
 1

Parallel Block Tridiagonalization of
Real Symmetric Matrices

Yihua Bai*§ and Robert C. Ward*§
Technical Report UT-CS-06-5781

June 2006

Abstract. Two parallel block tridiagonalization algorithms and implementations for dense real symmetric
matrices are presented. Block tridiagonalization is a critical pre-processing step for the block-tridiagonal
divide-and-conquer algorithm for computing eigensystems and is useful for many algorithms desiring the
efficiencies of block structure in matrices. For an “effectively” sparse matrix, which frequently results from
applications with strong locality properties, a heuristic parallel algorithm is used to transform it into a block
tridiagonal matrix such that the eigenvalue errors remain bounded by some prescribed accuracy tolerance.
For a dense matrix without any usable structure, orthogonal transformations are used to reduce it to block
tridiagonal form using mostly level 3 BLAS operations. Numerical experiments show that block-tridiagonal
structure obtained from this algorithm directly affects the computational complexity of the parallel block-
tridiagonal divide-and-conquer eigensolver.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra - Eigenvalues
and eigenvectors (direct and iterative methods); G4 [Mathematical Software]: Algorithm design and
analysis; Parallel and vector implementations; F.2.1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems – Computations on matrices
General Terms: Algorithms, Performance
Additional Key Words and Phrases: Block-tridiagonal matrix, approximate eigenvalues, block divide-and-
conquer, orthogonal block reduction

1. Introduction

Efficient and stable eigen-decomposition algorithms like QR iteration [Francis 1961, Wilkinson

1968], divide-and-conquer [Cuppen 1981, Dongarra and Sorensen 1987, Gu and Eisenstat 1994,

1995], and most recently, MRRR [Dhillon and Parlett 2004, Dhillon et al. 2004] compute eigen-

solutions of a real symmetric matrix to full accuracy. The recently developed block-tridiagonal

divide-and-conquer (BD&C) algorithm [Gansterer et al. 2003] represents a new development in

this field. It computes the eigensystem of a symmetric block-tridiagonal matrix to reduced

accuracy very efficiently without tridiagonalization. The BD&C algorithm benefits from the

reduced accuracy requirement of the eigen-solutions as well as localized data-access pattern. The

BD&C algorithm is particularly effective on nonlinear eigenproblems with strong locality

properties, such as in modern electronic structure calculations. To meet the demand of solving

large eigenvalue problems in electronic structure calculation, an efficient and scalable parallel

implementation of the BD&C algorithm has been developed [Bai and Ward 2005].

 *Department of Computer Science, University of Tennessee, 203 Claxton Complex, 1122 Volunteer
Blvd., Knoxville, TN 37996-3450.
 §This work was partially supported by Oak Ridge National Laboratory’s Computing and
Computational Sciences Directorate and the University of Tennessee’s Science Alliance Program.
 1Available from: http://www.cs.utk.edu/~library/2006.html

 2

Electronic structure determines the properties of materials, such as the hardness, elasticity,

conductivity, superconductivity, photoelectric efficiency, optical reflectivity and absorption, heat

transfer, material structure, and so on. Therefore, the computation of electronic structure plays a

critical role in simulation and discovery of new materials. One popular approach to these

computations is based on the Hartree-Fock method. The Hartree-Fock equation is a non-linear

integro-differential equation. This equation is further converted into a non-linear symmetric

eigenvalue problem so that it can be solved numerically using an iterative procedure called the

self-consistent field (SCF) method [Szabo and Ostlund 1996]. In each iteration of the SCF

procedure, a linear real symmetric eigenvalue problem is solved. In early and intermediate

iterations, it may be advantageous to require lower accuracy, especially if this significantly saves

execution time. As SCF converges, higher accuracy may be used if necessary to obtain final

results [Szabo and Ostlund 1996].

 The BD&C algorithm is applicable only to block tridiagonal matrices. Although every matrix is

trivially in block tridiagonal form using just two diagonal blocks, the real benefits of the BD&C

algorithm occur when the number of diagonal blocks is much larger. So, block tridiagonal

matrices in this paper refer to such matrices with more than 2 blocks.

 Few matrices generated in electronic structure calculations are block-tridiagonal; most of them

are dense with any structure determined by the chemical and physical properties of materials. For

example, some materials have strong locality properties resulting in a matrix with its larger

elements close to the diagonal and the elements away from the diagonal much smaller. Such

matrices can be approximated with relatively high accuracy by block-tridiagonal matrices.

Unfortunately, some matrices do not possess any usable structure and must be handled as general

dense matrices.

 In this paper, we present two different algorithms and their parallel implementations to

transform symmetric dense matrices into block-tridiagonal form based on their structure. These

algorithms are the essential pre-processing steps for the BD&C algorithm. If the input matrix is

“effectively” sparse (see Section 2.1), we construct with very low computational cost a block-

tridiagonal matrix whose eigensystem approximates that of the original input matrix. Otherwise,

we use orthogonal transformations with very high ratio of level 3 BLAS operations to reduce

efficiently a dense matrix to block-tridiagonal form.

 The rest of this paper is arranged as follows. In Section 2, we present algorithms for the block-

tridiagonalization of “effectively” sparse matrices and of dense matrices without specific

structure. Parallel implementations are presented in Section 3 with the results and analyses of the

numerical tests discussed in Section 4. We conclude our paper in Section 5.

 3

2. Block-tridiagonalization algorithms

The BD&C algorithm computes approximate eigen-solutions of a symmetric block-tridiagonal

matrix

1 1

1 2 2

2

1 1

1

T

T

n n

T
q q

q q

B C
C B C

M RC
B C
C B

×

− −

−

 = ∈

in three steps: problem subdivision, sub-problem solution and synthesis of sub-solutions

[Gansterer et al. 2003]. Among these three steps, the synthesis step dominates the computational

complexity of BD&C. It executes a sequence of matrix multiplications to accumulate

eigenvectors. The calculation of eigen-solutions for each pair of adjacent sub-solutions is called a

merging operation. For each merging operation, the number of matrix multiplications executed is

determined by the approximate rank of the off-diagonal block that connects these two matrix sub-

blocks. As the merging operations proceed, problem sizes become larger and larger. The last

merging operation involves matrix multiplications of order n. One major goal of our block-

tridiagonalization algorithms is to produce at least a few small block sizes for the last merging

operation, in order to reduce computational complexity of BD&C.

