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Abstract: A series of genome-scale algorithms and high-performance implementations
is described and shown to be useful in the genetic analysis of gene transcription. With
them it is possible to address common questions such as: “are the sets of genes co-
expressed under one type of conditions the same as those sets co-expressed under an-
other?” A new noise-adaptive graph algorithm, dubbed “paraclique,” is introduced and
analyzed for use in biological hypotheses testing. A notion of vertex coverage is also
devised, based on vertex-disjoint paths within correlation graphs, and used to determine
the identity, proportion and number of transcripts connected to individual phenotypes
and quantitative trait loci (QTL) regulatory models. A major goal is to identify which,
among a set of candidate genes, are the most likely regulators of trait variation. These
methods are applied in an effort to identify multiple-QTL regulatory models for large
groups of genetically co-expressed genes, and to extrapolate the consequences of this
genetic variation on phenotypes observed across levels of biological scale through the
evaluation of vertex coverage. This approach is furthermore applied to definitions of
homology-based gene sets, and the incorporation of categorical data such as known
gene pathways. In all these tasks discrete mathematics and combinatorial algorithms
form organizing principles upon which methods and implementations are based.

Keywords: Microarray Analysis, Putative Co-Regulation, Quantitative Trait Loci, Reg-
ulatory Models

1 Introduction

We describe ongoing research efforts aimed at developing, implementing and validating
graph theoretical approaches and high-performance computing implementations for the
systems genetic analysis of high throughput molecular phenotypes in relation to higher
order systems-level traits. Present approaches to these problems typically deal only with
individual genes or small sets of genes and a small handful of systems phenotypes. Early
analytic approaches relied primarily on simplifying assumptions that only a single locus
is involved in gene regulation [12, 18, 36]. This is despite widespread acknowledgment
that gene expression is a complex phenotype regulated by multiple genetic and environ-
mental factors. It has been simply a limitation of the commonly employed analytic tools,
which only evaluate one locus at a time. Recent studies have systematically examined
two-locus interactions [11], but we have observed regulation by larger combinations of
loci. To search the model space for the best mufti-locus modeling, arbitrary filtering



of the data is often required to reduce the problem size to a manageable size. Instead,
we represent the entire data set in a graph theoretical context, and employ a unique
top-down approach. We transform the expression genetic covariance matrix into a sim-
ple, undirected, unweighted graph, and extract pure groups of highly inter-correlated
expression traits. These groups represent a much smaller set of traits that are then sub-
ject to mapping analysis. We examine the connectivity among these sets and analyze
the molecular, biochemical and genetic regulatory commonality of connected genes us-
ing novel and existing bioinformatics tools. We also develop data-driven hypotheses to
explain the mechanisms of genetic perturbations and variation as a means of defining
global consequences of individual differences on tissue structure and function.

Much of our work is motivated by prior studies of brain gene expression and mRNA
abundance levels. These are complex phenotypes regulated by multiple genetic and en-
vironmental factors [21]. We have previously performed genome-wide mapping 3 of the
loci that modulate brain gene expression assayed on microarrays in a genetic refer-
ence population, and explored correlations of expression and complex phenotypes [20].
These and other transcriptome mapping studies have revealed several major “trans-
bands,” that is, loci that regulate large numbers of transcripts encoded across the genome
[33]. For example, we have recently identified at least seven loci that act in combination
to regulate large numbers of transcripts encoding synaptic proteins and transcription or
translation machinery [18]. Previous studies of genetic analysis of gene expression re-
port trans-bands that reflect a high degree of covariance in the gene expression data [12,
16, 30, 36].

