Aesthetics in Software Engineering

Technical Report UT-CS-06-579
Bruce J. MacLennan”

Department of Computer Science
University of Tennessee, Knoxville
www.cs.utk.edu/~mclennan

October 31, 2006

Abstract

This report discusses the important role that aesthetics may play in software
engineering. We begin with an exploration of the practical importance of ele-
gance for both the designers and users of software systems, and argue that it pro-
motes software that is technically superior and a pleasure to use. Second, be-
cause of the abstract and formal character of software we draw analogies with
aesthetics in the exact sciences, including mathematics, in which intelligibility
coincides with beauty, and consider how this aesthetics may be applied to soft-
ware. Third, we discuss means for making abstract aesthetic qualities percepti-
ble, including visual programming languages and models grounded in human
embodiment. Finally, we advocate ways to advance and teach the aesthetic di-
mension of software engineering.

1 Introduction

Software engineering is a historically new activity, so it does not have as long an aesthet-
ic tradition as do the other arts and engineering disciplines. Therefore it is helpful to be-
gin our aesthetic inquiry with analogies to longer-established disciplines, always keeping
in mind the distinctive characteristics of software. In this article I will draw analogies
principally from two sources. First, because software systems are large and complex, of-
ten constructed by teams, intended to serve a useful function, and capable of causing in-
jury and economic loss if they fail, I will draw analogies from the structural engineering

" This report is an extended draft of an article invited for Handbook of Philosophy of the
Technological Sciences, “Part 1X. Normativity and Values in the Technological Sciences,” ““7.
Aesthetic Values in Technology and Engineering Design,” “5. Designing the Virtual: Software
Engineering.”



of towers and bridges (e.g., Billington, 1983), which shares these characteristics. This
will lead to an exploration of the practical importance of elegance for both the designers
and users of software systems. Second, because of the abstract and formal character of
software I will draw analogies with aesthetics in the exact sciences, including mathemat-
ics (e.g., Heisenberg, 1975). Next I will discuss means for making abstract aesthetic
qualities perceptible, including visual programming languages and models grounded in
human embodiment. Finally, I will consider how we may advance and teach the aesthetic
dimension of software engineering.

2 Importance of Aesthetics in Software Engineering

2.1 Designer’s Perspective

Following Billington (1983) we may identify three dimensions along which designs may
be evaluated: efficiency , economy , and elegance — “the Three E’s.” These correspond to
three aspects of any artifact, the scientific, social, and symbolic (“the Three S’s”). Effi-
ctency deals with the physical resources used by the system, which in the case of software
artifacts is primarily computer time and memory. Typically there are trade offs involved,
with efficiency weighed against factors such as functionality, reliability, and maintain-
ability. These are scientific issues because they concern the physical resource utilization
of the system’s design.

Economy refers to all aspects of the cost of the system, including hardware and hu-
man costs, in all phases, including development, use, and maintenance. These are social
issues because costs depend on market forces, social processes, governmental policies,
etc. Due to the uncertainties in these factors, the economy of a design is more difficult to
evaluate than its efficiency, and it is subject to change and local context. Furthermore, it
cannot be assumed that all costs can be reduced to a common denominator, such as mon-
ey, as is often the case with human suffering.

This brings us to the explicitly aesthetic dimension of a design, its elegance , which
depends on the aspects that Billington calls symbolic . Although we may take for granted
that aesthetically appealing designs should be preferred, other things being equal, there
are other compelling reasons for preferring elegant designs, but to understand them we
need to review some of the characteristics of software systems. (See also MacLennan,
1999, pp. 156-60.)

Modern software systems can be enormously complex, often comprising millions of
lines of instructions. Even a text editor, generally considered a basic software tool, can be
hundreds of thousands of lines in length (e.g., the open source “vim 7.0” editor has ap-
proximately 300 000 lines of source code). The steady increase in software complexity
has resulted from a number of factors (both scientific and social), including the increasing
capacity and speed of computer systems, users’ demands for new features and richer in-
terfaces, and competing systems with more features.

Software systems with such large numbers of instructions are among the most com-
plex systems ever constructed, and analytic tools for understanding them (such as pro-
gram verifiers and test generators) are still quite limited. The complexity results in part
from the fact that these millions of components interact with each other (and with other
software and hardware systems) in real time, and that the number of interactions to be



considered increases with at least the square of the number of components. Furthermore,
the components (e.g., computer instructions) are far removed from physical objects and
interactions for which we have an intuitive basis for understanding (e.g., the physical
components and interactions of a mechanical system). Therefore, our intuition is set
adrift, and our analytical tools do little to anchor it.

Every analysis makes idealizing simplifications, and generally, the more complex the
system, the greater will be the simplifications in its analysis. In the case of physical sys-
tems, for example, we may assume that the dynamics is linear, because that simplifies the
mathematical analysis (or makes it feasible), even though we know that it is nonlinear. In
the case of a software system, we may assume that any two numbers can be added and
that the result will be correct, although we know that computer arithmetic is limited in
range and precision. Similarly we may assume that input-output processes and other sys-
tem services will operate correctly and be completed within real-time constraints.

