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Abstract. Two parallel block tridiagonalization algorithms and implementations for dense real symmetric 
matrices are presented. Block tridiagonalization is a critical pre-processing step for the block-tridiagonal 
divide-and-conquer algorithm for computing eigensystems and is useful for many algorithms desiring the 
efficiencies of block structure in matrices. For an “effectively” sparse matrix, which frequently results from 
applications with strong locality properties, a heuristic parallel algorithm is used to transform it into a block 
tridiagonal matrix such that the eigenvalue errors remain bounded by some prescribed accuracy tolerance. 
For a dense matrix without any usable structure, orthogonal transformations are used to reduce it to block 
tridiagonal form using mostly level 3 BLAS operations. Numerical experiments show that block-tridiagonal 
structure obtained from this algorithm directly affects the computational complexity of the parallel block-
tridiagonal divide-and-conquer eigensolver.    

 
Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra - Eigenvalues 
and eigenvectors (direct and iterative methods); G4 [Mathematical Software]: Algorithm design and 
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Numerical Algorithms and Problems – Computations on matrices 
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1. Introduction 

Efficient and stable eigen-decomposition algorithms like QR iteration [Francis 1961, Wilkinson 

1968], divide-and-conquer [Cuppen 1981, Dongarra and Sorensen 1987, Gu and Eisenstat 1994, 

1995], and most recently, MRRR [Dhillon and Parlett 2004, Dhillon et al. 2004] compute eigen-

solutions of a real symmetric matrix to full accuracy. The recently developed block-tridiagonal 

divide-and-conquer (BD&C) algorithm [Gansterer et al. 2003] represents a new development in 

this field. It computes the eigensystem of a symmetric block-tridiagonal matrix to reduced 

accuracy very efficiently without tridiagonalization. The BD&C algorithm benefits from the 

reduced accuracy requirement of the eigen-solutions as well as localized data-access pattern. The 

BD&C algorithm is particularly effective on nonlinear eigenproblems with strong locality 

properties, such as in modern electronic structure calculations. To meet the demand of solving 

large eigenvalue problems in electronic structure calculation, an efficient and scalable parallel 

implementation of the BD&C algorithm has been developed [Bai and Ward 2005]. 
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Electronic structure determines the properties of materials, such as the hardness, elasticity, 

conductivity, superconductivity, photoelectric efficiency, optical reflectivity and absorption, heat 

transfer, material structure, and so on. Therefore, the computation of electronic structure plays a 

critical role in simulation and discovery of new materials. One popular approach to these 

computations is based on the Hartree-Fock method. The Hartree-Fock equation is a non-linear 

integro-differential equation. This equation is further converted into a non-linear symmetric 

eigenvalue problem so that it can be solved numerically using an iterative procedure called the 

self-consistent field (SCF) method [Szabo and Ostlund 1996]. In each iteration of the SCF 

procedure, a linear real symmetric eigenvalue problem is solved. In early and intermediate 

iterations, it may be advantageous to require lower accuracy, especially if this significantly saves 

execution time. As SCF converges, higher accuracy may be used if necessary to obtain final 

results [Szabo and Ostlund 1996].  

  The BD&C algorithm is applicable only to block tridiagonal matrices. Although every matrix is 

trivially in block tridiagonal form using just two diagonal blocks, the real benefits of the BD&C 

algorithm occur when the number of diagonal blocks is much larger. So, block tridiagonal 

matrices in this paper refer to such matrices with more than 2 blocks.   

   Few matrices generated in electronic structure calculations are block-tridiagonal; most of them 

are dense with any structure determined by the chemical and physical properties of materials. For 

example, some materials have strong locality properties resulting in a matrix with its larger 

elements close to the diagonal and the elements away from the diagonal much smaller.  Such 

matrices can be approximated with relatively high accuracy by block-tridiagonal matrices.  

Unfortunately, some matrices do not possess any usable structure and must be handled as general 

dense matrices. 

  In this paper, we present two different algorithms and their parallel implementations to 

transform symmetric dense matrices into block-tridiagonal form based on their structure. These 

algorithms are the essential pre-processing steps for the BD&C algorithm. If the input matrix is 

“effectively” sparse (see Section 2.1), we construct with very low computational cost a block-

tridiagonal matrix whose eigensystem approximates that of the original input matrix. Otherwise, 

we use orthogonal transformations with very high ratio of level 3 BLAS operations to reduce 

efficiently a dense matrix to block-tridiagonal form. 

  The rest of this paper is arranged as follows. In Section 2, we present algorithms for the block-

tridiagonalization of “effectively” sparse matrices and of dense matrices without specific 

structure. Parallel implementations are presented in Section 3 with the results and analyses of the 

numerical tests discussed in Section 4. We conclude our paper in Section 5. 
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2. Block-tridiagonalization algorithms 

The BD&C algorithm computes approximate eigen-solutions of a symmetric block-tridiagonal 
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in three steps: problem subdivision, sub-problem solution and synthesis of sub-solutions 

[Gansterer et al. 2003]. Among these three steps, the synthesis step dominates the computational 

complexity of BD&C. It executes a sequence of matrix multiplications to accumulate 

eigenvectors. The calculation of eigen-solutions for each pair of adjacent sub-solutions is called a 

merging operation. For each merging operation, the number of matrix multiplications executed is 

determined by the approximate rank of the off-diagonal block that connects these two matrix sub-

blocks. As the merging operations proceed, problem sizes become larger and larger. The last 

merging operation involves matrix multiplications of order n. One major goal of our block-

tridiagonalization algorithms is to produce at least a few small block sizes for the last merging 

operation, in order to reduce computational complexity of BD&C. 