2 Quantitative Trait Loci and Regulatory Models

The sources of genetic covariation, used here to define edge weights, are the genetic
polymorphisms that occur naturally among individuals. These differences, acting first
on the molecular scale, exert their effects through time, space and tissue compartment
to influence traits as diverse as morphology, physiology and behavior. Because the ge-
netic variation and covariation that we seek to explain is continuous (or quantitative)
in nature, they are referred to as quantitative traits, determined by multiple genes and
environmental conditions. To identify the genes (here literally referring to the heritable
source of variation, not strictly to a particular class of genome features), experimental
crosses are performed to shuffle genotypes from two genomes through meiotic recom-
bination. For example, mouse strains C57BL/6J (B) and DBA/2J (D) are crossed, gen-
erating an F1 population with one copy of the B allele and one copy of the D allele
at every location throughout the genome. These mice are crossed again to create an
F2 generation, each member of which has a unique complement of shuffled B and D
genomes, that is, they possess either two B alleles, a B and a D allele, or two D alle-
les at each locus. Quantitative techniques have been developed to associate the vectors
of polymorphic states (genotypes) at known locations throughout the genome with the
vector of phenotypes [23, 34]. Statistically significant predictive genotype-phenotype

3 Our transcriptomic data is publicly accessible in the WebQTL system www.webqtl.org. This
tool allows systems genetic analysis of single genes or small sets of genes using a bottom-up
approach.



relations define quantitative trait loci (QTLs). Because the marker is not typically the
actual site of the polymorphism, interpolative methods have been developed to estimate
the distance of the QTL from the marker and the strength of the association. Using
multiple-regression and model-fitting methods, the true complexity of the phenotypic
variation can be modeled through the consideration of multiple loci and environmental
factors as predictors [13].

The typical experimental mapping population is bred once for each experiment,
and the unique assortment of genotypes that result can never be retrieved. Mouse pan-
els have been in use since the early 1980’s, however, that can be used as a retrievable
reference population. These populations, called recombinant inbred lines (henceforth
Rill) consist of the progeny of an F2 cross that have been inbred for over twenty
generations. The importance of these panels is that they allow population genetics
methods to be applied to systems biology, by exploiting naturally occurring polymor-
phisms to determine the membership of biological networks that transcend time, space
and tissue compartment. The largest of these sets contains eighty lines [35], and a
large 1024 strain set is being bred at the Oak Ridge National Laboratory [22]. The
genotypes are obtained at a very high precision and stored in public repositories such
as www.genenetwork.org (encompassing WebQTL [19]) for analysis. Recently, geno-
types have been identified at 15,000 loci using the Illumina SNP genotyping system
(http://www.well.ox.ac.uk/mouse/INBREDS/RIL/index.shtml). Because the lines are
inbred, attributes of the lines, whether they be genotypes, phenotypes, or high preci-
sion molecular trait data including microarray, can be aggregated indefinitely to form a
single data matrix and analyzed using correlation techniques [20]. Phenotypic correla-
tions can be partitioned into environmental and genetic sources of covariance. When the
correlations are obtained on the phenotypic means based on subsampling of individuals
within line, they can often be interpreted to be genetic correlations. This is particularly
true if the trait data are obtained in independent sets of individuals. In transcription pro-
filing, the multiple measures are observed in the same individuals, and it is possible,
especially with low sample sizes, that these correlations are also largely environmen-
tally driven.

The application of QTL mapping to microarrays, often termed “genetical genomics,”
was first reported in yeast [12], and has since been successfully performed in F2 [36]
and RIL [16, 18] mouse populations. In recent work [18], we have detected the presence
of trans-QTL bands (locations in the genome that regulate hundreds of distally located
transcript abundances) that regulate co-expression in the central nervous system. The
trans-QTL bands are typically found by fitting single-locus models across the genome,
and then, at locations throughout the genome, counting the number of transcripts for
which the best fitting peak is found at that location. This bottom-up approach requires
several assumptions that do not always hold, notably, that each transcript abundance is
regulated by a single genetic locus. We have taken a top-down approach to this prob-
lem. We use graph algorithms first to decompose the genetic correlation matrix so as to
identify sets of putatively co-expressed phenotypes, and then to determine the best mul-
tiple locus models to determine their regulation. Each of the sets of phenotypes that we
have identified is regulated by a combination of the trans-QTL bands. This top-down



approach yields tremendous advantages due to the enormous computational demands
that would be incurred if searching the entire model space.