It is important to realize that simplification is an inherent limitation in the analysis of
complex systems, since an analysis is supposed to separate out the relevant features of the
system, so that we can understand them better (with our limited cognitive capacities),
from the irrelevant features (which we intend to ignore). Therefore the validity and use-
fulness of an analysis depends on decisions (sometimes tacit) as to what the analysis
should include or omit, which derive from assumptions (often unconscious) as to what is
relevant or irrelevant. Furthermore, since human cognitive capacities are limited, the
more complex a system is, the more must be omitted from its analysis so that the analysis
itself will not exceed our understanding. Thus there are inherent limitations to the analy-
sis of very complex systems, such as modern software systems.

Similar problems arise in structural engineering, and Billington observes that the best
structural engineers are guided by aesthetics as well as by mathematical analysis. In ele-
gant designs the dispositions of masses and forces are manifest in the design, and there-
fore the designs that look good (look balanced, secure, stable, etc.) correspond to the de-
signs that are safe, efficient, and economical. For example, although extensive mathe-
matical analysis was used in the design of the Tacoma Narrows Bridge, it collapsed four
months after it was completed because aerodynamic stability had not been included in the
analysis (it was not considered relevant). In contrast earlier bridges, designed without the
benefit of complex mathematical models but in accord with aesthetic principles, were
aerodynamically stable. How is it possible that good aesthetics can lead to good engi-
neering?

Billington observes that in structural engineering, designs are under-determined, that
is, there are many designs that will solve a particular structural engineering problem, such
as bridging a certain river (see also Ferguson, 1992, p. 23). Therefore, in contrast to
Louis Sullivan’s architectural maxim, form follows function , which suggests that the de-
sign is strongly determined by its function, Billington argues that the more appropriate
structural engineering maxim is_function follows form , because there are many structures
that will accomplish a particular function. The same arguments are even more applicable
in software engineering, in which typically many different software designs will satisfy
the system requirements. Therefore in software engineering we have a great deal of free-
dom in the choice of solutions to a software problem.

In particular, software engineers (like structural engineers) can choose to work in a
region of the design space in which experience has shown that designs that look good in



fact are good (e.g., safe, efficient, and economical). In the case of towers and bridges,
such designs make the interaction of forces manifest, so that designers (and, as we will
see, users) can perceive them clearly. Since aesthetic judgment is a highly integrative
cognitive process, combining perception of subtle relationships with conscious and un-
conscious intellectual and emotional interpretation, it can be used to guide the design pro-
cess by forming an overall assessment of the myriad interactions in a complex software
system.

The discussion thus far has focused on the cognitive aspects of aesthetics, for an ele-
gant software system is easier to understand and can be designed more reliably than an
inelegant one. Thus there are practical, engineering reasons for striving for elegance.
However, aesthetics also plays a less tangible role, which may be called ethical, for a de-
sign symbolizes a set of values. Specifically, if a designer is seeking an elegant design,
then they are being guided by a set of aesthetic values (which imply engineering values in
the chosen subset of the design space). A design may be robust or delicate, spare or rich
in features, straight forward or subtle, ad hoc or general, and so forth, and the values ex-
emplified in the design will call forth extensions and modifications consistent with those
values. By keeping certain values, embodied in the design aesthetic, before the design-
ers’ eyes, these values will be kept in their attention and persist as conscious goals. Con-
versely, values incompatible with the aesthetic, or not exemplified by it, will tend to re-
cede into the background of the designers’ minds, and will be underrepresented in the de-
sign. Thus a software system may embody a coherent ethical-aesthetic character, which
is difficult to state in words but can guide the aesthetically sensitive engineer.

Aesthetic appreciation can unite a software development organization through a com-
mon set of values embodied in a shared sense of elegance. We can see a similar role for
aesthetics among mathematicians and theoretical scientists, who strive for proofs and
theories that are elegant. For example, Heisenberg (1975, p. 176) says that science “also
has an important social and ethical aspect; for many men can take an active part in it.”
Scientists, he says, are like the master masons who constructed the medieval cathedrals,
for “[t]hey were imbued with the idea of beauty posited by the original forms, and were
compelled by their task to carry out exact and meticulous work in accordance with these
forms” (ibid.). Like cathedrals and scientific theories, large software projects are the re-
sult of the efforts of many people, and aesthetic standards provide criteria by which indi-
vidual contributions can be objectively evaluated (ibid.).

Thus, in software engineering, as in mathematics and theoretical science, correct-
ness is required, but among the correct solutions, the more elegant are preferred. (The
education of mathematicians and theoretical scientists also provides models for how a
shared sense of software elegance might be learned.) Therefore a shared aesthetic sense
can unite a software engineering team in a common purpose.