  Most matrices generated in real applications do not have a block-tridiagonal structure. We 

divide input matrices into two groups: 1) “Effectively” sparse with strong locality properties; 2) 

dense without usable structure. For the first type of matrix, in the context of approximate eigen-

solutions with accuracy toleranceτ , we want to construct a block-tridiagonal matrix M from the 

original input matrix A such that the maximum eigenvalue error between those of A and M is 

bounded by Aτ . For the second type of matrices, we use blocked Householder transformations 

to reduce the original matrix A to block-tridiagonal form.   

2.1. Block-tridiagonalization of “effectively” sparse matrices (BTS)  

We call a dense matrix A “effectively” sparse with respect to a given accuracy toleranceτ , if it 

has the property that a large portion of its nonzero entries may be set to zero without influencing 

its eigenvalues by more than Aτ . The 6-step heuristic block-tridiagonalization algorithm [Bai 

et al. 2004] has been developed to transform a full matrix that is “effectively” sparse into a sparse 

matrix, and then find a block tridiagonal structure for the sparse matrix as shown in Fig. 1. 
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                Figure 1. Transform a full symmetric matrix into a block-tridiagonal  
                        matrix [Bai et al. 2004]. 

 
  The BTS algorithm partitions τ  into two parts, 1 2τ τ τ= + , allowing a portion of the 

acceptable error to be used for different steps in the algorithm. The 6 steps of the algorithm are 

briefly described below. 

  Step 1. Global threshold A  with Aτ  

  We start with a threshold τ τ′ = , larger than permitted by the accuracy requirement, and 

obtain matrix A′  by eliminating all elements in A  less than Aτ . For many matrices 

resulting from modeling physical phenomena with strong locality properties, most of the elements 

will be eliminated. The resultant matrix A′  will contain only the largest elements of A  and 

would hopefully be sparse. 

Step 2. Reorder A′  

In this step, A′  is reordered to reduce its bandwidth using the Gibbs-Poole-Stockmeyer 

(GPS) algorithm [Gibbs et al. 1976, Lewis 1982]. The bandwidth of A′  may be significantly 

reduced by GPS reorder. Thus, the elements of A′  are moved closer to the diagonal. The 

permutation matrix P  accomplishing this task will be used in Step 3. 

Step 3. Permute A  with permutation matrix P  from Step 2 

The permutation matrix P  computed in Step 2 is applied to A , resulting in matrix 
TA P AP′′ = . The larger elements of A  are expected to be closer to the diagonal in A′′ . 

Step 4. Target threshold A′′  with 1 Aτ . 
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In this step, we eliminate those elements far away from the diagonal in matrix A′′  whose 

influence on the error of any eigenvalue is negligible compared to 1 Aτ . This step produces 

matrix A′′′  such that A A E′′ ′′′= + , with 11
E Aτ< . 

It can be shown that the absolute difference between the eigenvalues iλ  of A′′  and the 

eigenvalues iλ′  of A′′′  for 1 i n≤ ≤  is bounded by [Demmel 1997, Golub and van Loan 1996] 

                       
2 1i i E Eλ λ′− ≤ ≤ .     (2.1) 

Since the eigenvalue errors are bounded by the 1-norm of the error matrix E , we may eliminate 

elements of A′′  before each column-wise sum of absolute values of the dropped elements 

exceeds 1 Aτ . Note that due to symmetry, for each element ija  (1 ,i j n≤ ≤  and i j> ) to be 

checked, its symmetric counterpart jia  must be checked as well. 

  Step 5. Covering A′′′ . 

The sizes of the diagonal blocks are determined such that the resulting block-tridiagonal matrix 

contains all the matrix elements that are effectively nonzero. These are the matrix elements whose 

effect on the accuracy of the eigenpair approximation may be non-negligible. 

Step 6. Target block reduction (TBR). 

As an option, the last step of the BTS algorithm attempts to produce a few small blocks for a 

lower computational complexity in the merging operation of the BD&C algorithm.  

In Step 4, none of the matrix elements dropped are greater than the given error bound 1 Aτ . 

It may be possible to eliminate some of the matrix elements whose absolute values are larger than 

the given error bound without causing the accumulative error in the eigenvalues to exceed this 

error. For real symmetric matrix A′′′ , the sensitivity analysis on the eigenvalue error as a result 

of zeroing matrix element ija′′′  can be estimated by [Wilkinson 1965] 

                     ( )( )22 ij i j ij
a x x O aλ ′′′ ′′′∆ = + ,      (2.2) 

where ix , jx  are the i-th and j-th entries, respectively, of the eigenvector x corresponding to λ . 

Several elements may be eliminated as long as the maximum of the sum of the eigenvalue errors 

is less than the error bound 2 Aτ .  

Step 6 is only possible if an approximation for the eigenvectors is available. For an iterative 

method solving a non-linear eigenvalue problem, like the SCF method, we may use the 

eigenvectors from the previous iterations as an approximation. There may be other similar 

applications with eigenvector approximations permitting this last step in the algorithm. Using 
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TBR, we may reduce the size of a few diagonal blocks in the hope that the corresponding off-

diagonal blocks have a lower rank. 