 Most matrices generated in real applications do not have a block-tridiagonal structure. We

divide input matrices into two groups: 1) “Effectively” sparse with strong locality properties; 2)

dense without usable structure. For the first type of matrix, in the context of approximate eigen-

solutions with accuracy toleranceτ , we want to construct a block-tridiagonal matrix M from the

original input matrix A such that the maximum eigenvalue error between those of A and M is

bounded by Aτ . For the second type of matrices, we use blocked Householder transformations

to reduce the original matrix A to block-tridiagonal form.

2.1. Block-tridiagonalization of “effectively” sparse matrices (BTS)

We call a dense matrix A “effectively” sparse with respect to a given accuracy toleranceτ , if it

has the property that a large portion of its nonzero entries may be set to zero without influencing

its eigenvalues by more than Aτ . The 6-step heuristic block-tridiagonalization algorithm [Bai

et al. 2004] has been developed to transform a full matrix that is “effectively” sparse into a sparse

matrix, and then find a block tridiagonal structure for the sparse matrix as shown in Fig. 1.

 4

11 12 13 14 1 11 13

21 22 23 24 2 22 23 24

31 32 33 34 3 31 32 33 3

41 42 43 44 4 42 44

1 2 3 4 3

1 1

1

0 0 0
0 0

0
0 0 0

0 0 0

n

n

n n

n

n n n n nn n nn

T

a a a a a a a
a a a a a a a a
a a a a a a a a a

A
a a a a a a a

a a a a a a a

B C
C B

= ⇒

⇒
2 2

2 3

1

1

T

T
q

q q

C
MC B

C
C B

−

−

 =

 Figure 1. Transform a full symmetric matrix into a block-tridiagonal
 matrix [Bai et al. 2004].

 The BTS algorithm partitions τ into two parts, 1 2τ τ τ= + , allowing a portion of the

acceptable error to be used for different steps in the algorithm. The 6 steps of the algorithm are

briefly described below.

 Step 1. Global threshold A with Aτ

 We start with a threshold τ τ′ = , larger than permitted by the accuracy requirement, and

obtain matrix A′ by eliminating all elements in A less than Aτ . For many matrices

resulting from modeling physical phenomena with strong locality properties, most of the elements

will be eliminated. The resultant matrix A′ will contain only the largest elements of A and

would hopefully be sparse.

Step 2. Reorder A′

In this step, A′ is reordered to reduce its bandwidth using the Gibbs-Poole-Stockmeyer

(GPS) algorithm [Gibbs et al. 1976, Lewis 1982]. The bandwidth of A′ may be significantly

reduced by GPS reorder. Thus, the elements of A′ are moved closer to the diagonal. The

permutation matrix P accomplishing this task will be used in Step 3.

Step 3. Permute A with permutation matrix P from Step 2

The permutation matrix P computed in Step 2 is applied to A , resulting in matrix
TA P AP′′ = . The larger elements of A are expected to be closer to the diagonal in A′′ .

Step 4. Target threshold A′′ with 1 Aτ .

 5

In this step, we eliminate those elements far away from the diagonal in matrix A′′ whose

influence on the error of any eigenvalue is negligible compared to 1 Aτ . This step produces

matrix A′′′ such that A A E′′ ′′′= + , with 11
E Aτ< .

It can be shown that the absolute difference between the eigenvalues iλ of A′′ and the

eigenvalues iλ′ of A′′′ for 1 i n≤ ≤ is bounded by [Demmel 1997, Golub and van Loan 1996]

2 1i i E Eλ λ′− ≤ ≤ . (2.1)

Since the eigenvalue errors are bounded by the 1-norm of the error matrix E , we may eliminate

elements of A′′ before each column-wise sum of absolute values of the dropped elements

exceeds 1 Aτ . Note that due to symmetry, for each element ija (1 ,i j n≤ ≤ and i j>) to be

checked, its symmetric counterpart jia must be checked as well.

 Step 5. Covering A′′′ .

The sizes of the diagonal blocks are determined such that the resulting block-tridiagonal matrix

contains all the matrix elements that are effectively nonzero. These are the matrix elements whose

effect on the accuracy of the eigenpair approximation may be non-negligible.

Step 6. Target block reduction (TBR).

As an option, the last step of the BTS algorithm attempts to produce a few small blocks for a

lower computational complexity in the merging operation of the BD&C algorithm.

In Step 4, none of the matrix elements dropped are greater than the given error bound 1 Aτ .

It may be possible to eliminate some of the matrix elements whose absolute values are larger than

the given error bound without causing the accumulative error in the eigenvalues to exceed this

error. For real symmetric matrix A′′′ , the sensitivity analysis on the eigenvalue error as a result

of zeroing matrix element ija′′′ can be estimated by [Wilkinson 1965]

 ()()22 ij i j ij
a x x O aλ ′′′ ′′′∆ = + , (2.2)

where ix , jx are the i-th and j-th entries, respectively, of the eigenvector x corresponding to λ .

Several elements may be eliminated as long as the maximum of the sum of the eigenvalue errors

is less than the error bound 2 Aτ .

Step 6 is only possible if an approximation for the eigenvectors is available. For an iterative

method solving a non-linear eigenvalue problem, like the SCF method, we may use the

eigenvectors from the previous iterations as an approximation. There may be other similar

applications with eigenvector approximations permitting this last step in the algorithm. Using

 6

TBR, we may reduce the size of a few diagonal blocks in the hope that the corresponding off-

diagonal blocks have a lower rank.

2.2. Orthogonal block-tridiagonal reduction of dense matrices (OBR)

If a dense symmetric matrix cannot be transformed into a block-tridiagonal matrix for use by the

BD&C algorithm with little computational effort as described in Section 2.1, we use a sequence

of blocked Householder transformations to reduce the dense matrix to a block-tridiagonal one

with reasonably small block sizes. Similar algorithms have been investigated for the reduction of

a matrix from dense form to banded, then to tridiagonal [Bishof et al. 2000, 2000, Bishof and Van

Loan 1987]. The algorithm reducing the matrix from dense to banded form has been shown to

have a good data access pattern and large portion of level 3 BLAS operations [Bishof et al. 2000,

Dongarra et al. 1989, Gansterer et al. 1998].