Fundamental to this approach is the use of what we call “paracliques.” Informally,
a paraclique is an extremely densely-connected subgraph, but one that may be miss-
ing a small number of edges and thus is not, strictly speaking, a clique. In the present
application, this corresponds to a very highly intercorrelated group of genetically co-
regulated genes whose transcript expression levels, as reflected in real and surely some-
what dirty microarray data, show highly significant but not necessarily perfect pair-wise
correlations. By harnessing the computational power of tools such as fixed-parameter
tractability, and then isolating paracliques, we are able to identify considerably denser
subgraphs than are typically produced with traditional clustering algorithms. We have
therefore reduced the immense genetic correlation matrix to a select set of intercorre-
lated modules, and have greatly simplified the discovery of functional significance and
identity of genetic polymorphisms that underlie gene expression variation.

The RILs have been screened on over 1500 diverse phenotypes, and at least ten
gene expression microarray profiling studies are completed or in progress in the RILs,
which include several mouse, rat and plant species. The coverage of each paraclique
(to be introduced in the sequel) by genotypes is determined. In this case, p-values are
used as edge weights, due to the diverse sample sizes and correlation metrics applied to
the data. The result is a graph of gene-to-phenotype relations. It consists of phenotype
to expression relations, co-expression to regulatory models, and models to independent
loci. See Figure 1.

3 Clique, Putative Co-Regulation and Fixed-Parameter
Tractability

We adopt graph theoretical approaches to analyze the huge correlation matrix that re-
sults from a microarray experiment that records expression levels over thousands of
probes conducted over many conditions. The matrix is transformed into a complete
graph, in which each gene is represented by a vertex, and in which each edge is weighted
by the correlation coefficient of its endpoints. A suitable threshold, t, is then chosen.
We are currently employing a variety of techniques to make this selection [32]. These
include the use of functional similarity, ontological enrichment, known gene product
interactions, and even methods based on spectral graph theory. A high-pass filter is ap-
plied to eliminate any edge whose weight is less than t. At this point, the weight of any
remaining edge is ignored. This procedure produces a simple, undirected, unweighted
graph for subsequent study. Note that all genes remain in the analysis. It is only the
weakest correlations that are discarded.

A clique [10] in this new graph denotes a set of genes with the interesting property
that every pair of its elements is highly correlated. This is widely interpreted as sug-
gestive of putative co-regulation over the conditions in which the experiment was per-
formed. Clique finding can be viewed as an especially stringent graph-theoretical form
of clustering for gene co-expression data. Although clique presents an exceedingly dif-
ficult computational problem, its advantages are many. It is particularly noteworthy that
a vertex can reside in more than one clique, just as a gene can participate in more than



Fig. 1. Systems genetics can be viewed as a graph theoretical problem. With gene expression
analysis (green), groups of co-expressed genes aka cliques are assembled into larger, disjoint
paracliques. These can then be examined for coverage to phenotypes (yellow) and QTL models
(blue) made of multiple single regulatory loci (red).

one regulatory network. A huge variety of other clustering strategies are known that at-
tempt to organize multivariate data into groups with approximately similar expression
patterns [7–9, 27–29, 37]. Like ours, most methods build upon a correlation measure
between expression levels to calculate a distance metric of similarity (or dissimilarity)
of expression between each gene pair. There are several important limitations, how-
ever, to the vast majority of clustering algorithms that lie in contrast to the realities of
biology. One such limitation is that the clusters these methods produce are disjoint, re-
quiring that a gene be assigned to only one cluster. While this simplifies the amount
of data to be evaluated, it places an artificial limitation on the biology under study be-
cause many genes play important roles in multiple but distinct pathways [14]. There
are recent clustering techniques, for example those employing factor analysis [3], that
do not require exclusive cluster membership for single genes. Unfortunately, these tend
to produce biologically uninterpretable factors without the incorporation of prior bio-
logical information [26]. Another important limitation is that most of the measures of
similarity used by current clustering algorithms do not permit the recognition of neg-
ative correlations, which are common and often equally meaningful from a biological
perspective.