2.2. Orthogonal block-tridiagonal reduction of dense matrices (OBR) 

If a dense symmetric matrix cannot be transformed into a block-tridiagonal matrix for use by the 

BD&C algorithm with little computational effort as described in Section 2.1, we use a sequence 

of blocked Householder transformations to reduce the dense matrix to a block-tridiagonal one 

with reasonably small block sizes. Similar algorithms have been investigated for the reduction of 

a matrix from dense form to banded, then to tridiagonal [Bishof et al. 2000, 2000, Bishof and Van 

Loan 1987]. The algorithm reducing the matrix from dense to banded form has been shown to 

have a good data access pattern and large portion of level 3 BLAS operations [Bishof et al. 2000, 

Dongarra et al. 1989, Gansterer et al. 1998]. 

  Given a dense symmetric matrix n nA ×∈ , we desire to apply a sequence of orthogonal 

transformations to reduce A  to a block-tridiagonal matrix M . The orthogonal transformations 

zero out elements below the block subdiagonal panel by panel as shown in Figures 2 and 3. 

  In a general case, let pb be the number of matrix columns in a blocked orthogonal 

transformation, then bin p=  is the width and i bm n ip= −  is the length of the i-th panel iG , b 

is the block size of the reduced block-tridiagonal matrix. Figures 2 and 3 illustrate the case when 

bp b= . For blocked orthogonal reduction scheme using Householder transformations, pb must be 

no greater than b in order to achieve high ratio of level 3 BLAS operations [Bai 2005].  

Let ( ) ( )i i i im n m n
iA + × +∈  as illustrated by Figures 2 and 3 be the lower right principal submatrix 

of A at the i-th stage of orthogonal reduction. For each matrix panel i im n
iG ×∈ in Figure 2, its 

QR factorization i i iG Q R=  where i im m
iQ ×∈ and i im n

iR ×∈  is used to reduce A to a block 

tridiagonal matrix. Partitioning 
0

i
i

R
R =

 
 
 

, where ( )( )1: ,1:i i
i i n n

R R=  is upper triangular, and iA  as                

                        11 12

21 22

i i

i i
i

i i i
i

n m

nA A
A

mA A
 

=  
 

,     (2.3) 

then applying iQ , we have 

                 11

22

i T
i

iT i
i i i

I O I O A R
A

O Q O Q R A
=
    
    

     
.      (2.4)  



 7

                         

                 Figure 2. Matrix A at the i-th stage of orthogonal reduction. 

 
 
 
 
 
 
 
 
       
 
 
 
 
 
 
 

                 Figure 3. One step of block reduction for submatrix iA  

 
 

The diagonal block 11
iA  and off-diagonal block iR  can be obtained directly, and 

1 22 22
i T i

i i iA A Q A Q+ = = . We continue this procedure until the whole matrix A is reduced to a block 

tridiagonal matrix M. All the subdiagonal blocks of M except the last one are upper triangular. 

The panel width bp  needs to be chosen carefully. It should be small enough to keep the cache 

miss rate low yet large enough to benefit from data-reuse in level 3 BLAS operations. 

Computational complexity analyses show that if bp b≤  where pb is the algorithmic panel 

width and b is the block size in the orthogonal block tridiagonal reduction algorithm, the ratio of 

level 3 BLAS operations increases with matrix size n for fixed b [Bai 2005].  As shown in 

Section 3.2.1, the relationship between pb and b will become important in any parallel 
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implementation of this algorithm. Figure 4 shows that the ratio of level 3 BLAS operations 

exceeds 90% quickly as the matrix size increases. 

 

            

            Figure 4. Ratio of level 3 BLAS operations in OBR with bp b= . 

 

3. Parallel implementation details  

The BTS algorithm typically has very low computational complexity. For an effective parallel 

implementation, the major issue is to choose a proper parallel matrix distribution pattern and limit 

the complexity of data communication. The OBR algorithm is comprised mainly of level 3 BLAS 

operations. The key toward an efficient implementation of OBR is the proper choice of sizes b for 

tridiagonal blocks, pb for algorithmic panel width, and nb for 2D block cyclic matrix distribution. 

In this section, we use α , β  and γ  to denote the time to start up a data transfer, time to 

transfer one data item, and time to perform one floating point computation, respectively. 

3.1 Parallel BTS implementation 

The BTS algorithm is heuristic and inherently sequential. The floating-point operations in the 

algorithm are mainly comparisons and additions, and typically its operation count is ( )2O n  

[Bai et al. 2004].  Since the original matrix A is symmetric, an operation on any entry ija  

inevitably involves its symmetric counterpart jia . If the matrix is not distributed properly, the 

performance of parallel BTS could degrade severely as the matrix size n and the number of 

processors p increases.  



 9

The 2D block cyclic matrix distribution, which is frequently used in scalable parallel dense 

matrix algorithms, is not the most suitable data distribution pattern for the BTS algorithm since 

the matrix must be traversed column-wise numerous times. Intuitively, a 1D column block 

distribution with n p  matrix columns assigned to each processor, as shown in Figure 5, for the 

matrix is most desirable.  

   
 

                    
             Figure 5. Matrix A distributed in column blocks. 

 

    If the original input matrix A is distributed in a 2D block cyclic pattern, then it must be 

redistributed from 2D to 1D for the parallel implementation of the BTS algorithm. If we assume 

that the system buffer is large enough so that each message can be sent and received without 

being partitioned into several smaller packages and point-to-point communication (i.e., send and 

receive) cannot be overlapped, then the total communication cost in the worst case for matrix 

redistribution from 2D block cyclic pattern to 1D column block pattern is 

                          2 2
2 1D Dt p nα β→ = + . 

After the matrix has been redistributed, each processor holds /n p  columns, and the parallel 

block tridiagonalization is then applied. 