 Given a dense symmetric matrix n nA ×∈ , we desire to apply a sequence of orthogonal

transformations to reduce A to a block-tridiagonal matrix M . The orthogonal transformations

zero out elements below the block subdiagonal panel by panel as shown in Figures 2 and 3.

 In a general case, let pb be the number of matrix columns in a blocked orthogonal

transformation, then bin p= is the width and i bm n ip= − is the length of the i-th panel iG , b

is the block size of the reduced block-tridiagonal matrix. Figures 2 and 3 illustrate the case when

bp b= . For blocked orthogonal reduction scheme using Householder transformations, pb must be

no greater than b in order to achieve high ratio of level 3 BLAS operations [Bai 2005].

Let () ()i i i im n m n
iA + × +∈ as illustrated by Figures 2 and 3 be the lower right principal submatrix

of A at the i-th stage of orthogonal reduction. For each matrix panel i im n
iG ×∈ in Figure 2, its

QR factorization i i iG Q R= where i im m
iQ ×∈ and i im n

iR ×∈ is used to reduce A to a block

tridiagonal matrix. Partitioning
0

i
i

R
R =

, where ()()1: ,1:i i
i i n n

R R= is upper triangular, and iA as

 11 12

21 22

i i

i i
i

i i i
i

n m

nA A
A

mA A

=

, (2.3)

then applying iQ , we have

 11

22

i T
i

iT i
i i i

I O I O A R
A

O Q O Q R A
=

. (2.4)

 7

 Figure 2. Matrix A at the i-th stage of orthogonal reduction.

 Figure 3. One step of block reduction for submatrix iA

The diagonal block 11
iA and off-diagonal block iR can be obtained directly, and

1 22 22
i T i

i i iA A Q A Q+ = = . We continue this procedure until the whole matrix A is reduced to a block

tridiagonal matrix M. All the subdiagonal blocks of M except the last one are upper triangular.

The panel width bp needs to be chosen carefully. It should be small enough to keep the cache

miss rate low yet large enough to benefit from data-reuse in level 3 BLAS operations.

Computational complexity analyses show that if bp b≤ where pb is the algorithmic panel

width and b is the block size in the orthogonal block tridiagonal reduction algorithm, the ratio of

level 3 BLAS operations increases with matrix size n for fixed b [Bai 2005]. As shown in

Section 3.2.1, the relationship between pb and b will become important in any parallel

0

iB

 1iA+

 iA

iC

T
iC

 8

implementation of this algorithm. Figure 4 shows that the ratio of level 3 BLAS operations

exceeds 90% quickly as the matrix size increases.

 Figure 4. Ratio of level 3 BLAS operations in OBR with bp b= .

3. Parallel implementation details

The BTS algorithm typically has very low computational complexity. For an effective parallel

implementation, the major issue is to choose a proper parallel matrix distribution pattern and limit

the complexity of data communication. The OBR algorithm is comprised mainly of level 3 BLAS

operations. The key toward an efficient implementation of OBR is the proper choice of sizes b for

tridiagonal blocks, pb for algorithmic panel width, and nb for 2D block cyclic matrix distribution.

In this section, we use α , β and γ to denote the time to start up a data transfer, time to

transfer one data item, and time to perform one floating point computation, respectively.

3.1 Parallel BTS implementation

The BTS algorithm is heuristic and inherently sequential. The floating-point operations in the

algorithm are mainly comparisons and additions, and typically its operation count is ()2O n

[Bai et al. 2004]. Since the original matrix A is symmetric, an operation on any entry ija

inevitably involves its symmetric counterpart jia . If the matrix is not distributed properly, the

performance of parallel BTS could degrade severely as the matrix size n and the number of

processors p increases.

 9

The 2D block cyclic matrix distribution, which is frequently used in scalable parallel dense

matrix algorithms, is not the most suitable data distribution pattern for the BTS algorithm since

the matrix must be traversed column-wise numerous times. Intuitively, a 1D column block

distribution with n p matrix columns assigned to each processor, as shown in Figure 5, for the

matrix is most desirable.

 Figure 5. Matrix A distributed in column blocks.

 If the original input matrix A is distributed in a 2D block cyclic pattern, then it must be

redistributed from 2D to 1D for the parallel implementation of the BTS algorithm. If we assume

that the system buffer is large enough so that each message can be sent and received without

being partitioned into several smaller packages and point-to-point communication (i.e., send and

receive) cannot be overlapped, then the total communication cost in the worst case for matrix

redistribution from 2D block cyclic pattern to 1D column block pattern is

 2 2
2 1D Dt p nα β→ = + .

After the matrix has been redistributed, each processor holds /n p columns, and the parallel

block tridiagonalization is then applied.

In the following sections, we describe in detail the parallel implementation of the 6-step BTS

algorithm with the matrix distributed in 1D column blocks. The accuracy tolerance τ is

partitioned as 1 2τ τ τ= + for target threshold and optional target block reduction, respectively.

3.1.1 6-steps of parallel BTS

 Step 1. Parallel global threshold with Aτ .

 This step is an embarrassingly parallel process. Every processor simultaneously drops elements

ija Aτ< , and stores indices of all elements ija Aτ≥ in compressed sparse row (CSR)

format. The resultant matrix A′ is expected to be very sparse and all its nonzero entries can be

 10

stored on one processor. After thresholding, each processor sends its vectors of indices of

nonzeros to a master processor. The master processor stores indices of all the nonzeros of A′ .

The collection of indices of nonzeros takes ()12 p n nnzα β+ + communication time where

1nnz is the number of nonzeros in A′ . No floating-point operations are involved in this step.

 Step 2. Sequential matrix reorder for parallel BTS.

The most thoroughly studied and parallelized sparse matrix ordering algorithms are nested

dissection and minimum degree algorithms, which are used to minimize the fill-in during LU

factorization of matrices in sparse linear systems [Heath et al. 1990]. Scalable and efficient

parallel implementations of those algorithms such as ParMetis [Karypis and Kumar 1998] are

available. However, the purpose of matrix reordering in the BTS algorithm is to minimize the

bandwidth of a sparse matrix, and the nested dissection and minimum degree methods do not

directly attack this objective. We use the Gibbs-Poole-Stockmeyer (GPS) algorithm [Gibbs et al.

1976, Lewis 1982] for this step since it has also undergone thorough studies and considerable

testing and bandwidth minimization is its goal.