Ours is in fact a very general approach. Correlations between mRNA abundances
and other molecular phenotype levels can be used as well to describe an edge-weighted



graph, in which each vertex represents a measured attribute (e.g., gene expression, be-
havior or genotype), and in which an edge between two attributes is weighted with the
appropriate correlation coefficient. As with microarray data, this graph can be enor-
mous. It is built from the entire trait x trait correlation matrix. A variety of graph al-
gorithms can now be applied, in particular those designed to extract densely-connected
subgraphs. By definition the most densely connected subgraphs of all are of course
again cliques. A clique in this context may help identify an important biological mod-
ule (e.g., a subunit of a protein complex). Alternately, it may point to correlation only
when a strong driving biological force causes its elements to co-vary. Clique-centric
tools provide us with powerful techniques for the study of highly interconnected groups
of traits.

We typically seek all maximal cliques4, but it can be folly to try to compute them
without first knowing a bound on their size. To do this, we solve maximum clique with
the aid of fixed-parameter tractability (FPT).

A problem is FPT if it has an algorithm that runs in O(f(k)nc) time, where n
is the problem size, k is the input parameter, and c is a constant independent of
both n and k.

Clique is not FPT, however, unless the W hierarchy5 collapses [24]. Thus, we focus
instead on clique’s complementary dual, the vertex cover problem, and on G ′, the com-
plement of G. (G′ has the same vertex set as G, but edges present in G are absent in G ′

and vice versa.) Both clique and vertex cover are NP-complete. Unlike clique, how-
ever, vertex cover is FPT. The relevant observation here is this: a vertex cover of size k
in G′ turns out to be exactly the complement of a clique of size n−k in G. We therefore
search for a minimum vertex cover in G ′, thereby finding the desired maximum clique
in G. Currently, the fastest known vertex cover algorithm runs in O(1.2759 kk1.5 + kn)
time [17]. The requisite exponential growth (modulo P �= NP) is thus reduced to a
mere additive term, making it realistic now to consider the search for cliques of im-
mense sizes. Some of our recent progress on FPT and maximum clique is featured in
[1, 2]. Our latest work on high performance solutions to maximal clique enumeration
can be found in [39].

4 Noise, Overlap and the Paraclique Method

Clique is an ideal cluster definition, the gold standard. Every vertex (transcript) in a
clique must be highly correlated with all others in that clique by definition. Microarray
data, on the other hand, at least as generated under current technologies, are inherently
noisy. It seems highly unlikely that noise alone could cause an entire clique’s worth

4 A maximal clique in a graph G is one that is locally optimal. That is, it is a complete subgraph
with the property that no new vertex in G can be added to it. It should not be confused with
the more common notion of maximum clique, which is a largest clique in G.

5 The W hierarchy, whose lowest level is FPT, can be viewed as a fixed-parameter analog of the
polynomial hierarchy, whose lowest level is P . Such a collapse is widely viewed as an exceed-
ingly unlikely event, roughly on a par with the likelihood of the collapse of the polynomial
hierarchy.



of correlation coefficients to be excessively high, whereas common clustering methods
including KNN and K-Means can allow transcripts into a group that are related due to
noise. Thus, in contrast to many other popular approaches, clique does not seem to be
plagued with false positives. On the other hand, if even one coefficient is incorrectly
found to be too low, then the clique is lost, equaling a false negative. Several edges may
even be missing from the largest subgraphs. The result is that a typical clique analysis
may yield exceedingly large numbers of modest-sized, highly-overlapping cliques [31].
To aggregate these data, we want to solve something akin to dense-k-subgraph [25],
which is NP-complete even on graphs of maximum degree three.