In the following sections, we describe in detail the parallel implementation of the 6-step BTS 

algorithm with the matrix distributed in 1D column blocks. The accuracy tolerance τ  is 

partitioned as 1 2τ τ τ= +  for target threshold and optional target block reduction, respectively. 

3.1.1 6-steps of parallel BTS  

  Step 1. Parallel global threshold with Aτ . 

  This step is an embarrassingly parallel process. Every processor simultaneously drops elements 

ija Aτ< , and stores indices of all elements ija Aτ≥  in compressed sparse row (CSR) 

format. The resultant matrix A′  is expected to be very sparse and all its nonzero entries can be 
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stored on one processor. After thresholding, each processor sends its vectors of indices of 

nonzeros to a master processor. The master processor stores indices of all the nonzeros of A′ .  

The collection of indices of nonzeros takes ( )12 p n nnzα β+ +  communication time where 

1nnz  is the number of nonzeros in A′ . No floating-point operations are involved in this step. 

  Step 2. Sequential matrix reorder for parallel BTS. 

The most thoroughly studied and parallelized sparse matrix ordering algorithms are nested 

dissection and minimum degree algorithms, which are used to minimize the fill-in during LU 

factorization of matrices in sparse linear systems [Heath et al. 1990]. Scalable and efficient 

parallel implementations of those algorithms such as ParMetis [Karypis and Kumar 1998] are 

available. However, the purpose of matrix reordering in the BTS algorithm is to minimize the 

bandwidth of a sparse matrix, and the nested dissection and minimum degree methods do not 

directly attack this objective. We use the Gibbs-Poole-Stockmeyer (GPS) algorithm [Gibbs et al. 

1976, Lewis 1982] for this step since it has also undergone thorough studies and considerable 

testing and bandwidth minimization is its goal. 

The matrix after global thresholding is expected to be very sparse and can be stored on the 

local memory of one processor. Since the reordering consumes a small fraction of computational 

time of the BTS, we do not parallelize the reordering step. Instead, only the master processor that 

contains the indices of all nonzeros of A′  performs matrix reordering using the GPS algorithm, 

while all other processors stay idle. After the permutations are determined, the master processor 

broadcasts the permutation matrix P  to all other processors. 

    Step 3. Parallel symmetric permutation of A . 

The permutation matrix P  from step 2 is used to permute the matrix A  to produce the matrix 
TA P AP′′ = . Parallel symmetric matrix permutation can be an expensive step. As shown by the 

blue arrow in Figure 6, if two matrix columns are on different processors, the swap of those two 

columns invokes communication. In such a case, the communication cost of each swap is 

2 2nα β+ . Permutation of matrix rows does not involve any communication. If two rows of a 

matrix are to be swapped, local data on each processor are exchanged as shown by the red arrow 

in Figure 6. Thus, the worst-case communication cost is bounded by 2n nα β+ .  

  Because of the potentially heavy communication, matrix permutation is executed only when it 

can significantly reduce the bandwidth of A′ . For the parallel implementation of BTS algorithm, 

we permute A  when the bandwidth of A′  can be reduced by at least 20%.  
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                Figure 6. Swaps of rows and columns in parallel matrix permutation. 

 

  Step 4. Parallel target threshold with 1 Aτ . 

  In the BTS algorithm, all elements far away from the diagonal of matrix A′′  are eliminated if 

their influence on the error of any eigenvalue is less than 1 Aτ . The resultant matrix is 

A A E′′′ ′′= + , with 11
E Aτ≤ . Since A′′  is symmetric, for each element ija′′  in the lower 

triangular part of A′′  that is checked for elimination, its symmetric counter part jia′′  in the 

upper triangular of A′′  must also be checked. Elements ija′′  and jia′′  can be dropped only when 

the sum of the absolute values of the dropped elements in both the i-th and the j-th column of A′′  

is less than 1 Aτ .  

In a parallel matrix distribution, chances are that entries ija′′  and jia′′  are often on two 

different processors requiring communications between those two processors, in order to inform 

each other whether ija′′  and jia′′  can be dropped simultaneously or not. On the average, this 

leads to ( )2O n  communications. 

The communication overhead can be reduced drastically if elements on each processor can be 

checked independently without communication. For this purpose, the error bound 1τ  is further 

split into two equal parts of 1

1
2

τ  for the parallel target threshold. Consequently, the error matrix 
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E  is also split into two parts: 1 2E E E= + , where 1E  is an upper triangular matrix and 2E  is 

a lower triangular matrix.  

The lower triangular part of A′′  is first checked column by column. An element in the lower 

triangular part of A′′  can be eliminated if the sum of the absolute values of the dropped elements 

in that column is less than 1

1
2

Aτ . This guarantees that the error matrix 1E  satisfies 

1 11

1
2

E Aτ≤ . After that, the sum of the absolute values of all dropped elements in each column 

of A′′  is broadcasted so that each processor contains a copy of the accumulated error for each 

matrix column. Then the upper triangular part of A′′  is checked in a similar way. This 

guarantees that the error matrix 2E  which contains all the dropped elements in the upper 

triangular part of A′′  satisfies 1 2 11
E E Aτ+ ≤ . 

  For each eliminated element ija′′ , its symmetric counter part jia′′  is not necessarily eligible for 

elimination, and vise versa. In general, from the above procedure, 1E  does not equal 2
TE  . 