The matrix after global thresholding is expected to be very sparse and can be stored on the

local memory of one processor. Since the reordering consumes a small fraction of computational

time of the BTS, we do not parallelize the reordering step. Instead, only the master processor that

contains the indices of all nonzeros of A′ performs matrix reordering using the GPS algorithm,

while all other processors stay idle. After the permutations are determined, the master processor

broadcasts the permutation matrix P to all other processors.

 Step 3. Parallel symmetric permutation of A .

The permutation matrix P from step 2 is used to permute the matrix A to produce the matrix
TA P AP′′ = . Parallel symmetric matrix permutation can be an expensive step. As shown by the

blue arrow in Figure 6, if two matrix columns are on different processors, the swap of those two

columns invokes communication. In such a case, the communication cost of each swap is

2 2nα β+ . Permutation of matrix rows does not involve any communication. If two rows of a

matrix are to be swapped, local data on each processor are exchanged as shown by the red arrow

in Figure 6. Thus, the worst-case communication cost is bounded by 2n nα β+ .

 Because of the potentially heavy communication, matrix permutation is executed only when it

can significantly reduce the bandwidth of A′ . For the parallel implementation of BTS algorithm,

we permute A when the bandwidth of A′ can be reduced by at least 20%.

 11

 Figure 6. Swaps of rows and columns in parallel matrix permutation.

 Step 4. Parallel target threshold with 1 Aτ .

 In the BTS algorithm, all elements far away from the diagonal of matrix A′′ are eliminated if

their influence on the error of any eigenvalue is less than 1 Aτ . The resultant matrix is

A A E′′′ ′′= + , with 11
E Aτ≤ . Since A′′ is symmetric, for each element ija′′ in the lower

triangular part of A′′ that is checked for elimination, its symmetric counter part jia′′ in the

upper triangular of A′′ must also be checked. Elements ija′′ and jia′′ can be dropped only when

the sum of the absolute values of the dropped elements in both the i-th and the j-th column of A′′

is less than 1 Aτ .

In a parallel matrix distribution, chances are that entries ija′′ and jia′′ are often on two

different processors requiring communications between those two processors, in order to inform

each other whether ija′′ and jia′′ can be dropped simultaneously or not. On the average, this

leads to ()2O n communications.

The communication overhead can be reduced drastically if elements on each processor can be

checked independently without communication. For this purpose, the error bound 1τ is further

split into two equal parts of 1

1
2

τ for the parallel target threshold. Consequently, the error matrix

 12

E is also split into two parts: 1 2E E E= + , where 1E is an upper triangular matrix and 2E is

a lower triangular matrix.

The lower triangular part of A′′ is first checked column by column. An element in the lower

triangular part of A′′ can be eliminated if the sum of the absolute values of the dropped elements

in that column is less than 1

1
2

Aτ . This guarantees that the error matrix 1E satisfies

1 11

1
2

E Aτ≤ . After that, the sum of the absolute values of all dropped elements in each column

of A′′ is broadcasted so that each processor contains a copy of the accumulated error for each

matrix column. Then the upper triangular part of A′′ is checked in a similar way. This

guarantees that the error matrix 2E which contains all the dropped elements in the upper

triangular part of A′′ satisfies 1 2 11
E E Aτ+ ≤ .

 For each eliminated element ija′′ , its symmetric counter part jia′′ is not necessarily eligible for

elimination, and vise versa. In general, from the above procedure, 1E does not equal 2
TE .

Therefore, the sum of those two matrices, 1 2E E+ , is not symmetric. Since matrices E and

A′′′ must be symmetric, we need to symmetrize 1 2E E+ . For the i-th column and row of A′′′ ,

1 i n≤ ≤ , the row index of the last nonzero of column i and the column index of the last nonzero

of row i is compared. The larger index is chosen as the index of the last nonzero for the i-th row

and column as illustrated in Figures 7 and 8. The communication cost in this modified parallel

target threshold algorithm is only ()2 2 log 2 2n p p nα β α β+ + + .

×
×
×

×
×
×

×
 × × × ×
 × × × × ×
 × × ×
 × × × × × ×

× × × × ×
 × × × ×

×

× × × ×

× × ×

× ×

×

×

×
 × × × ×
 × × × × ×
 × × ×
 × × × × × ×

× × × × ×
 × × × ×

× × × ×

×
×

× × × ×

× ××
×

×
×

×

×

×
×

 Figure 7. A′′′ after separate lower Figure 8. Symmetrize A′′′ by
 and upper triangular adding back nonzeros.
 eliminations.

 13

 By using the above approach in our parallel target threshold algorithm, we may not be able to

drop as many elements as we mathematically could and as in the sequential BTS algorithm [Bai

et al. 2004]. However, the difference in the bandwidths produced by sequential BTS and parallel

BTS is typically small as our test results of application matrices show (see Section 4.1.1).

 Step 5. Covering A′′′ .

 After the parallel target threshold step, all processors obtain the row indices of the last nonzero

entries in each column of matrix A′′′ . Each processor redundantly determines the sizes of the

diagonal blocks independently as in the sequential BTS algorithm, so that the resulting block

tridiagonal matrix contains all the matrix elements that are effectively nonzero (i.e., nonzeros

in A ′′′).

 Step 6. Parallel target block reduction using 2 Aτ .

 The BTS algorithm provides the option of Target Block Reduction (TBR) to produce a few

small blocks in matrix A′′′ for a lower computational complexity in the merging operations of

the BD&C algorithm [Bai et al. 2004]. In a merging operation of BD&C, a lower rank of the off-

diagonal block leads to a lower computational complexity. Since the ranks of off-diagonal blocks

are not available during block tridiagonalization, we use the smaller dimension of an off-diagonal

block as an approximation to its rank. TBR uses sensitivity analysis to check elements in each

column/row of an off-diagonal block from outside toward inside for elimination. For the

sensitivity analysis, approximations to the eigenvectors are required (see Section 2.1 step 6). If

approximate eigenvectors are not available, we may set 1τ τ= and 2 0τ = so that this optional

step is not applied.