To accomplish this we have developed a novel algorithmic approach that we term
paraclique. Roughly speaking, a paraclique is a clique augmented with vertices in a
highly controlled manner to maintain density. In what follows we describe the para-
clique algorithm in pidgin Algol. It uses what we term a glom factor to latch onto new
vertices, and an optional threshold to check the original weights of edges discarded by
the high pass filter.

paraclique (graph G, glom factor g, threshold t)
set P to C, some maximum clique in G
set P ′ to ∅

while P �= P ′ do
set P ′ to P
for every v ∈ V − P do

if v is adjacent to at least g members of P ′

then if the weight of each edge connecting v to P ′ before filtering is at least t
then set P to P ∪ v

end for
end while

return P

Although our interest is focused on real and not synthetic data, it is not at all difficult
to prove the following.

Theorem. For any graph G, with g set to |C|− 1 the edge density of P as computed by
the paraclique algorithm is at least 50% as long as |P | ≤ 2|C|.

Paraclique can be iterated as long as needed, excising from G the current value of P
at each pass. Empirical testing on real microarray data has been revealing. If one merely
augments a clique with one- and two-neighborhoods, the edge density rapidly falls to
the 10− 20% range. But with paraclique, if we set g to |C|− 1, then edge density tends
to remain above 90% (even with t set to 0). All this is accomplished while the sizes
of the paracliques generated are roughly twice the sizes of the respective cliques from
which each was constructed.



5 Sample Results

We have applied our methods to mouse brain gene expression data collected by Robert
W. Williams and colleagues and described in [18]. In the genetic analysis of this data,
several major trans-regulatory QTLs were identified using a bottom up approach. Our
first application of clique-centric analysis [4] to this data was performed on MAS5.0
normalized brain gene expression data using Spearman’s rank correlations. We began
with a threshold setting of 0.50 and, using our FPT-based algorithms, consumed roughly
a week of CPU time on a 32-processor cluster to determine that the maximum clique
size was 369. Analyzing cliques of this size was deemed to be beyond the current capa-
bility of effective biological verification methods. We therefore iterated over a variety
of thresholds until we settled on a relatively high |r| ≥ 0.85 value to filter the edge-
weighted graph. This analysis revealed 5227 maximal cliques with a maximum clique
size of 17. See Figure 2.

Fig. 2. Clique size distribution in MAS5.0 normalized brain.

The gene whose transcript is represented by far in the greatest number of maximal
cliques is Lin7c (also knows as Veli3). This gene forms a complex with clique member
Cask and Mint1 to participate in the coupling of cell adhesion models to synaptic vesi-
cle cycling [15]. This complex plays a role in the cycling of numerous neurotransmitter



receptors, including Htr2c [6]. Other Lin7c clique members include Gs2na, which is a
synapse and soma localized gene also involved in protein-protein interactions with con-
sequences on locomotor behavior [5]. For this dataset it is particularly promising that
clique-centric analysis has identified groups of genes encoding proteins that physically
interact at the synapse. These cliques are highly overlapping. Simple array noise can
often be responsible for separating a group of inter-correlated transcripts into a huge
number of highly similar cliques, each varying due to the presence of a small number
of missing edges. The annotation and interpretation of such a result is quite challeng-
ing. This challenge is even more pronounced with RMA normalizations, because of an
overall increase in correlation coefficient values and with it an increase in graph density.

In subsequent analyses, we again studied the aforementioned brain gene expression
data. We kept the threshold at 0.85, but used the RMA normalization package due to
its greater precision. Correlation graph density is greatly affected by RMA. The max-
imum clique size increased from 17 to 280; the number of maximal cliques increased
from 5227 to a value in excess of 9.5 million (where we stopped counting). Dimen-
sional reduction using paraclique produced highly-purified gene sets, while maintain-
ing densely-connected subgraphs and consolidating the overwhelming number of over-
lapping cliques. Millions of maximal cliques were reduced to a mere 31 paracliques,
ranging in size from 12 to 466, with each paraclique having an edge density in excess
of 95%. Thus, as designed, the paraclique algorithm is an attempt to correct for noise.
It extracts dense, disjoint subgraphs. By definition, the majority of the interconnections
among all transcripts must be present. This does not preclude the presence of edges
between paracliques. We have observed that these dense subgraphs are marked by in-
terconnectivity at interfaces between only a few vertices. Thus there are some vertices
with high-coverage of multiple paracliques. The corresponding genes are likely to be
important players in the regulatory networks with interconnections to these transcripts.