Therefore, the sum of those two matrices, 1 2E E+ , is not symmetric. Since matrices E  and 

A′′′  must be symmetric, we need to symmetrize 1 2E E+ . For the i-th column and row of A′′′ ,  

1 i n≤ ≤ , the row index of the last nonzero of column i and the column index of the last nonzero 

of row i is compared. The larger index is chosen as the index of the last nonzero for the i-th row 

and column as illustrated in Figures 7 and 8. The communication cost in this modified parallel 

target threshold algorithm is only ( )2 2 log 2 2n p p nα β α β+ + + . 
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  By using the above approach in our parallel target threshold algorithm, we may not be able to 

drop as many elements as we mathematically could and as in the sequential BTS algorithm [Bai 

et al. 2004]. However, the difference in the bandwidths produced by sequential BTS and parallel 

BTS is typically small as our test results of application matrices show (see Section 4.1.1). 

  Step 5. Covering A′′′ . 

  After the parallel target threshold step, all processors obtain the row indices of the last nonzero 

entries in each column of matrix A′′′ . Each processor redundantly determines the sizes of the 

diagonal blocks independently as in the sequential BTS algorithm, so that the resulting block 

tridiagonal matrix contains all the matrix elements that are effectively nonzero (i.e., nonzeros 

in A ′′′ ). 

  Step 6. Parallel target block reduction using 2 Aτ . 

  The BTS algorithm provides the option of Target Block Reduction (TBR) to produce a few 

small blocks in matrix A′′′  for a lower computational complexity in the merging operations of 

the BD&C algorithm [Bai et al. 2004]. In a merging operation of BD&C, a lower rank of the off-

diagonal block leads to a lower computational complexity. Since the ranks of off-diagonal blocks 

are not available during block tridiagonalization, we use the smaller dimension of an off-diagonal 

block as an approximation to its rank. TBR uses sensitivity analysis to check elements in each 

column/row of an off-diagonal block from outside toward inside for elimination. For the 

sensitivity analysis, approximations to the eigenvectors are required (see Section 2.1 step 6). If 

approximate eigenvectors are not available, we may set 1τ τ=  and 2 0τ =  so that this optional 

step is not applied.  

For the parallel implementation of sensitivity analysis, we assume that the approximate 

eigenvector matrix Z  is distributed in 2D block cyclic pattern on a processor grid with r  

processor rows and c  processor columns as would typically be the case. When rows of the 

approximate eigenvector matrix are required, they are sent from several processors to one 

processor. That is, for each entry ija′′′  to be checked, the i-th and j-th rows of the eigenvector 

matrix Z  need to be sent to the processor that possesses ija′′′  (see Equation 2.2), which costs 

2 2c nα β+  communication time. When several matrix entries in the same column/row are 

checked for elimination, the strategy used in parallel TBR is to send all the relevant rows in the 

eigenvector matrix to the processor that is applying the sensitivity analysis. For example, as 

shown in Figures 9 and 10, if we want to check elements 25b , 52b , 35b  and 53b of a matrix B 

for elimination, rows 2, 3, and 5 of the eigenvector matrix Z (red shade in Figure 10) are sent to 
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2P , since 25b  and 35b  are both on processor 2P . The updated block size will then be broadcast 

to all other processors. 

  To find diagonal blocks eligible for sensitivity analysis, parallel TBR starts with the smallest 

diagonal block. If there are several diagonal blocks with the same size, then the diagonal block 

closest to the middle of A′′′  will be selected. The reduction of the size of one diagonal block 

leads to the expansion of its neighboring diagonal block(s). To avoid oscillation in block sizes, 

after a diagonal block has been compressed, it should not be expanded. Next, the second smallest 

diagonal block is selected in a similar manner for sensitivity analysis, and so on.  

 

                                      

   Figure 9. Check matrix entries                   Figure 10. Rows in the eigenvector 
        (2,5),  (3,5), (5,2) and (5,3).                      matrix Z  for sensitivity  
                                                     analysis.                       

 

In the sequential BTS implementation, all eligible diagonal blocks are checked for block size 

reduction [Bai et al. 2004]. However, this may be too costly for parallel BTS implementation 

since communication overhead for collecting and distributing rows of the eigenvector matrix can 

be prohibitive. Since our goal is to find small blocks in an attempt to reduce the complexity of the 

last few merging operations of BD&C, we restrict the number of diagonal blocks to be checked to 

three. 

3.1.2 Complexity of parallel BTS 

In the sequential BTS algorithm, the computational complexity and the number of data accessed 

are both ( )2O n  [Bai et al. 2004]. For the parallel implementation of BTS algorithm, 
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computational complexity per processor is ( )2O n p . The extra communication cost becomes 

the dominant part of the execution time since the time to transfer one floating-point number is 

typically much longer than to execute a floating-point operation. 

  The total computational and communication cost for parallel BTS as well as the complexity of 

matrix redistribution between 2D and 1D at the beginning and end of parallel BTS is 

approximately [Bai 2005] 

            ( ) ( )
2

2 22 2 2 3 2Parallel BTS
nT kn p n kc n kn
p

γ α β 
= + + + + + + 

 
 

where k denotes the number of matrix elements that are checked for elimination in step 6 

(typically k << n), and c  is the number of processor columns in the 2D distribution of the 

eigenvector matrix. 

3.2. Parallel OBR implementation 

The OBR algorithm reduces a dense matrix A  to block tridiagonal form using a sequence of QR 

factorizations on column blocks of A , as shown in Figures 2 and 3. The resultant block 

tridiagonal matrix is similar to a banded matrix except that the last off-diagonal block is not a 

triangular. With minor modification, the parallel implementation of the OBR algorithm can also 

be used to reduce a symmetric dense matrix to banded form. 

