients. The linear eigenproblem is solved, the new expansion coefficients C1 are
computed from the eigenvectors of the linear eigenproblem, and a new linear
eigenproblem is formulated. This procedure is iterated until self-consistency, i.e.,
convergence, has been achieved. As a convergence criterion, it is common to require that

the difference between two successive values of the total energy () ()1
1 1

n n

k kii ii
i i

E E −
= =

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑ ∑

or the expansion coefficients (1k kC C −−) be bounded by a tolerance δ. A value of δ
=10-6 is adequate for most purposes [31].

Input: guess initial values C0
1. factorize S = U UT
2. transform (2) into a standard problem A(C) V = V E
3. repeat k =1,2, …

(i) compute A(Ck-1)
(ii) solve A(Ck-1) V = V Ek
(iii) compute Ck = U-T V

 until converged
 Output: electronic energy, orbitals

Algorithm 1.1 Self-Consistent Field Method

 2

The iterative Algorithm (1.1) does not always converge, for example, if the initial
guess is poor. Various techniques have been suggested for ensuring or accelerating
convergence [22].

1.2 Synopsis. The purpose of this paper is to report on the performance of various
parallel standard symmetric eigensolvers as they solve linear eigenproblems in electronic
structure calculations. Most of the test matrices in this study result from applying the SCF
method to molecules from various types of materials, then solving the linear
eigenproblem given by Step 3(ii) in the first iteration of Algorithm 1.1, thereby updating
a previous similar study [33]. One family of test matrices, the Tetra-
Cyanoquinodimethane (TCNQ) family, results from transforming the Schrödinger
equation (1) directly into a linear eigenproblem. The computer used will be the IBM
pSeries distributed memory supercomputer located in the National Center for
Computational Sciences (NCCS) [1] at the Oak Ridge National Laboratory (ORNL).

The algorithms are briefly described in Section 2, the test matrices in Section 3, and

the supercomputer and testing environment in Section 4. Section 5 presents the test
results, and some conclusions are given in Section 6.

2. Parallel Eigensolvers. For our performance tests, we include the two parallel
eigensolvers that are readily available to the users of the distributed memory
supercomputers located in ORNL’s NCCS. Both of these have been tuned for improved
performance through the use of BLAS and PBLAS optimized by the computer vendor. In
addition, we will include parallel implementations of two recent algorithms: the method
of Multiple Relatively Robust Representations and the block divide-and-conquer
algorithm. The salient features of each algorithm will be given below with algorithmic
and parallel implementation details provided in the cited references.

2.1 PDSYEVD. The parallel eigensolver, PDSYEVD, used in our experiments is

found in ScaLAPACK [8] and is based upon the divide-and-conquer algorithm [9]. It
consists of the classical three steps: reduction to symmetric tridiagonal form, eigen-
decomposition of the tridiagonal matrix, and back-transformation of the eigenvectors.
The eigen-decomposition of the tridiagonal matrix is computed by the Tisseur-Dongarra
parallel implementation [32] of the divide-and-conquer algorithm using the Gu-Eisenstat
method [19] for stably computing the eigenvectors. The reduction to tridiagonal form
does not incorporate some of the more recent methods [7, 15] designed to increase the
number of BLAS3 operations. Algorithms implementing all three steps use a vendor-
optimized version of BLAS. Memory requirements for PDSYEVD involve 4n2 (A, V,
and 2n2 workspace) + O(n).

2.2 PDSYEVX. The parallel eigensolver, PDSYEVX, used in our experiments is

found in PESSL [3], which is a library of parallel solvers for scientific problems supplied
by IBM. PESSL incorporates optimizations for the intended computational platform.
PDSYEVX also consists of the classical three steps described above but uses a different
algorithm for the eigen-decomposition of the symmetric tridiagonal matrix. The
bisection method [23] is used for computing its eigenvalues and inverse iteration (with
re-orthogonalization for tightly clustered eigenvalues) [23] is used for computing its

 3

eigenvectors. The same algorithms as in PDSYEVD are used for the reduction and back-
transformation steps. Memory requirements for PDSYEVX also involve 4n2 (A, V, and
2n2 workspace) + O(n), although exact requirements are unknown in advance due to the
unknown number of eigenvectors that must be re-orthogonalized.

2.3 PDSYEVR and PMR3. Significant progress has been made in computing the

eigensystem of symmetric tridiagonal matrices. The method of Multiple Relatively
Robust Representations (MRRR) [25, 11, 24, 12, 13] has greatly improved the efficiency
of these solvers while maintaining accuracy and obtaining eigenvector orthogonality.
The MRRR provides an O(n2) algorithm for computing the n eigenpairs to full accuracy
and the eigenvectors to numerical orthogonality. Since the solution to the full
eigenvector problem generally requires the computation of n2 values, this algorithm is
generally considered optimal.

We test two parallel implementations of the MRRR algorithm: PDSYEVR and

PMR3. PDSYEVR, as described in [2], is a near-final version of the implementation
expected to be in the next release of ScaLAPACK. PMR3, as described in [6], is the first
parallel implementation of an MRRR algorithm and was obtained from the PLAPACK
researchers at the University of Texas. The same basic algorithms as used in PDSYEVD
and PDSYEVX, but with different implementations, are used in these two algorithms to
reduce the full matrix to tridiagonal form and back-transform the eigenvectors of the
tridiagonal matrix to those of the original matrix [18]. Memory requirements for
PDSYEVR currently involve 4n2 (A, V, and 2n2 workspace) + O(n), but future
ScaLAPACK implementations should be able to reduce this to its theoretical requirement
of 2n2 (A and V) + O(n) as the PMR3 implementation requires.