6 Impact

Mapping the QTL regulators of paraclique expression reveals that trans-QTL bands do
not act independently, but rather, they act in concert to regulate simultaneously over
1700 transcripts. The paraclique algorithm has given us an unprecedented and simul-
taneous view of all of transcriptome QTL data. Using a derivative of the cluster map
display designed for WebQTL [19], it is possible to visualize the combinations of trans
QTL bands that are responsible for regulation of the paracliques. Using paraclique, we
were able to decompose the genetic co-expression matrix into groups of transcripts with
shared regulatory architecture, and have demonstrated that the trans-bands act in con-
cert, as opposed to singly to regulate transcription. This result could not be obtained
using a bottom up approach, which presupposes single regulatory loci, although we did
see indications of this structure by simply mapping many functionally related transcripts
in parallel. See Figure 3.

Once these key loci are isolated, the challenge is to identify the actual pathways
and genes that are involved in biological networks that are perturbed by the genetic
polymorphism. A plethora of annotation tools aimed at understanding gene sets have
emerged over the past few years. The vast majority of genes that are co-expressed in the



Fig. 3. Trans-QTL bands as shown in the lower panel are compared to the genetic regulation
of paracliques as shown in the upper panel. The mouse genome is represented on the x-axis of
both plots. The lower plot is courtesy of Nature Genetics [18]. In the upper plot, QTL members
of three paracliques are plotted in parallel. Warm colors represent locations where the DBA/2J
alleles decrease in expression levels. Cool colors represent locations where C57BL/6J alleles
increase in expression levels. Each paraclique is regulated by a unique combination of trans-QTL
loci.

paraclique graph are related to the neuronal synapse, and in particular the transport and
translation of mRNAs at the dendrites. One of the compelling candidate genes for the
regulatory locus at chromosome 1 is Mtap2, which is located in the QTL region, and is
an expression correlate of transcripts in the region. See Figure 4.

7 Candidate Gene Selection

A QTL may contain tens to hundreds of genes, as was illustrated in Figure 3. The iden-
tification of candidate genes in a QTL region can be aided by an analysis of multiple
converging evidences so as to rank these genes. Let us discuss just two of these evi-
dences.



Fig. 4. An example of genetic correlation scatter plot revealing a high correlation between Kif5a
and Mtap2 abundance.

In the first approach, we integrate simple edge densities with genomic data to iden-
tify candidate regulators. We have observed that a small number of vertices within para-
cliques are highly adjacent to vertices in other paracliques. By examining the percentage
of possible adjacent edges observed among paraclique members, we are able to identify
the vertices at the interface of two or more paracliques. By further overlaying infor-
mation regarding the genomic location of the transcripts represented by these vertices
and comparing this position to the location of QTLs, we are able to identify paraclique
members that contain the causative polymorphisms responsible for the covariance of
paracliques. This approach is not exclusionary, nor is it fully inclusionary. This is be-
cause expression data is not available for some genes in the QTL interval. Moreover, in
other cases, the polymorphism has functional effects on the gene but does not influence
transcript abundance.

In the second approach, we borrow a page from evolutionary theory, which suggests
that genes residing in one of many redundant paths are more mutable than those that
are in exclusive pathways [38]. Suppose vertex a is a transcript abundance or higher
order phenotype, and suppose genes b, c, d, e and f are the neighbors of a (determined
by genetic correlation of transcript abundance to this phenotype in RI lines). We seek
to find redundant pathways, aka vertex-disjoint paths, in a’s gene neighborhood. See
Figure 5.