There are parallel implementations of the orthogonal bandwidth reduction algorithm, which 

reduce a dense matrix to banded matrix using blocked Householder transformations. One 

implementation is based on the Chamelon parallel programming tools [Bishof et al. 1994, Bishof 

et al. 1993], and another one uses PLAPACK [Wu et al. 1996]. Our parallel orthogonal block-

tridiagonal reduction is implemented under ScaLAPACK environment. Input matrix n nA ×∈  is 

distributed in 2D block cyclic pattern adopted by ScaLAPACK. A critical issue in the orthogonal 

reduction from a dense matrix to a block tridiagonal one is how to choose the algorithmic panel 

width bp  of each QR factorization, the block size b  of the resultant block-tridiagonal matrix, 

and the block size bn  for 2D block cyclic matrix distribution.  

3.2.1 Determination of b , bp  and bn  
First, we consider the relationship between b  and bp . Block size b  directly affects the 

computational complexity of the BD&C merging operations. When b  is large, the rank of the 

off-diagonal blocks tends to be large as well, which increases the computational complexity of 

the BD&C merging operations. Therefore we wish to obtain a block tridiagonal matrix with small 

block size b . However, as explained in Section 2.2, b  should not be smaller than bp . 
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Therefore, we set bb p= . If we choose a small panel width bp , the resultant block size b  is 

also small, but we may not be able to obtain full performance of level 3 BLAS operations. If bp  

is large, we may obtain slightly better performance during the reduction; but then b  will be 

large and the rank of the off-diagonal blocks will likely be large as well. The reduction of 

execution time in OBR is not likely to compensate the increased execution time from BD&C. See 

Section 4.2 for some experimental results on pb. 

Second, we consider the relationship between bn  and bp . Since matrices are distributed 

using ScaLAPACK 2D block cyclic pattern, to reduce data transfer between processor columns 

and the complexity of local index calculation, bp  should equal bn , as the ScaLAPACK 

reduction subroutine PDSYTRD does. This guarantees that QR factorization of each matrix 

column block is performed on only one processor column, and does not involve row-wise 

communication in the processor grid. 

From the above two restrictions bb p=  and b bp n= , we fix the sizes of panel width and 

diagonal blocks of the reduced block tridiagonal matrix to be the block size of the parallel 2D 

block cyclic matrix distribution, i.e., b bp b n= = . ScaLAPACK recommends a block size of 64 

for parallel matrix distribution [Blackford et al. 1997]. 

3.2.2 Complexity of parallel OBR 

 In parallel OBR, there are four steps to compute a sequence of bn  Householder transformations 

and reduce column block iG  of matrix A  as shown in Figure 2.  These four steps are: 

  1)  Compute QR factorization of each column block iG . The computed Householder   

      vectors overwrite corresponding columns of iG .  

2)  Construct blocked Householder transformation in the form of 1b

T
i i nI YW H H− = .  

      Here iY  holds bn  columns of Householder vectors ,1i
j by j n≤ ≤ , and iW  holds  

      vectors ( )2
Ti i i

j j jy y y . 

3)  Compute submatrix 22 22

1
2

i T i
i i i i iZ A W YW A W= −  where 22

iA  is as shown in Equation 2.3. 

4)  Apply symmetric rank-2nb update 1 22
i T T

i i i i iA A YZ Z Y+ = − − . A symmetric rank-2nb  

      update requires only half of the computation as that of a non-symmetric update, but  

      the communication cost cannot be reduced. 

 



 17

  With p  processors that form a r c×  processor grid, where r  and c  are the number of 

rows and columns of the grid, the computational and communication cost for each processor is 

approximately [Bai 2005]                         

 
3

24 2 2log log
3Parallel OBR

b

n rn r cT n
p n c r

γ α β  = + + + 
 

 . 

 

4. Numerical tests 

In this section, we present results of accuracy and performance tests. Our tests were run on the 

IBM p690 system nicknamed Cheetah in Oak Ridge National Laboratory. The system is 

comprised of twenty-seven 32-processor nodes. Each compute node has 1.3 GHz Power4 

processors and at least 32MB SMP memory. The CPUs have 32 KB of Level-1 data cache and 64 

KB of Level-1 instruction cache, 1.5 MB of Level-2 cache shared between two processors, and 32 

MB of off-chip Level-3 cache. The system employs the Federation interconnection switch that 

supports about 1400 MBps MPI bandwidth and about 7 µs MPI latency. 

4.1 Test of parallel BTS implementation 

For “effectively” sparse matrices with larger elements closer to the diagonals, parallel BTS 

subroutine PDSBTRI (URL: http://www.cs.utk.edu/~cape/parallel/PBTri.tar.gz) as described in 

section 3.1 is used to construct block-tridiagonal matrices. In Sections 4.1.1, we compare the 

resultant bandwidths of matrices using parallel and sequential target thresholding 

implementations. In Section 4.1.2, the ranks of off-diagonal blocks from parallel BTS with and 

without the optional TBR are compared. In Section 4.1.3, the accuracy of the eigenpairs for the 

block tridiagonal matrix is compared with that of the original full matrix. Performance test results 

are presented in Section 4.1.4. 