For the parallel implementation of sensitivity analysis, we assume that the approximate

eigenvector matrix Z is distributed in 2D block cyclic pattern on a processor grid with r

processor rows and c processor columns as would typically be the case. When rows of the

approximate eigenvector matrix are required, they are sent from several processors to one

processor. That is, for each entry ija′′′ to be checked, the i-th and j-th rows of the eigenvector

matrix Z need to be sent to the processor that possesses ija′′′ (see Equation 2.2), which costs

2 2c nα β+ communication time. When several matrix entries in the same column/row are

checked for elimination, the strategy used in parallel TBR is to send all the relevant rows in the

eigenvector matrix to the processor that is applying the sensitivity analysis. For example, as

shown in Figures 9 and 10, if we want to check elements 25b , 52b , 35b and 53b of a matrix B

for elimination, rows 2, 3, and 5 of the eigenvector matrix Z (red shade in Figure 10) are sent to

 14

2P , since 25b and 35b are both on processor 2P . The updated block size will then be broadcast

to all other processors.

 To find diagonal blocks eligible for sensitivity analysis, parallel TBR starts with the smallest

diagonal block. If there are several diagonal blocks with the same size, then the diagonal block

closest to the middle of A′′′ will be selected. The reduction of the size of one diagonal block

leads to the expansion of its neighboring diagonal block(s). To avoid oscillation in block sizes,

after a diagonal block has been compressed, it should not be expanded. Next, the second smallest

diagonal block is selected in a similar manner for sensitivity analysis, and so on.

 Figure 9. Check matrix entries Figure 10. Rows in the eigenvector
 (2,5), (3,5), (5,2) and (5,3). matrix Z for sensitivity
 analysis.

In the sequential BTS implementation, all eligible diagonal blocks are checked for block size

reduction [Bai et al. 2004]. However, this may be too costly for parallel BTS implementation

since communication overhead for collecting and distributing rows of the eigenvector matrix can

be prohibitive. Since our goal is to find small blocks in an attempt to reduce the complexity of the

last few merging operations of BD&C, we restrict the number of diagonal blocks to be checked to

three.

3.1.2 Complexity of parallel BTS

In the sequential BTS algorithm, the computational complexity and the number of data accessed

are both ()2O n [Bai et al. 2004]. For the parallel implementation of BTS algorithm,

 15

computational complexity per processor is ()2O n p . The extra communication cost becomes

the dominant part of the execution time since the time to transfer one floating-point number is

typically much longer than to execute a floating-point operation.

 The total computational and communication cost for parallel BTS as well as the complexity of

matrix redistribution between 2D and 1D at the beginning and end of parallel BTS is

approximately [Bai 2005]

 () ()
2

2 22 2 2 3 2Parallel BTS
nT kn p n kc n kn
p

γ α β
= + + + + + +

where k denotes the number of matrix elements that are checked for elimination in step 6

(typically k << n), and c is the number of processor columns in the 2D distribution of the

eigenvector matrix.

3.2. Parallel OBR implementation

The OBR algorithm reduces a dense matrix A to block tridiagonal form using a sequence of QR

factorizations on column blocks of A , as shown in Figures 2 and 3. The resultant block

tridiagonal matrix is similar to a banded matrix except that the last off-diagonal block is not a

triangular. With minor modification, the parallel implementation of the OBR algorithm can also

be used to reduce a symmetric dense matrix to banded form.

There are parallel implementations of the orthogonal bandwidth reduction algorithm, which

reduce a dense matrix to banded matrix using blocked Householder transformations. One

implementation is based on the Chamelon parallel programming tools [Bishof et al. 1994, Bishof

et al. 1993], and another one uses PLAPACK [Wu et al. 1996]. Our parallel orthogonal block-

tridiagonal reduction is implemented under ScaLAPACK environment. Input matrix n nA ×∈ is

distributed in 2D block cyclic pattern adopted by ScaLAPACK. A critical issue in the orthogonal

reduction from a dense matrix to a block tridiagonal one is how to choose the algorithmic panel

width bp of each QR factorization, the block size b of the resultant block-tridiagonal matrix,

and the block size bn for 2D block cyclic matrix distribution.

3.2.1 Determination of b , bp and bn
First, we consider the relationship between b and bp . Block size b directly affects the

computational complexity of the BD&C merging operations. When b is large, the rank of the

off-diagonal blocks tends to be large as well, which increases the computational complexity of

the BD&C merging operations. Therefore we wish to obtain a block tridiagonal matrix with small

block size b . However, as explained in Section 2.2, b should not be smaller than bp .

 16

Therefore, we set bb p= . If we choose a small panel width bp , the resultant block size b is

also small, but we may not be able to obtain full performance of level 3 BLAS operations. If bp

is large, we may obtain slightly better performance during the reduction; but then b will be

large and the rank of the off-diagonal blocks will likely be large as well. The reduction of

execution time in OBR is not likely to compensate the increased execution time from BD&C. See

Section 4.2 for some experimental results on pb.

Second, we consider the relationship between bn and bp . Since matrices are distributed

using ScaLAPACK 2D block cyclic pattern, to reduce data transfer between processor columns

and the complexity of local index calculation, bp should equal bn , as the ScaLAPACK

reduction subroutine PDSYTRD does. This guarantees that QR factorization of each matrix

column block is performed on only one processor column, and does not involve row-wise

communication in the processor grid.

From the above two restrictions bb p= and b bp n= , we fix the sizes of panel width and

diagonal blocks of the reduced block tridiagonal matrix to be the block size of the parallel 2D

block cyclic matrix distribution, i.e., b bp b n= = . ScaLAPACK recommends a block size of 64

for parallel matrix distribution [Blackford et al. 1997].

3.2.2 Complexity of parallel OBR

 In parallel OBR, there are four steps to compute a sequence of bn Householder transformations

and reduce column block iG of matrix A as shown in Figure 2. These four steps are:

 1) Compute QR factorization of each column block iG . The computed Householder

 vectors overwrite corresponding columns of iG .

2) Construct blocked Householder transformation in the form of 1b

T
i i nI YW H H− = .

 Here iY holds bn columns of Householder vectors ,1i
j by j n≤ ≤ , and iW holds

 vectors ()2
Ti i i

j j jy y y .

3) Compute submatrix 22 22

1
2

i T i
i i i i iZ A W YW A W= − where 22

iA is as shown in Equation 2.3.

4) Apply symmetric rank-2nb update 1 22
i T T

i i i i iA A YZ Z Y+ = − − . A symmetric rank-2nb

 update requires only half of the computation as that of a non-symmetric update, but

 the communication cost cannot be reduced.