Consider, for example, genes b and e. They may be adjacent via a path of length
one, as shown in green. Alternately, they may be connected by one or more paths of
length two or more within a’s neighborhood, as shown in blue. In fact they may even



Fig. 5. A phenotype-centered gene neighborhood graph. Vertex connectivity is used to identify
genes that are more robust to mutation. Vertex d represents a gene that is in the neighborhood of
the phenotype of interest, a, based on genetic correlations in a reference population. Because d is
a member of several vertex disjoint paths between b and e, it is more robust to perturbations than
other genes in the network.

be connected by one or more paths of length two or more via genes not in a’s neigh-
borhood, as shown in red. Because one example of each type is depicted in Figure 5,
and because these paths are vertex disjoint, we would in this case say that b and e are
3-connected. The biological interpretation is that three distinct pathways join b and e,
thereby providing redundancy, around d. Thus, mutations in d are likely to be accom-
modated by other alternate pathways. We will use a min-max characterization to score a
gene in the neighborhood of a phenotype. To illustrate, let x, y and z denote three such
genes with x �= y �= z. The score of x relative to y and z, denoted Ryz(x), is the maxi-
mum number of vertex-disjoint paths, exclusive of a, that remain to connect y and z if
x is eliminated from the phenotype-centered-gene-neighborhood graph. The robustness
score of x, denoted R(x), is the minimum value of Ryz(x) taken over all pairs y and z
for which x lies on some path between y and z. In figure 5, for example, R be(d) = 2,
because the elimination of d leaves the two paths b − e and b − g − h − f − e. But all
paths between c and e must go through d, and so R ce(d) = R(d) = 0.

8 Vertex Coverage and Gene-to-Phenotype Networks

Determining the relationship between higher order phenotypes and paracliques and
other dense subgraphs in the genetic co-expression network is made readily possible



using the reference population. Over 1500 phenotypes have been obtained in mouse re-
combinant inbred strains. The phenotypes are collected in various subsets of the strain
population, and unlike the gene expression correlations, may contain substantial miss-
ing in a non-uniform pattern across the data matrix. We have thus used p-value for the
genetic correlation as an edge weight threshold. An example is shown in Figure 6, in
which a small paraclique of brain transcript abundances containing an inwardly rectify-
ing voltage-gated potassium channel, Kcnj9, is heavily involved in behavioral variation
and shown to be related to blood alcohol at the return of the righting reflex and prefer-
ence for sweet solutions.

Fig. 6. At an edge weight threshold of p < .05, the phenotypes 10472 and 10554, shown in
green, cover 100% of the paraclique members. Phenotype 10040 covers 95.42% of the paraclique
members. Phenotype vertex labels are as follows: 10040 - BEC at return of Righting Reflex
10472, 10554 - Saccaharin preference basal and after EtOH.



9 Scalability, Data Dimensionality, and Directions for Future
Research

An exciting potential of systems genetics is continually to aggregate biological data in
reference populations across all levels of biological scale in a highly complex multi-
cellular organism, the laboratory mouse. Already, there are massive numbers of unique
genotype vectors in several existing reference populations, and expression assays for
thousands of genes in at least ten tissue types. At present, there are approximately 1500
higher order phenotypes available in these populations, and many more in collection.
As the reliability and precision of high-throughput proteomics and cell-culture assays
improves, the amount of data available in these lines will increase markedly. Additional
data will produce multiplicative growth in the number of correlations that are defined.
While linear modeling and other parametric approaches have been applied with much
success for known pathways, extracting novel information from data of this scale is
a phenomenal challenge. Discretizing this complex correlational system and applying
advances in graph algorithms have given us an efficient and relatively rapid means for
reducing the data dimensionality and extracting networks of genes and phenotypes. The
approaches that we have illustrated are highly scalable, and are capable of extracting
large sets of related traits from the entire relational system.

In addition to expansive volumes of data, there is a growing complexity to the types
of research questions that can be asked. We are presently developing approaches to
compare graphs collected in a systems genetic context to reflect differences in time,
tissue and treatment effects. Visualization methods and compelling biological validation
of novel results are essential to translate these methods and deliver them to the broader
audience of biologists who are already successfully harnessing the insight into specific
gene-regulatory relations that these public data sets have allowed.
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