Test matrices are generated from simulating alkane molecules using the CNDO method [Pople 

and Beveridge 1970, Pople et al. 1967, Pople et al. 1965, Pople and Segal 1965, 1966] and trans-

Polyacetylene (PA) molecules using the SSH Hamiltonian [Su et al. 1980] that includes only the 

nearest neighboring atoms. The general molecular formula of an alkane is CnH 2n+2. Figures 11 

and 12 show the magnitudes of the elements of a matrix generated from C502H 1006 and its 

eigenvalue distribution. Trans-PA consists of a chain of CH units. It has the general molecular 

formula trans-(CH)n. Figures 13 and 14 show the magnitudes of the matrix elements of trans-

(CH)8000 and its eigenvalue distribution. 
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          Figure 11. 10log  of absolute value of matrix elements for  
                   alkane C502H 1006 molecule, 3,014n = . 

           
          Figure 12.  Eigenvalue distribution of matrix in Fig. 11. 

 

                Figure 13. 10log  of absolute value of matrix elements for  
                      trans-(CH)8000 molecule, 8,000n = . 
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                 Figure 14. Eigenvalue distribution of matrix in Fig. 13. 

 
 
4.1.1 Bandwidths of modified parallel target threshold 

As described in Section 3.1.1, step 4, parallel target threshold checks lower and upper 

triangular part of matrix A′′  independently without communication, while sequential target 

threshold checks each pair of symmetric matrix entries along off-diagonals. The bandwidths after 

parallel and sequential target threshold are compared using application matrices generated from 

alkane and trans-PA molecules. Table 1 shows that the bandwidth after parallel target threshold is 

very close to that after sequential threshold on the test matrices. 

 

           Table 1. Bandwidth after parallel and sequential target threshold, 610τ −=  

         Trans-PA molecules             Alkane molecules 

Bandwidth after  

target threshold 

Bandwidth after  

target threshold 

 

Matrix and Size 

Parallel Sequential 

 

Matrix and Size 

Parallel Sequential 

Trans-(CH)2000 

n = 2000 

390 390 C162H326 

n = 974 

81 80 

Trans-(CH)3000 

n = 3000 

390 390 C322H646 

n = 1934 

83 81 

Trans-(CH)4000 

n = 4000 

390 390 C502H1006 

n = 3014 

85 85 
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4.1.2 Effect of target block reduction (TBR) on block sizes and ranks 

In an iterative method like the SCF, a nonlinear eigenvalue problem is solved by solving a 

linear eigensystem iteratively until convergence [Szabo and Ostlund 1996]. For the alkane 

molecules, we completed all the iterations using a sequential SCF subroutine and stored the Fock 

matrices and eigenvector matrices from each iteration. Thus, in the test of parallel BTS using 

matrices from C502H 1006, we are able to test the optional target block reduction (TBR) step using 

the eigenvector matrix from the previous iteration as approximate eigenvectors. The TBR step 

tries to produce a few small blocks in matrix A′′′  for a lower computational complexity in the 

merging operations of the BD&C algorithm. Table 2 shows the minimum size of diagonal blocks 

and minimum rank of off-diagonal blocks with and with out TBR using alkane matrices from the 

second iteration of SCF. The TBR step significantly reduces the size of some off-diagonal blocks 

when work space is sufficient. When tolerance is 810− , the work space required for TBR is too 

large due to large block sizes. In this case, TBR step is replaced by a second round of target 

threshold. The execution times in the table show that the overhead of TBR is typically small 

compared to the total execution time of parallel BTS.  Although the reduction in the minimum 

rank of off-diagonal blocks is not as significant as that in the minimum block size, even a 

reduction of one is a reduction of ( )3O n  in total floating-point operations for the BD&C 

algorithm. 

   Table 2. Minimum size of diagonal blocks and minimum rank of off-diagonal blocks  
          from block-tridiagonalization of alkane matrixes using 4 processors. 

 
Minimum size of 

diagonal blocks 

Minimum rank of 

off-diag. blocks 

Execution time in 

seconds 

 

Tolerance 

 

Molecule 

 
Matrix 

size without 

TBR 

with  

TBR 

without 

 TBR 

with  

TBR 

without 

 TBR 

with  

TBR 

C162H326 974 40 21 14 14 0.28 0.30 

C322H646 1974 40 21 14 14 0.21 0.30 

 
410−  

C502H1006 3014 40 26 14 14 0.16 0.26 

C162H326 974 76 38 21 20 1.03 1.12 

C322H646 1974 76 39 20 20 0.88 1.19 

 
610−  

C502H1006 3014 74 39 21 21 0.65 1.04 

C162H326 974 90 90 47 47 2.38 2.59 

C322H646 1974 130 130 46 46 2.18 2.96 

 
810−  

C502H1006 3014 319 319 34 34 1.53 2.57 
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4.1.3 Accuracy of eigenpairs 

To examine the actual errors in eigen-solutions incurred by the parallel BTS algorithm, LAPACK 

routine DSYEVD is used to compare the eigenpairs of A, the original matrix, to those of M, the 

approximating block tridiagonal matrix. The results are presented in Table 3, where iλ  and îλ  

are the i-th eigenvalues of A and M, respectively, and iv and îv  are the corresponding 

eigenvectors. Accuracy tolerance is set to 410− , 610−  and 810− , respectively. Table 3 shows that 

the scaled maximum error between the eigenvalues of A and M for each test matrix 

( ) ( )A M Aλ λ−  is bounded by τ , and the scaled 2-norm of the maximum residual 

( )
2

ˆ ˆi iA v Aλ−  is of order ( )O τ . 