2.4 PDSBTDC. The recently developed block divide-and-conquer algorithm [17,

16] has proven very attractive for computing eigensystems of symmetric, block
tridiagonal matrices with reduced accuracy requirements, that is, accuracy less than
machine precision, or with most of its largest elements near the diagonal, for example,
representing a physical system with strong locality properties. This algorithm has been
used with good results in electronic structure calculations[16]. A parallel implementation
of this algorithm [4] has recently been developed. Parallel algorithms for reducing dense
matrices to block tridiagonal form [5] have also been developed so that PDSBTDC can
now be tested on the same matrices as the other algorithms described above; however, we
will use reduced accuracy of for this algorithm since that is its typical application
and is especially relevant in electronic structure calculations. Note that all matrices are
trivially in block tridiagonal form with two blocks, but in this paper we will only consider
matrices with the number of diagonal blocks greatly exceeding two. As expected,
PDSBTDC requires similar storage to PDSYEVD, that is 4n

610−

2 (A, V, and 2n2 workspace)
+ O(n).

3. Test Matrices. The test matrices used in this eigensolver performance study

come from various molecule families and derivation schemes. A brief description of
each is given in the subsections below along with a picture of the normalized Fock matrix
or Hamiltonian matrix used in our tests from each family. Except for the impure

 4

hydrogen and TCNQ families where the zero-nonzero structure is shown, the picture uses
a color to indicate the magnitude of the exponent of the element in that matrix position.
The color-coded scale bar to the right of the picture shows the value of the exponent.
Pictures of different matrices in the same family are very similar. The major difference in
test matrices in most of the families comes from the number of molecules in the model
and result in matrices of different orders. We report in this paper results from testing
only the largest matrix in each family - except for the TCNQ family, which is our source
for very large matrices. Note that the orders of the matrices range from 3,014, very small
for parallel computers, to 63,504, very large.

3.1 Alkane Family. The alkane family consists of acyclic hydrocarbons in which
the molecule has the maximum number of hydrogen atoms – hence has no double bonds.
The general formula for alkanes is CnH2n+2. The nonlinear eigenproblem for this family
has been derived from the semi-empirical method CNDO, and as such, does not have an
overlap matrix. Thus, there is no normalization (steps 1 and 2 of Algorithm 1.1) of the
Fock matrix.

The Fock matrix from the C502H1006 alkane with n = 3014 was included in our
performance study. Figure 3.1 provides a picture of the element magnitudes.

Figure 3.1 Element Magnitudes of the Initial Fock matrix for the
C502H1006 Molecule in the Alkane Family

3.2 Polyalanine Family. The matrices in this family were formed from modeling
polypeptides made solely from alanine. Linear polyalanine chains of differing lengths
were constructed, and then a classical force field was used to randomize the chain
conformations so that the molecules were no longer linear. The MINDO method was
then used to construct the Fock matrices, all of which had a bandwidth of 79.

 5

Our performance study includes the Fock matrix from a polyalanine chain of length

200, resulting in a matrix size of 5027. Figure 3.2 shows a picture of this matrix.

Figure 3.2 Element Magnitudes of the Fock matrix for the
Polyalanine Chain of Length 200

3.3 Silicon Crystal Family. This family of test matrices has been generated using
the PBE form [27] of Density Functional Theory on Silicon crystals with differing
numbers of atoms. We denote the different problems in the family by the number of unit
cells in each of the x, y, and z directions. Thus, the 111 problem has one unit cell in each
of the directions, and the 432 problem has 4 unit cells in the x direction, 3 in the y
direction, and 2 in the z direction. Each unit cell has 8 atoms using 104 basis functions
from the Double Zeta basis set. Thus, the 111 problem models 8 atoms with 104 basis
function resulting in an eigenproblem of order 104, and the 443 problem models 384
atoms with 4992 basis functions resulting in an eigenproblem of size 4992.

We include the Fock matrix derived by 544 Silicon crystals in our tests, which yields
a matrix of order 8320. Figure 3.3 shows a picture of this test matrix.

 6

Figure 3.3 Element Magnitudes of the Initial Normalized Fock matrix
for the 544 Lattice in the Silicon Crystals Family

3.4 Hydrogen Molecules with Impurities. These test matrices are derived from a
finite-basis representation of the vibrational Hamiltonian of a randomly close, packed
solid sample of hydrogen molecules H2 in which 0.1% of the molecules have been
replaced by impurities [20]. The solid is represented by a collection of 21 x 24 x 26
molecules on a lattice with periodic boundary conditions imposed in all three
dimensions. The off-diagonal elements represent couplings between nearby H2
molecules and decrease in magnitude the further they appear from the diagonal.
Different matrices in this family are produced by including more distant neighbors in the
model. All the matrices are of order 13,104.

The matrix used in our tests from this family involves multiple layers of molecular
couplings. The matrix contains 716,273 nonzero elements (that is, 0.42% sparse), and all
the nonzero elements are between -10 and -0.015. Its zero-nonzero structure is given in
Figure 3.4. We test our dense parallel solvers on this matrix in spite of its obvious
sparsity. Other matrices in this family are more dense but, as expected, produce very
similar timing results.

 7

Figure 3.4 Zero-Nonzero Structure of Hamiltonian from Impure Hydrogen
Lattice with 0.42% sparsity (Blue for nonzero, White for zero)

3.5 trans-Polyacetylene Family. Polyacetylene (PA) has been the subject of

intensive investigation for many years. It shows a very fast response time upon laser
excitation, making it a candidate for fast-optical switching and optical computation. Our
test matrix comes from the trans-form of PA with a C-H chain sufficiently long that end
effects may be ignored. The SSH Hamiltonian[30], which is a tight-binding
approximation and includes only nearest neighbor atoms, is used within the Hartree-Fock
approximation framework. As a tight-binding approximation, each cell unit has only one
basis function; therefore, the size of the matrix is the number of atoms being modeled.