 17

 With p processors that form a r c× processor grid, where r and c are the number of

rows and columns of the grid, the computational and communication cost for each processor is

approximately [Bai 2005]

3

24 2 2log log
3Parallel OBR

b

n rn r cT n
p n c r

γ α β = + + +

 .

4. Numerical tests

In this section, we present results of accuracy and performance tests. Our tests were run on the

IBM p690 system nicknamed Cheetah in Oak Ridge National Laboratory. The system is

comprised of twenty-seven 32-processor nodes. Each compute node has 1.3 GHz Power4

processors and at least 32MB SMP memory. The CPUs have 32 KB of Level-1 data cache and 64

KB of Level-1 instruction cache, 1.5 MB of Level-2 cache shared between two processors, and 32

MB of off-chip Level-3 cache. The system employs the Federation interconnection switch that

supports about 1400 MBps MPI bandwidth and about 7 µs MPI latency.

4.1 Test of parallel BTS implementation

For “effectively” sparse matrices with larger elements closer to the diagonals, parallel BTS

subroutine PDSBTRI (URL: http://www.cs.utk.edu/~cape/parallel/PBTri.tar.gz) as described in

section 3.1 is used to construct block-tridiagonal matrices. In Sections 4.1.1, we compare the

resultant bandwidths of matrices using parallel and sequential target thresholding

implementations. In Section 4.1.2, the ranks of off-diagonal blocks from parallel BTS with and

without the optional TBR are compared. In Section 4.1.3, the accuracy of the eigenpairs for the

block tridiagonal matrix is compared with that of the original full matrix. Performance test results

are presented in Section 4.1.4.

Test matrices are generated from simulating alkane molecules using the CNDO method [Pople

and Beveridge 1970, Pople et al. 1967, Pople et al. 1965, Pople and Segal 1965, 1966] and trans-

Polyacetylene (PA) molecules using the SSH Hamiltonian [Su et al. 1980] that includes only the

nearest neighboring atoms. The general molecular formula of an alkane is CnH 2n+2. Figures 11

and 12 show the magnitudes of the elements of a matrix generated from C502H 1006 and its

eigenvalue distribution. Trans-PA consists of a chain of CH units. It has the general molecular

formula trans-(CH)n. Figures 13 and 14 show the magnitudes of the matrix elements of trans-

(CH)8000 and its eigenvalue distribution.

 18

 Figure 11. 10log of absolute value of matrix elements for
 alkane C502H 1006 molecule, 3,014n = .

 Figure 12. Eigenvalue distribution of matrix in Fig. 11.

 Figure 13. 10log of absolute value of matrix elements for
 trans-(CH)8000 molecule, 8,000n = .

 19

 Figure 14. Eigenvalue distribution of matrix in Fig. 13.

4.1.1 Bandwidths of modified parallel target threshold

As described in Section 3.1.1, step 4, parallel target threshold checks lower and upper

triangular part of matrix A′′ independently without communication, while sequential target

threshold checks each pair of symmetric matrix entries along off-diagonals. The bandwidths after

parallel and sequential target threshold are compared using application matrices generated from

alkane and trans-PA molecules. Table 1 shows that the bandwidth after parallel target threshold is

very close to that after sequential threshold on the test matrices.

 Table 1. Bandwidth after parallel and sequential target threshold, 610τ −=

 Trans-PA molecules Alkane molecules

Bandwidth after

target threshold

Bandwidth after

target threshold

Matrix and Size

Parallel Sequential

Matrix and Size

Parallel Sequential

Trans-(CH)2000

n = 2000

390 390 C162H326

n = 974

81 80

Trans-(CH)3000

n = 3000

390 390 C322H646

n = 1934

83 81

Trans-(CH)4000

n = 4000

390 390 C502H1006

n = 3014

85 85

 20

4.1.2 Effect of target block reduction (TBR) on block sizes and ranks

In an iterative method like the SCF, a nonlinear eigenvalue problem is solved by solving a

linear eigensystem iteratively until convergence [Szabo and Ostlund 1996]. For the alkane

molecules, we completed all the iterations using a sequential SCF subroutine and stored the Fock

matrices and eigenvector matrices from each iteration. Thus, in the test of parallel BTS using

matrices from C502H 1006, we are able to test the optional target block reduction (TBR) step using

the eigenvector matrix from the previous iteration as approximate eigenvectors. The TBR step

tries to produce a few small blocks in matrix A′′′ for a lower computational complexity in the

merging operations of the BD&C algorithm. Table 2 shows the minimum size of diagonal blocks

and minimum rank of off-diagonal blocks with and with out TBR using alkane matrices from the

second iteration of SCF. The TBR step significantly reduces the size of some off-diagonal blocks

when work space is sufficient. When tolerance is 810− , the work space required for TBR is too

large due to large block sizes. In this case, TBR step is replaced by a second round of target

threshold. The execution times in the table show that the overhead of TBR is typically small

compared to the total execution time of parallel BTS. Although the reduction in the minimum

rank of off-diagonal blocks is not as significant as that in the minimum block size, even a

reduction of one is a reduction of ()3O n in total floating-point operations for the BD&C

algorithm.

 Table 2. Minimum size of diagonal blocks and minimum rank of off-diagonal blocks
 from block-tridiagonalization of alkane matrixes using 4 processors.

Minimum size of

diagonal blocks

Minimum rank of

off-diag. blocks

Execution time in

seconds

Tolerance

Molecule

Matrix

size without

TBR

with

TBR

without

 TBR

with

TBR

without

 TBR

with

TBR

C162H326 974 40 21 14 14 0.28 0.30

C322H646 1974 40 21 14 14 0.21 0.30

410−

C502H1006 3014 40 26 14 14 0.16 0.26

C162H326 974 76 38 21 20 1.03 1.12

C322H646 1974 76 39 20 20 0.88 1.19

610−

C502H1006 3014 74 39 21 21 0.65 1.04

C162H326 974 90 90 47 47 2.38 2.59

C322H646 1974 130 130 46 46 2.18 2.96

810−

C502H1006 3014 319 319 34 34 1.53 2.57

 21

4.1.3 Accuracy of eigenpairs

To examine the actual errors in eigen-solutions incurred by the parallel BTS algorithm, LAPACK

routine DSYEVD is used to compare the eigenpairs of A, the original matrix, to those of M, the

approximating block tridiagonal matrix. The results are presented in Table 3, where iλ and îλ

are the i-th eigenvalues of A and M, respectively, and iv and îv are the corresponding

eigenvectors. Accuracy tolerance is set to 410− , 610− and 810− , respectively. Table 3 shows that

the scaled maximum error between the eigenvalues of A and M for each test matrix

() ()A M Aλ λ− is bounded by τ , and the scaled 2-norm of the maximum residual

()
2

ˆ ˆi iA v Aλ− is of order ()O τ .