       Table 3. Maximum eigenvalue error and residual with 4 6 810 ,10  and 10τ − − −=  

 

Matrix 

 

Size 

 

With TBR 

 

Tolerance 
1, ,

ˆ
max

i i

i n A

λ λ
=

−
 

( )
2

1, ,

ˆ ˆ
max

i i

i n

A v

A

λ
=

−
 

No 410−  66.02 10−×  51.07 10−×   

C502H1006 

 

3,014 Yes 410−  65.36 10−×  52.46 10−×  

Trans-

(CH)4000 

4,000 No 410−  51.07 10−×  51.67 10−×  

No 610−  83.96 10−×  88.85 10−×   

C502H1006 

 

3,014 Yes 610−  74.73 10−×  64.24 10−×  

Trans-

(CH)4000 

4,000 No 610−  87.56 10−×  71.43 10−×  

No 810−  127.61 10−×  102.35 10−×   

C502H1006 

 

3,014 Yes 810−  124.70 10−×  102.11 10−×  

Trans-

(CH)4000 

4,000 No 810−  105.35 10−×  91.15 10−×  

 

4.1.4 Performance of PDSBTRI 

The execution times of subroutine PDSBTRI with tolerance 610τ −=  is illustrated in Figure 15. 

The parallel BTS algorithm contains steps that are sequential in nature as well as steps that 

parallelize well. For example, the matrix reorder (step 2) is completely sequential; while the 

global thresholding (step 1) and the modified target thresholding (step 4) are embarrassing (or 
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pleasantly) parallel, in that each processor checks elements to be eliminated independently. As 

the number of processors increases, the execution times for steps 2 and 4 decrease. However, the 

overhead of redistributing the matrix from 2D block cyclic distribution to 1D column block 

distribution increases with the number of processors. Overall, the execution time of PDSBTRI 

demonstrates a complexity of ( )2O n .  

                 

       Figure 15. Execution times of PDSBTRI (without TBR) using matrices from trans-(PA). 

 
4.2 Performance test of parallel OBR implementation 

Random matrices generated by C build-in random number generator are used to test performance 

of the parallel OBR subroutine PDSBTRD (URL: http://www.cs.utk.edu/~cape/parallel/ 

PBTrd.tar.gz). Figure 16 shows the execution times of PDSBTRD scaled by that of the 

ScaLAPACK subroutine PDSYTRD. The block size bn  for 2D block-cyclic matrix distribution 

is 32. It should be noted that the floating-point operation count for the two subroutines are not 

exactly the same since PDSBTRD only reduces a matrix to block-tridiagonal form while 

PDSYTRD reduces a matrix to tridiagonal form. The improved performance as a result of using 

level 3 BLAS operations can be seen from the relative execution time of PDSBTRD to 

PDSYTRD. In particular, PDSBTRD performs better when the problem size per processor 2n p  

becomes larger.  

  The off-diagonal blocks of the block-tridiagonal matrix after parallel OBR tend to have full 

rank. As a pre-processing step for the BD&C algorithm, the ranks of the off-diagonal blocks 

directly affect the computational complexity of BD&C. Off-diagonal blocks with smaller sizes 

are preferred for lower computational complexity in BD&C. On the other hand, high performance 

of level 3 BLAS operations cannot be completely achieved when block sizes are too small. Figure 



 23

17 shows that PDSBTRD scales up with the number of processors in use. With block size 32, 

PDSBTRD achieves optimal performance. When block size is reduced to 16, there is a slight loss 

in performance; however, a significant reduction in the computational complexity of BD&C (by 

half) should compensate for the slower performance of the parallel OBR step. If we further 

reduce the block size to 8, the performance of PDSBTRD can be more than 50% slower than that 

with block size 32. In addition, with such a small block size, the performance of back 

transformation of the eigenvectors is going to be degraded drastically. Therefore, when combined 

with the BD&C eigensolver, we should choose block size 16 for the orthogonal block reduction 

subroutine PDSBTRD.  

           

                Figure 16. Relative execution times of PDSBTRD to PDSYTRD. 

 

           

                Figure 17. Execution time of PDSBTRD with different block sizes. 
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5. Conclusion 

Two parallel algorithms are presented for block-tridiagonalization of symmetric dense matrices. 

They can be used according to the structure of input matrices and transform the original dense 

matrix into block-tridiagonal form.  

  When the input matrix is “effectively” sparse with strong locality properties, the parallel BTS 

algorithm is used to construct a block-tridiagonal matrix that approximates the original input 

matrix. In the context of approximate eigensolutions, given an accuracy tolerance τ  and input 

matrix A , the eigenvalue errors between the resultant block-tridiagonal matrix and the original 

matrix is bounded by Aτ . In an iterative procedure like the self-consistent field (SCF) method, 

the eigenvector matrix from previous iteration can be used for the optional TBR step in an 

attempt to further reduce the block size of a few off-diagonal blocks. The computational 

complexity of parallel BTS is typically trivial compared to the complexity of computing all 

eigenpairs of a dense symmetric matrix.    

When the input matrix is dense without usable structure, the parallel OBR algorithm is used to 

reduce the original matrix into block-tridiagonal form using blocked orthogonal transformations. 

The parallel OBR algorithm is very efficient by itself due to its high ratio of Level 3 BLAS 

operations; however, the off-diagonal blocks after orthogonal block-tridiagonal reduction tend to 

have full ranks. Since the block size of the block tridiagonal matrix equals the block size of the 

parallel 2D matrix distribution, one may try to reduce the ranks of off-diagonal blocks using 

smaller block size for parallel matrix distribution. For our tests using a block size of 16, the effect 

of level 3 BLAS operations in parallel OBR is reduced slightly, but the reduction of complexity 

in BD&C eigensolver is going to be great enough to compensate the small amount of 

performance loss in the orthogonal reduction step. 
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