Our test matrix from this family models 16,000 atoms. Figure 3.5 presents a picture
of the magnitude of the elements in the initial Fock matrix produced from this problem.

Figure 3.5 Element Magnitudes of the Fock matrix for a trans-
Polyacetylene with 16,000 atoms

 8

3.6 Tetra-Cyanoquinodimethane (TCNQ) Family. TCNQ is an electron-accepting
molecule used in organic conductors. The test matrices are generated from applying the
Hubbard model [21] to a one-dimensional TCNQ chain where the electron correlation is
considered important. The Hubbard model is based on a tight-binding approximation with
the nearest neighboring electron interaction included. For our generated test matrices, the
TCNQ chain length L is 10, which means there are 10 atoms, and the electron filling is
one-half, indicating that we have 10 electrons in the system. The chain length L
determines the size of the Hamiltonian matrix, which is {L!/[(L/2)!(L/2)!]}2. For
example, with L = 10, the corresponding matrix size is 63,504.

To reduce the matrix size, Hamiltonian matrices may be truncated via a density-
matrix renormalization group method [34] where only the most important eigenstates are
reserved and used to generate a density matrix. The truncation is controlled by the
number of states kept in the density matrix. With less truncation (more states), more
electron correlation effects are included, which leads to a larger matrix.

We use two test matrices from this family: the full Hamiltonian without truncation (n

= 63,504) and the truncated Hamiltonian keeping 120 states in the density matrix (n =
29,296). Figures 3.6 and 3.7 show the zero-nonzero structure for these matrices. As with
the impure hydrogen matrices, we apply our dense eigensolvers to these matrices even
though sparse or band solvers may be more appropriate.

Figure 3.6 Zero-Nonzero Structure of 120-State Truncated Hamiltonian from
TCNQ (Blue for nonzero, White for zero)

 9

Figure 3.7 Zero-Nonzero Structure of the full Hamiltonian from TCNQ (Blue for

nonzero, White for zero)

4. Supercomputer and Testing Environment. The test cases were run on the IBM
pSeries distributed-memory supercomputer in the National Center for Computational
Sciences at the Oak Ridge National Laboratory. The system, installed in 2002 and
nicknamed Cheetah, consists of twenty-seven p690 nodes. Each node contains sixteen
chips with two 1.3 GHz IBM Power4 processors per chip for a total of 864 processors.
The nodes are connected via IBM’s Federation interconnect. With each processor having
a peak rating of 5.2 GFlops, the peak computational power of the system is 4.5 TFlops.
The system has a peak LINPACK rating of 2.3 TFlops.

Twenty of the nodes have 32 GBytes of SMP memory each, five nodes have 64
GBytes, and two have 128 GBytes; thus, the total available main memory on the system
is 1.2 TBytes. Access to data residing off-node is via the interconnect at a slower speed,
resulting in a non-uniform memory access (NUMA) system. In addition, 14 nodes have
160 GB of local temporary disk space.

The Power4 memory hierarchy consists of 3 levels of cache with prefetching. The

first and second levels are on-chip. The split L1 instruction and data caches are 128
KBytes and 64 KBytes respectively or 64 KBytes and 32 KBytes respectively per
processor. The unified L2 cache is 1.5 MBytes and is shared between the 2 processors.
The L3 cache also shared by the 2 processors is 32 MBytes and is located on a separate
chip.

Our tests on Cheetah invoked the Fortran versions of PDSYEVD, PDSYEVX,
PDSYEVR and PDSBTDC through version 8.1 of IBM’s xlf compiler and C versions
of PMR3 and PLAPACK through version 6 of IBM’s xlc compiler. Both compilers
were set to the default 32-bit compile mode and linked to the 32-bit PESSL library. The
compiler options for PDSYEVD, PDSYEVX, PDSYEVR and PDSBTDC were:

 10

-O4 –qstrict -qarch=auto -qcache=auto –qtune=auto
-bmaxdata:0x70000000,

and for PMR3 and PLAPACK:
-O4 –qstrict -qtune=pwr4 -qarch=pwr4

-bmaxdata:0x70000000.

5. Test Results. The wall-clock times (in seconds) for the different algorithms
using consecutive powers of 2 as the number of processors are given in tabular form and
graphically for each test matrix. For the smaller matrices, we start with 4 processors and
go up to 512 and start with more processors for the larger matrices.

PMR3 ran into some difficulty on some of the test cases and did not complete the

computations, ending with an error. A reasonable amount of effort was spent trying to
solve the problems without success. The errors did not consistently appear in any one of
the three steps (reduction, tridiagonal solver or back-transformation) and are likely a
portability problem since some of these tests ran successfully on different clusters. These
tests are shown with a DNF (did not finish) tag for the wall clock time. We anticipate
these problems will disappear if PLAPACK is formally ported to the Cheetah architecture
and results for those cases would be consistent with its performance on the other tests.

5.1.Timing Results. Table and Figure 5.1 present the timing results for C502H1006.
The size of this matrix (n = 3014) is rather small for parallel computation, and assigning
more than 16 processors to the computation yields very little change in the required time.
All the algorithms reach the point in our tests where adding processors actually increases
the time due to the overhead of parallel computation.