 Table 3. Maximum eigenvalue error and residual with 4 6 810 ,10 and 10τ − − −=

Matrix

Size

With TBR

Tolerance
1, ,

ˆ
max

i i

i n A

λ λ
=

−

()
2

1, ,

ˆ ˆ
max

i i

i n

A v

A

λ
=

−

No 410− 66.02 10−× 51.07 10−×

C502H1006

3,014 Yes 410− 65.36 10−× 52.46 10−×

Trans-

(CH)4000

4,000 No 410− 51.07 10−× 51.67 10−×

No 610− 83.96 10−× 88.85 10−×

C502H1006

3,014 Yes 610− 74.73 10−× 64.24 10−×

Trans-

(CH)4000

4,000 No 610− 87.56 10−× 71.43 10−×

No 810− 127.61 10−× 102.35 10−×

C502H1006

3,014 Yes 810− 124.70 10−× 102.11 10−×

Trans-

(CH)4000

4,000 No 810− 105.35 10−× 91.15 10−×

4.1.4 Performance of PDSBTRI

The execution times of subroutine PDSBTRI with tolerance 610τ −= is illustrated in Figure 15.

The parallel BTS algorithm contains steps that are sequential in nature as well as steps that

parallelize well. For example, the matrix reorder (step 2) is completely sequential; while the

global thresholding (step 1) and the modified target thresholding (step 4) are embarrassing (or

 22

pleasantly) parallel, in that each processor checks elements to be eliminated independently. As

the number of processors increases, the execution times for steps 2 and 4 decrease. However, the

overhead of redistributing the matrix from 2D block cyclic distribution to 1D column block

distribution increases with the number of processors. Overall, the execution time of PDSBTRI

demonstrates a complexity of ()2O n .

 Figure 15. Execution times of PDSBTRI (without TBR) using matrices from trans-(PA).

4.2 Performance test of parallel OBR implementation

Random matrices generated by C build-in random number generator are used to test performance

of the parallel OBR subroutine PDSBTRD (URL: http://www.cs.utk.edu/~cape/parallel/

PBTrd.tar.gz). Figure 16 shows the execution times of PDSBTRD scaled by that of the

ScaLAPACK subroutine PDSYTRD. The block size bn for 2D block-cyclic matrix distribution

is 32. It should be noted that the floating-point operation count for the two subroutines are not

exactly the same since PDSBTRD only reduces a matrix to block-tridiagonal form while

PDSYTRD reduces a matrix to tridiagonal form. The improved performance as a result of using

level 3 BLAS operations can be seen from the relative execution time of PDSBTRD to

PDSYTRD. In particular, PDSBTRD performs better when the problem size per processor 2n p

becomes larger.

 The off-diagonal blocks of the block-tridiagonal matrix after parallel OBR tend to have full

rank. As a pre-processing step for the BD&C algorithm, the ranks of the off-diagonal blocks

directly affect the computational complexity of BD&C. Off-diagonal blocks with smaller sizes

are preferred for lower computational complexity in BD&C. On the other hand, high performance

of level 3 BLAS operations cannot be completely achieved when block sizes are too small. Figure

 23

17 shows that PDSBTRD scales up with the number of processors in use. With block size 32,

PDSBTRD achieves optimal performance. When block size is reduced to 16, there is a slight loss

in performance; however, a significant reduction in the computational complexity of BD&C (by

half) should compensate for the slower performance of the parallel OBR step. If we further

reduce the block size to 8, the performance of PDSBTRD can be more than 50% slower than that

with block size 32. In addition, with such a small block size, the performance of back

transformation of the eigenvectors is going to be degraded drastically. Therefore, when combined

with the BD&C eigensolver, we should choose block size 16 for the orthogonal block reduction

subroutine PDSBTRD.

 Figure 16. Relative execution times of PDSBTRD to PDSYTRD.

 Figure 17. Execution time of PDSBTRD with different block sizes.

 24

5. Conclusion

Two parallel algorithms are presented for block-tridiagonalization of symmetric dense matrices.

They can be used according to the structure of input matrices and transform the original dense

matrix into block-tridiagonal form.

 When the input matrix is “effectively” sparse with strong locality properties, the parallel BTS

algorithm is used to construct a block-tridiagonal matrix that approximates the original input

matrix. In the context of approximate eigensolutions, given an accuracy tolerance τ and input

matrix A , the eigenvalue errors between the resultant block-tridiagonal matrix and the original

matrix is bounded by Aτ . In an iterative procedure like the self-consistent field (SCF) method,

the eigenvector matrix from previous iteration can be used for the optional TBR step in an

attempt to further reduce the block size of a few off-diagonal blocks. The computational

complexity of parallel BTS is typically trivial compared to the complexity of computing all

eigenpairs of a dense symmetric matrix.

When the input matrix is dense without usable structure, the parallel OBR algorithm is used to

reduce the original matrix into block-tridiagonal form using blocked orthogonal transformations.

The parallel OBR algorithm is very efficient by itself due to its high ratio of Level 3 BLAS

operations; however, the off-diagonal blocks after orthogonal block-tridiagonal reduction tend to

have full ranks. Since the block size of the block tridiagonal matrix equals the block size of the

parallel 2D matrix distribution, one may try to reduce the ranks of off-diagonal blocks using

smaller block size for parallel matrix distribution. For our tests using a block size of 16, the effect

of level 3 BLAS operations in parallel OBR is reduced slightly, but the reduction of complexity

in BD&C eigensolver is going to be great enough to compensate the small amount of

performance loss in the orthogonal reduction step.