The three ScaLAPACK algorithms performed roughly the same with both PMR3 and
PDSBTDC requiring longer computational time. Even though some benefiting
magnitude structure exists in the matrix as illustrated in Figure 3.1, the block-
tridiagonalization algorithm transforming the matrix into block tridiagonal form in
PDSBTDC resulted in off-diagonal blocks with rather large ranks. Deflation could not
offset this high computational complexity. The poor performance of PMR3 is almost
solely a result of the time required to transform the full matrix into tridiagonal form, as
shown in Table 5.8 in Section 5.2.

procs PDSYEVX PDSYEVD PDSYEVR PMR3 PDSBTDC
4 21.8 19.1 21.6 37.4 63.0
8 11.5 11.2 12.7 25.2 42.3
16 7.2 7.9 8.5 DNF 26.0
32 5.0 5.5 6.5 DNF 15.3
64 4.2 4.5 5.5 DNF 12.5
128 4.0 4.2 5.0 11.9 10.2
256 3.9 4.5 5.6 14.5 8.9
512 5.0 5.4 6.6 17.1 9.0

Table 5.1 Wall Clock Time in Seconds for C502H1006

 11

1

10

100

4 8 16 32 64 128 256 512

PDSYEVR
PDSYEVD
PDSYEVX
PDSBTDC
PMR3

Figure 5.1 Plot of Wall Clock Time for C502H1006

Table and Figure 5.2 present the timings for a polyalanine chain of length 200

yielding a matrix of size 5027. Again, this matrix is rather small for parallel
computation, and significant reductions in time do not result when using more than 32
processors.

The ScaLAPACK algorithms again perform roughly equivalently. The magnitude

structure of the matrix is sufficiently “heavy” around the diagonal that PDSBTDC
performs very well on this matrix. Again, PMR3 suffers from poor scalability in the
reduction-to-tridiagonal step.

procs PDSYEVX PDSYEVD PDSYEVR PMR3 PDSBTDC
4 105.2 75.6 88.4 85.2 49.2
8 61.4 47.1 48.3 51.3 23.0
16 33.0 31.1 32.7 DNF 16.2
32 18.8 17.6 19.7 DNF 8.8
64 12.3 13.4 15.5 DNF 6.3
128 9.6 10.0 12.1 29.3 5.1
256 8.4 10.0 12.0 32.5 3.5
512 9.4 10.4 12.6 38.2 4.8

Table 5.2 Wall Clock Time in Seconds for Polyalanine Chain of Length 200

 12

1

10

100

1000

4 8 16 32 64 128 256 512

PDSYEVR
PDSYEVD
PDSYEVX
PDSBTDC
PMR3

Figure 5.2 Plot of Wall Clock Time for Polyalanine Chain of Length 200

The Silicon crystal using a 544 lattice results in a matrix of size 8320, which begins

to stress the available memory on standard serial computers required by eigensystem
algorithms. Results for this matrix are shown in Table and Figure 5.3 and are similar to
the results from the alkane family matrix except PMR3 is a competitive algorithm for
small number of processors. Similar algorithmic results are also obtained from the
hydrogen molecule with impurities as shown in Table and Figure 5.4. This matrix is of
order 13,104, has 716,273 nonzeros and could be called sparse, although it is treated as a
dense matrix in this study. On both matrices PMR3 poor performance again results from
the poor scalability of the reduction step, and PDSBTDC’s performance suffers from the
large ranks of the off-diagonal blocks. Note that PDSBTDC appears to scale slightly
better than the three ScaLAPACK algorithms. This is likely due to the larger
computational complexity of PDSBTDC.

procs PDSYEVX PDSYEVD PDSYEVR PMR3 PDSBTDC
4 595.7 408.7 363.2 351.6 959.6
8 277.3 208.6 222.8 204.1 581.0
16 128.2 124.9 127.1 DNF 385.6
32 68.2 68.6 70.8 87.2 170.3
64 37.5 44.9 48.9 DNF 97.8
128 25.3 27.9 33.9 73.4 63.4
256 19.3 22.9 29.1 80.5 43.5
512 19.1 21.2 27.4 87.8 34.8

Table 5.3 Wall Clock Time in Seconds for 544 Silicon Crystal Lattice

 13

1

10

100

1000

4 8 16 32 64 128 256 512

PDSYEVR
PDSYEVD
PDSYEVX
PDSBTDC
PMR3

Figure 5.3 Plot of Wall Clock Time for 544 Silicon Crystal Lattice

procs PDSYEVX PDSYEVD PDSYEVR PMR3 PDSBTDC
8 1271.1 969.2 809.2 890.5 3763.0
16 685.7 466.0 492.5 487.1 2071.8
32 282.4 269.7 258.6 284.4 639.1
64 127.6 151.2 155.2 DNF 334.9
128 74.5 78.0 86.0 169.6 175.8
256 48.3 59.7 68.7 179.0 110.2
512 41.6 45.0 58.8 196.7 76.3

Table 5.4 Wall Clock Time in Seconds for Impure Hydrogen

1

10

100

1000

10000

8 16 32 64 128 256 512

PDSYEVR
PDSYEVD
PDSYEVX
PDSBTDC
PMR3

Figure 5.4 Plot of Wall Clock Time for Impure Hydrogen

 14

The trans-polyacetylene family produces a very interesting case. For these matrices,
there is considerable magnitude structure with all the larger elements appearing close to
the diagonal. PDSBTDC performs extremely well on these matrices since the ranks of
the off-diagonal blocks are typically small and considerable deflation occurs during
matrix multiplications stage of the algorithm. Table and Figure 5.5 present the results.
Note that PDSBTDC provides an order of magnitude improvement for this test case.

procs PDSYEVX PDSYEVD PDSYEVR PMR3 PDSBTDC
16 1027.8 802.2 892.4 787.5 53.5
32 589.5 482.8 459.6 488.8 32.4
64 256.0 301.5 259.1 DNF 22.9
128 135.3 136.8 124.4 259.6 15.3
256 83.4 89.5 91.5 262.1 10.7
512 64.3 63.7 80.3 288.2 9.1

Table 5.5 Wall Clock Time in Seconds for16K-Atom trans-PA

1

10

100

1000

10000

16 32 64 128 256 512

PDSYEVR
PDSYEVD
PDSYEVX
PDSBTDC
PMR3

Figure 5.5 Plot of Wall Clock Time for 16K-Atom trans-PA

The results of tests on our two largest matrices, the matrices from the TCNQ family,

are given below. Scalability of PDSYEVR becomes a concern on these large matrices
due to the time required by the tridiagonal solver. Assigning clusters to processors
becomes a more difficult task for large matrices with a large number of clusters. Clearly,
PDSBTDC was not competitive – again due to the large ranks of the off-diagonal blocks.

 15

procs PDSYEVX PDSYEVD PDSYEVR PMR3 PDSBTDC

64 1738.7 1746.48 1813.5 1528.9 4994.8
128 888.5 797.3 856.0 1119.6 2613.6
256 417.4 447.8 549.0 882.8 1452.8
512 276.4 242.1 374.4 875.7 774.3

Table 5.6 Wall Clock Time in Seconds for the 120-State Truncated Hamiltonian from
TCNQ

100

1000

10000

64 128 256 512

PDSYEVR
PDSYEVD
PDSYEVX
PDSBTDC
PMR3

Figure 5.6 Plot of Wall Clock Time in Seconds for the 120-State Truncated Density

Matrix from TCNQ

Since PDSBTDC performed poorly for the trancated TCNQ matrix given above, we
did not test that algorithm on the larger TCNQ matrix. We expect similarly poor or
worse performance due to the larger matrix size.

procs PDSYEVX PDSYEVD PDSYEVR PMR3

256 5456.3 4564.7 5214.2 5689.3
512 2699.5 2294.0 2964.5 4564.8

Table 5.7 Wall Clock Time in Seconds for full Hamiltonian from TCNQ

 16

100

1000

10000

256 512

PDSYEVR
PDSYEVD
PDSYEVX
PMR3

Figure 5.7 Plot of Wall Clock Time in Seconds for full Hamiltonian from TCNQ

5.2 Timing for the Classical 3-Steps in Eigensolvers. As mentioned earlier, many

eigensolvers, including PDSYEVR, PDSYEVD, PDSYEVX and PMR3, involve the
three major steps: (1) reduction to symmetric tridiagonal form, (2) eigen-decomposition
of the tridiagonal matrix, and (3) back-transformation of the eigenvectors. During our
tests, the time required for each step was recorded for PDSYEVR, PDSYEVD and
PMR3. We were unable to include PDSYEVX in this test since the source code was not
available for the insertion of proper timing statements. These timing results are given in
Tables 5.8-5.14.

procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
4 9.9 3.3 5.9 9.9 5.5 6.2 26.0 3.7 7.7
8 5.7 2.3 3.2 5.7 3.8 3.2 20.5 1.8 2.9
16 4.4 1.4 2.1 4.0 2.6 1.9 DNF DNF DNF
32 3.2 1.1 1.2 3.2 2.1 1.2 DNF DNF DNF
64 3.0 0.8 0.7 2.9 1.8 0.7 DNF DNF DNF
128 3.2 0.7 0.4 3.0 1.6 0.4 10.9 0.2 0.8
256 3.5 0.6 0.3 3.6 1.7 0.3 13.2 0.1 1.1
512 4.5 0.6 0.3 4.6 1.8 0.2 15.6 0.1 1.5

PDSYEVD PDSYEVR PMR3

Table 5.8 Wall Clock Time in Seconds for the 3 Steps Solving C502H1006

 17

procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
4 37.5 11.7 26.4 42.2 17.2 28.9 50.7 10.3 24.2
8 21.7 9.0 16.4 22.3 12.2 13.8 34.0 5.1 12.2
16 17.6 4.8 8.7 19.1 4.3 9.3 DNF DNF DNF
32 10.0 3.0 4.6 10.1 5.0 4.6 DNF DNF DNF
64 8.7 2.1 2.7 8.6 4.2 2.8 DNF DNF DNF
128 6.9 1.6 1.4 6.9 3.8 1.4 26.7 0.4 2.2
256 7.6 1.3 1.0 7.4 3.6 1.0 29.9 0.2 2.4
512 8.4 1.3 0.6 8.3 3.6 0.7 35.4 0.1 2.7

PDSYEVD PDSYEVR PMR3

Table 5.9 Wall Clock Time in Seconds for the 3 Steps Solving Polyalanine Chain

procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
4 203.3 66.8 138.5 166.9 66.0 130.3 196.6 21.3 133.7
8 101.4 33.8 73.4 109.5 39.3 74.0 127.7 11.6 64.8
16 68.3 20.7 35.9 64.3 25.2 37.7 DNF DNF DNF
32 36.8 11.5 20.2 37.0 14.8 18.9 66.1 3.1 18.0
64 27.7 7.2 10.0 27.9 11.0 10.0 DNF DNF DNF
128 17.5 5.1 5.2 19.2 9.4 5.3 66.0 0.9 6.6
256 15.9 3.7 3.2 17.4 8.5 3.3 74.2 0.6 5.8
512 16.1 3.2 1.9 17.4 8.1 1.9 81.4 0.3 6.2

PDSYEVD PDSYEVR PMR3

Table 5.10 Wall Clock Time in Seconds for the 3 Steps Solving 544 Silicon Crystal

procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
8 574.3 129.6 265.3 508.1 65.0 236.1 592.3 38.0 260.1