References
Bai, Y. 2005. High performance parallel approximate eigensolver for real symmetric matrices.
PhD. dissertation, University of Tennessee, Knoxville.
Bai, Y., Gansterer, W. N. and Ward, R. C. 2004. Block-tridiagonalization of "effectively" sparse
symmetric matrices. ACM Trans. Math. Softw. 30, 326 -- 352.
Bai, Y. and Ward, R. C. 2005. A parallel symmetric block-tridiagonal divide-and-conquer
algorithm. Technical Report CS-05-571, Department of Computer Science, University of
Tennessee, Knoxville, TN.
Bishof, C., Lang, B. and Sun, X. 1994. Parallel tridiagonalization through two-step band
reduction. Proceedings of Scalable High Performance Computing Conference '94. Knoxville,
Tennessee, 23 -- 27.
Bishof, C., Lang, B. and Sun, X. 2000. A framework for symmetric band reduction. ACM Trans.
Math. Softw. 26, 581 -- 601.
Bishof, C., Lang, B. and Sun, X. 2000. The sbr toolbox -- software for successive band reduction.
ACM Trans. Math. Softw. 26, 602-616.

 25

Bishof, C., Marques, M. and Sun, X. 1993. Parallel bandreduction and tridiagonalization.
Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing,
SIAM Press, Philadelphia, PA. 383 -- 390.
Bishof, C. and Van Loan, C. F. 1987. The wy representation for products of householder
matrices. SIAM J. Sci. Comput. 8, 2 -- 13.
Blackford, L. S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I., Dongorra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R. C. 1997.
Scalapack user's guide. SIAM, Philadelphia, PA.
Cuppen, J. J. M. 1981. A divide and conquer method for the symmetric tridiagonal eigenproblem.
Numer. Math. 36, 177 -- 195.
Demmel, J. 1997. Applied numerical linear algebra. SIAM, Philadelphia, PA.
Dhillon, I. S. and Parlett, B. N. 2004. Multiple representation to compute orthogonal eigenvectors
of symmetric tridiagonal matrices. Linear Algebra and Appl. 387, 1 -- 28.
Dhillon, I. S., Parlett, B. N. and Vömel, C. 2004. Lapack working note: The design and
implementation of the mrrr algorithm. Technical Report UCB/CSD-04-1346, Computer Science
Division, University of California at Berkeley, Berkeley, CA.
Dongarra, J., Hammarling, S. and Sorensen, D. 1989. Block reduction of matrices to condensed
forms for eigenvalue computation. J. Comp. Appl. Math. 27, 215 -- 227.
Dongarra, J. and Sorensen, D. 1987. A fully parallel algorithm for the symmetric eigenvalue
problem. SIAM J. Sci. Stat. Comput. 8, 139 -- 154.
Francis, G. J. F. 1961. The qr transformation: A unitary analogue to the lr transformation, parts i
and ii. Comput. J. 4, 265 -- 271, 332 -- 345.
Gansterer, W. N., Kvasnicka, D. F. and Ueberhuber, C. W. 1998. Multi-sweep algorithms for the
symmetric eigenproblem. Lecture Notes in Computer Science. Vol. 1573, 20 -- 28.
Gansterer, W. N., Ward, R. C., Muller, R. P. and Goddard, W. A., III. 2003. Computing
approximate eigenpairs of symmetric block tridiagonal matrices. SIAM J. Sci. Comput. 25, 65 --
85.
Gibbs, N. E., Poole, W. G. J. and Stockmeyer, P. K. 1976. An algorithm for reducing the
bandwidth and profile of a sparse matrix. SIAM J. Numer. Anal. 13, 236 -- 250.
Golub, G. H. and van Loan, C. F. 1996. Matrix computations. John Hopkins University Press,
Baltimore /London,
Gu, M. and Eisenstat, S. C. 1994. A stable and efficient algorithm for the rank-one modification
of the symmetric eigenproblem. SIAM J. Matrix Anal. Appl. 15(4), 1266 -- 1276.
Gu, M. and Eisenstat, S. C. 1995. A divide-and-conquer algorithm for the symmetric tridiagonal
eigenproblem. SIAM J. Matrix Anal. Appl. 16, 172 -- 191.
Heath, M. T., NG, E. and Peyton, B. W. 1990. Parallel algorithms for sparse linear systems.
Parallel Algorithms for Matrix Computations, SIAM Press, philadelphia, PA. 83 -- 124.
Karypis, G. and Kumar, V. 1998. A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering. J. Parallel Distrib. Comput. 48, 71 -- 95.
Lewis, J. G. 1982. The gibbs-poole-stockmeyer and gibbs-king algorithms for reordering sparse
matrices. ACM Trans. Math. Softw. 8, 190 -- 194.
Pople, J. A. and Beveridge, D. L. 1970. Approximate molecular orbital theory. 1st ed., McGraw-
Hill, New York.
Pople, J. A., Beveridge, D. L. and Dobosh, P. A. 1967. Approximate self-consistent molecular
orbital theory. V. Intermediate neglect of differential overlap. J. Chem. Physics. 47, 2026.
Pople, J. A., Santry, D. P. and Segal, G. A. 1965. Approximate self-consistent molecular orbital
theory. I. Invariant procedures. J. Chem. Physics. 43, 129.
Pople, J. A. and Segal, G. A. 1965. Approximate self-consistent molecular orbital theory. Ii.
Calculations with complete neglect of differential overlap. 43, 136.
Pople, J. A. and Segal, G. A. 1966. Approximate self-consistent molecular orbital theory. Iii.
Cndo results for ab2 and ab3 systems. J. Chem. Physics. 44, 3289.
Su, W. P., Schrieffer, J. R. and Heeger, A. J. 1980. Soliton excitations in polyacetylene. Phys.
Rev. B. 22, 2099 -- 2111.

 26

Szabo, A. and Ostlund, N. S. 1996. Modern quantum chemistry. Dover Publications, Mineola,
NY.
Wilkinson, J. H. 1965. The algebraic eigenvalue problem. Oxford University Press, Oxford.
Wilkinson, J. H. 1968. Global convergence of the tridiagonal qr algorithm with origin shifts.
Linear Algebra and Appl. 1, 409 -- 420.
Wu, Y. J., Alpatov, P. A., Bishof, C. H. and van de Geijn, R. A. 1996. A parallel implementation
of symmetric band reduction using plapack. Proceedings of Scalable Parallel Library
Conference, Starkville, Mississippi.