16 250.8 67.2 148.0 293.7 44.7 154.2 329.8 18.7 138.7
32 159.7 38.7 71.3 158.6 29.5 70.6 210.2 10.2 63.9
64 92.5 22.5 36.3 94.9 22.8 37.5 DNF DNF DNF
128 46.6 14.1 17.3 49.6 18.9 17.5 147.8 2.6 19.2
256 39.4 10.0 10.3 41.2 17.3 10.2 163.5 1.4 14.1
512 32.2 7.2 5.6 35.7 16.6 6.4 184.5 0.8 11.4

PDSYEVD PDSYEVR PMR3

Table 5.11 Wall Clock Time in Seconds for the 3 Steps Solving Impure Hydrogen

 18

procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
16 467.7 92.5 242.0 576.7 59.5 256.1 527.8 30.6 229.2
32 311.1 51.1 120.7 311.9 27.6 120.2 356.5 15.1 117.2
64 207.4 29.3 64.8 180.2 14.4 64.5 DNF DNF DNF
128 87.0 18.3 31.4 83.6 9.4 31.4 222.0 3.5 34.0
256 60.3 11.8 17.4 63.9 9.8 17.8 237.8 2.1 22.2
512 45.3 9.2 9.2 46.4 24.7 9.3 270.1 1.0 17.2

PDSYEVD PDSYEVR PMR3

Table 5.12 Wall Clock Time in Seconds for the 3 Steps Solving 16K-Atom trans-PA

procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
64 1200.7 177.0 368.8 1224.4 209.4 379.8 1163.4 20.3 345.1

128 512.7 99.2 185.3 503.6 165.1 187.3 906.2 10.5 202.9
256 292.5 57.6 97.8 293.2 158.9 97.0 766.8 6.4 109.6
512 155.5 38.1 48.5 157.3 168.2 49.0 805.3 3.1 67.3

PDSYEVD PDSYEVR PMR3

Table 5.13 Wall Clock Time in Seconds for the 3 Steps Solving Truncated TCNQ

Hamiltonian

procs Reduc Tridiag Back Reduc Tridiag Back Reduc Tridiag Back
256 3429.7 256.6 878.4 3595.5 719.3 899.4 4673.5 29.3 986.5
512 1692.0 155.7 446.2 1760.8 742.4 461.2 4005.6 15.2 543.9

PDSYEVD PDSYEVR PMR3

Table 5.14 Wall Clock Time in Seconds for the 3 Steps Solving full TCNQ Hamiltonian

The below area charts present the average for each algorithm over all test matrices of
the percentage of time spent in each step as a function of the number of processors. As is
obvious, the reduction step continues to dominate eigensolvers. The below charts also
illustrate the fact that PMR3’s reduction step did not perform as well as PDSYEVD’s or
PDSYEVR’s on most test cases, which is one reason PMR3 did not usually perform as
well as those two algorithms. The tridiagonal solver in PMR3 was extremely efficient
and was almost always the fastest tridiagonal solver of the three. Certainly part of its
speed in comparison to PDSYEVR is due to the latter incorporating some recent
theoretical results in an effort to compute more accurate eigenvectors.

 19

 (a) PDSYEVR (b) PDSYEVD

(c) PMR3

Figure 5.8 Mean Percentage of Solver Time Spent in the Three Steps as
a Function of the Number of Processors

PDSBTDC has three similar steps when the matrix is not already in block tridiagonal

form, although the first and third steps may employ different algorithms for different
matrices. Most of the work is done in the second step, the block tridiagonal eigensolver,
and we include a figure similar to the above for completeness. Figure 5.9 presents the
percentage breakdown for the test cases that required all three steps, that is, the 544
Silicon Crystal, Impure Hydrogen and Truncated TCNQ Hamiltonian.

 20

Figure 5.9 Mean Percentage of Solver Time Spent in the Three Steps of

PDSBTDC as a Function of the Number of Processors

5.3 Accuracy of Computed Eigensystems. For an estimate of the accuracy of the
computed eigensystem, we will use the following two scaled values:

R =
, 1,2, ,
max maxT

iiiji j n i
A VEV E

=
⎡ ⎤−⎣ ⎦

O =
, 1,2, ,
max T

iji j n
V V I n

=
⎡ ⎤−⎣ ⎦ ,

where A is the Fock matrix or Hamiltonian matrix, V is the computed eigenvector matrix,
and E is the computed diagonal matrix of eigenvalues. We use R and O as accuracy
indicators rather than including the eigenvalue gaps [23] since these measures are
frequently used in applications and are deemed sufficient in most cases. (Note that
PDSBTDC was given a R accuracy request of 10-6 for all test matrices.)

R and O for all the test matrices, number of processors and algorithms are plotted
below in Figures 5.10 and 5.11. Plots go from smallest number of processors to the
largest from left to right for each matrix application.

Except for two test cases (the TCNQ matrix of order 63,504 using 256 and 512
processors), PDSYEVX returned the error warning: “Eigenvectors corresponding to one
or more clusters of eigenvalues could not be reorthogonalized because of insufficient
workspace.” Only in one of the test cases receiving this warning (Impure Hydrogen
using 512 processors) was the residual and orthogonality errors deem sufficiently
unacceptable to rerun with additional workspace. The results for this test case shown in
Figures 5.10 and 5.11 reflect this second run. For all the test cases except this one re-run,
PDSYEVX was given the amount of workspace recommended by the code developers. It
should also be noted that if sufficient workspace was given to reorthogonalize all the
eigenvectors requiring this extra computation, then the execution time would have
increased over the times given in Section 5.1.

 21

Figure 5.10 Residuals for Tested Matrices, Algorithms and Number of Processors

Figure 5.11 Orthogonality Errors for Tested Matrices, Algorithms and Number of

Processors

6. Conclusions. Some obvious conclusions can be drawn from the test results. The

three ScaLAPACK algorithms perform roughly the same with PDSYEVR, the latest code
implementing the new MRRR algorithm, scaling slightly worse. Memory requirements
for these three algorithms are currently the same, but it is expected that the MRRR
version, PDSYEVR, will eventually be implemented requiring only 2n2 + O(n) memory
locations. When this occurs, PDSYEVR will have a significant advantage over the other
two. PDSYEVX had the significant drawback of the amount of workspace required to

 22

ensure re-orthogonalized eigenvectors being unknown in advance and of the possibility
of unacceptable results returned due this problem.

PMR3 was competitive on the smaller number of processors, that is, when n divided
by the number of processors was large. The PLAPACK algorithm reducing a matrix to
tridiagonal form did not scale well. Since this step is typically the most time consuming,
PMR3 did not perform well on the larger number of processors even though its
tridiagonal solver was very efficient. PMR3 had the nice property of requiring only 2n2
+O(n) memory locations; thus, larger problems could be solved on a smaller number of
processors.

PDSBTDC was very efficient on matrices with most of the larger elements near the

diagonal, which produced low ranks in some of the off-diagonal blocks. These matrices
are called “heavy” diagonal matrices and occur in applications with significant locality
properties. On the matrices with off-diagonal blocks near full rank, the algorithm did not
perform as well as the others tested. The deflation encountered for these test cases could
not offset its higher computational complexity.

The divide-and-conquer algorithms, PDSYEVD and PDSBTDC, typically computed

eigenvectors with better orthogonality properties – a positive reflection upon the Gu-
Eisenstat method [19] for computing eigenvectors. The residuals for PDSBTDC could
not be directly compared to the other algorithms, but PDSYEVD typically produced
results with smaller residuals as well. PMR3 typically produced larger residuals and
orthogonality errors, although some of these results may be influenced by the same
problems that prevented PMR3 from producing a computed eigensystem for some test
cases.

Acknowledgments. The authors thank R. P. Muller of Sandia Laboratories for
providing the alkane, polyalanine and silicon crystals families of test matrices, R. J.
Hinde of the University of Tennessee for providing the hydrogen with impurities family,
and Guoping Zhang of Indiana State University for providing the polyacetylene and tetra-
cyanoquinodimethane families. We thank Robert van der Geijn, Peter Nagel and Paolo
Bientinesi of the University of Texas for providing the PMR3 code and their assistance
with the installation and porting of PLAPACK and PMR3 and Christof Vömel of
University of California at Berkeley for providing the PDSYEVR code. We also thank
A. S. Bland and Mark R. Fahey and Thomas H. Dunigan of the Oak Ridge National
Laboratory for their invaluable assistance and detailed knowledge of the computing
environment and systems at the ORNL National Center for Computational Sciences.

References.

[1] http://info.nccs.gov/resources/other_resources/cheetah.
[2] D. Antonelli and C. Vömel, LAPACK Working Note 168: ScaLAPACK's Parallel

(MRRR) Algorithm for the Symmetric Eigenvalue Problem, Technical Report
UCB//CSD-05-1399, Computer Science Division, University of California at
Berkeley, Berkeley, CA 2005.

 23

[3] Parallel Engineering and Scientific Subroutine Library for AIX, Version 3
Release 1, and Linux on pSeries, Version 3 Release 1, Guide and Reference,
Publication Number SA22-7906-01, IBM Corporation, Poughkeepsie, NY, 2003.

[4] Y. Bai and R. C. Ward, A Parallel Symmetric Block-Tridiagonal Divide-and-
Conquer Algorithm, Technical Report UT-CS-05-571, Department of Computer
Science, University of Tennessee, Knoxville, TN, 2005.

[5] Y. Bai and R. C. Ward, Parallel Block Tridiagonalization of Real Symmetric
Matrices, Technical Report UT-CS-06-578, Department of Computer Science,
University of Tennessee, Knoxville, TN, 2006.

[6] P. Bientinesi, I. S. Dhillon and R. A. v. d. Geijn, A Parallel Eigensolver for Dense
Symmetric Matrices based on Multiple Relatively Robust Representations, SIAM
J Sci Comput., 27 (2005), pp 43-66.

[7] C. H. Bischof, B. Lang and X. Sun, A Framework for Symmetric Band Reduction,
Technical Report ANL/MCS-P586-0496, Argonne National Laboratory, Argonne,
IL, 1996.

[8] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. W. Demmel, I. Dhillon, J. J.
Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker and R. C.
Whaley, ScaLAPACK Users' Guide, SIAM Press, Philadelphia, PA, 1997.

[9] J. J. M. Cuppen, A Divide and Conquer Method for the Symmetric Tridiagonal
Eigenproblem, Numer. Math., 36 (1981), pp. 177-195.

[10] M. J. S. Dewar and W. Thiel, MNDO, Journal of the American Chemical Society,
99 (1977), pp. 4899.

[11] I. S. Dhillon and B. N. Parlett, Multiple representations to compute orthogonal
eigenvectors of symmetric tridiagonal matrices, Linear Algebra and Appl., 387
(2004), pp. 1-28.

[12] I. S. Dhillon, B. N. Parlett and C. Vömel, LAPACK Working Note 162: The
Design and Implementation of the MRRR Algorithm, Technical Report
UCB//CSD-04-1346, Computer Science Division, University of California at
Berkeley, Berkeley, CA, 2004.

[13] I. S. Dhillon, B. N. Parlett and C. Vömel, Glued Matrices and the MRRR
Algorithm, SIAM J Sci. Comput., 27 (2005), pp. 496-510.

[14] R. M. Dreizler and E. K. U. Gross, Density Functional Theory, Springer-Verlag,
Berlin/Heidelberg/New York/Tokyo, 1993.

[15] W. N. Gansterer, D. F. Kvasnicka and C. W. Ueberhuber, Multi-Sweep
Algorithms for the Symmetric Eigenproblem, in VECPAR'98 -- Third
International Conference for Vector and Parallel Processing, J. M. L. M. Palma, J.
J. Dongarra and V. Hernandez, eds., Springer-Verlag, Berlin/Heidelberg/New
York/Tokyo,1998, pp. 20-28.

[16] W. N. Gansterer, R. C. Ward, Y. Bai and R. M. Day, A Framework for
Approximating Eigenpairs in Electronic Structure Computations, IEEE
Computing in Science & Engineering, 6 (2004), pp. 50--59.

[17] W. N. Gansterer, R. C. Ward, R. P. Muller and W. A. Goddard III, Computing
Approximate Eigenpairs of Symmetric Block Tridiagonal Matrices, SIAM J Sci.
Comput., 25 (2003), pp. 65-85.

[18] R. A. v. d. Geijn, Using PLAPACK: Parallel Linear Algebra Package, The MIT
Press, 1997.

 24

[19] M. Gu and S. C. Eisenstat, A Divide-and-Conquer Algorithm for the Symmetric
Tridiagonal Eigenproblem, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 172-191.

[20] R. J. Hinde, Infrared-active vibron bands associated with substitutional impurities
in solid parahydrogen, J. Chem Phys, 119 (2003), pp. 6-9.

[21] J. Hubbard, Electron Correlations in Narrow Energy Bands, Proc. Roy. Soc.
London, A276 (1963), pp. 238-257.

[22] R. P. Muller, J.-M. Langlois, M. N. Ringnalda, R. A. Friesner and W. A. Goddard
III, A Generalized Direct Inversion in the Iterative Subspace Approach for
Generalized Valence Bond Wave Functions, J. Chem. Phys., 100 (1994), pp.
1226.

[23] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM Press (reprinted version
of Prentice Hall), Philadelphia, PA, 1997.

[24] B. N. Parlett and I. S. Dhillon, Orthogonal eigenvectors and relative gaps, SIAM
J Matrix Anal. Appl., 25 (2004), pp. 858-899.

[25] B. N. Parlett and I. S. Dhillon, Relatively robust representations of symmetric
tridiagonals, Linear Algebra and Appl., 309 (2000), pp. 121-151.

[26] R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules,
Oxford University Press, New York, 1989.

[27] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation
Made Simple, Phys. Rev. Lett., 77 (1996), pp. 3865-3868.

[28] J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory,
McGraw-Hill, New York,1st, 1970.

[29] C. C. J. Roothaan, New Developments in Molecular Orbital Theory, Reviews of
Modern Physics, 23 (1951), pp. 69.

[30] W. P. Su, J. R. Schrieffer and A. J. Heeger, Soliton Excitations in Polyacetylene,
Phys Rev B, 22 (1980), pp. 2099-2111.

[31] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, McGraw-Hill,
Berkeley, CA, 1989.

[32] F. Tisseur and J. Dongarra, A Parallel Divide and Conquer Algorithm for the
Symmetric Eigenvalue Problem on Distributed Memory Architectures, SIAM J.
Sci. Comput., 20 (1999), pp. 2223-2236.

[33] Robert C. Ward, Yihua Bai, and Justin Pratt, Performance of Parallel
Eigensolvers on Electronic Structure Calculations, Technical Report UT-CS-05-
560, Department of Computer Science, University of Tennessee, Knoxville, TN
2005.

[34] Steven R. White, Density Matrix Formulation for Quantum Renormalization
Groups, Phys. Rev. Lett., 69 (1992), pp. 2863-2866.

 25

	The Fock matrix from the C502H1006 alkane with n = 3014 was included in our performance study. Figure 3.1 provides a picture of the element magnitudes.
	We include the Fock matrix derived by 544 Silicon crystals in our tests, which yields a matrix of order 8320. Figure 3.3 shows a picture of this test matrix.
	The matrix used in our tests from this family involves multiple layers of molecular couplings. The matrix contains 716,273 nonzero elements (that is, 0.42% sparse), and all the nonzero elements are between -10 and -0.015. Its zero-nonzero structure is given in Figure 3.4. We test our dense parallel solvers on this matrix in spite of its obvious sparsity. Other matrices in this family are more dense but, as expected, produce very similar timing results.
	Twenty of the nodes have 32 GBytes of SMP memory each, five nodes have 64 GBytes, and two have 128 GBytes; thus, the total available main memory on the system is 1.2 TBytes. Access to data residing off-node is via the interconnect at a slower speed, resulting in a non-uniform memory access (NUMA) system. In addition, 14 nodes have 160 GB of local temporary disk space.
	The Power4 memory hierarchy consists of 3 levels of cache with prefetching. The first and second levels are on-chip. The split L1 instruction and data caches are 128 KBytes and 64 KBytes respectively or 64 KBytes and 32 KBytes respectively per processor. The unified L2 cache is 1.5 MBytes and is shared between the 2 processors. The L3 cache also shared by the 2 processors is 32 MBytes and is located on a separate chip.
	The below area charts present the average for each algorithm over all test matrices of the percentage of time spent in each step as a function of the number of processors. As is obvious, the reduction step continues to dominate eigensolvers. The below charts also illustrate the fact that PMR3’s reduction step did not perform as well as PDSYEVD’s or PDSYEVR’s on most test cases, which is one reason PMR3 did not usually perform as well as those two algorithms. The tridiagonal solver in PMR3 was extremely efficient and was almost always the fastest tridiagonal solver of the three. Certainly part of its speed in comparison to PDSYEVR is due to the latter incorporating some recent theoretical results in an effort to compute more accurate eigenvectors.