2.2 User’s Perspective

Hitherto I have stressed the importance of aesthetics for the designers of software arti-
facts, but it is also important for the users. In the modern information economy many
people spend much of their working lives interacting with one or a few software systems
(e.g., a word processor, database system, or reservation system); further, in their recre-
ational time, people may be engaged with the same or other software artifacts (e.g., a web
browser or computer game). Therefore the external aesthetics of software systems can
have a significant effect on the quality of many people’s lives. Other things (such as



functionality) being equal, most people would prefer to work with a beautiful tool than
with an ugly one.

Furthermore, for many people the computer is not simply one tool in an otherwise un-
computerized occupation; rather, the computer and its software constitute, to a large de-
gree, the entire occupation. In these cases the software system defines the work environ-
ment as fundamentally as the physical workspace does. Therefore, the aesthetics of the
software systems deserves at least as much attention as that due the architecture, decor,
etc. (From this perspective, many contemporary programs are the software equivalent of
sweatshops: cluttered, dangerous, ugly, alienating, and dehumanizing.) As architecture
deals with the functionality and aesthetics of physical space, organizing it for practicality
and beauty, so software engineers organize cognitive (or virtual) space toward the same
ends. Thus software aesthetics can have a major effect on quality of work and quality of
life.

An elegant software design can also promote confident use of the system, for eventu-
ally users will acquire an aesthetic sense of the design space and will come to recognize
that the designs that look good also are good. As is well known, many people approach
software fearfully, and part of this fear arises from the fact that software is unpredictable
(for them, but often also for the designers!). In elegantly designed software, however, the
dynamical interaction of the parts is manifest in the external form, and so aesthetic com-
prehension of the form can guide the user’s understanding of the system’s operation.
Therefore, as in mathematics and theoretical science, the goal is that beauty coincide with
intelligibility, for then users (as well as programmers) will experience pleasure through
understanding. This is possible because both beauty and intelligibility are grounded in
the interrelation of the parts, as will be argued later (sec. 5.4; cf. also Heisenberg, 1975,
pp. 169-70).

It is well-known that people’s ability to use technological devices with pleasure, con-
fidence, and fluency depends on their ability to build a cognitive or conceptual model of
the device’s behavior (Norman, 1988, ch. 7; 1998, ch. 8; 2005, ch. 3). An effective cog-
nitive model of a system is not required to reflect its actual internal structure or operation,
but it must be accurate enough not to mislead the user (thus resulting in a loss of confi-
dence and in frustration). By implying an intelligible dynamical structure, an elegant de-
sign can help the user to form an effective cognitive model. Therefore an elegant design
aids users’ understanding of a system in much the same way it aids that of the system’s
designers.

Similarly, just as for the designers the aesthetics of a design has an ethical dimension
and exemplifies certain values to the exclusion of others, so also the design aesthetics has
ethical implications for users. At very least, by making some practices easy and others
awkward, and by bringing some concerns into the foreground while leaving others in the
background, the external aspect of the system will influence users in its use. Indeed, such
non-neutrality is an unavoidable characteristic of the phenomenology of all tools (Ihde,
1986, chs. 5, 6; 1993; MacLennan, 1999, pp. 33-35). In addition to this, however, is the
symbolic dimension, for by exemplifying particular aesthetic norms, the system keeps
these before the eyes of the users, and increases the likelihood that they will be guided by
these norms in their own work.

Finally, there is a social aspect for the users of an elegant design just as there is for
the designers. As users come to appreciate the beauty of an elegant design, they will de-



velop an appreciation for its aesthetic principles and come to expect similar elegance in
other software systems. Thus the users (and consumers) of software systems are included
in a feedback loop that encourages the development of elegant software and discourages
the inelegant. This will accelerate the development of software that is efficient, economi-
cal, reliable, and a pleasure to use. (Billington notes the role of an aesthetically educated
public in improving bridge design in Europe.)

3 Software Engineering as “Platonic Technology”

With only slight poetic license, software may be called “Platonic technology.” To see
this, we may analyze the products of the arts (including technology) in terms of form and
matter , in which “matter” refers to the raw material on which the art imposes its form. In
these terms, the matter of software engineering is the hardware, which provides a rela-
tively neutral ground comprising the data processing operations and storage, and the form
is the software which organizes these resources into a dynamic process in order to accom-
plish some purpose. Traditionally software engineering has focused on the software inde-
pendent of the hardware, that is, on the form independent of the matter, and in this sense
it is Platonic in spirit if not in essence (as are mathematics, theoretical physics, etc.). Al-
though there is great variety in hardware and it changes every few years, we still study
and use algorithms that were designed decades ago (some even before the invention of
electronic computers). Clearly, what matters most is the form, not the matter.

All arts have their formal and material characteristics, but software engineering is ex-
ceptional in the degree to which formal considerations dominate material ones. All the
issues that are most fundamental in software engineering (e.g., correctness, efficiency,
understandability, maintainability) depend primarily on the formal characteristics of the
program and only secondarily on its material embodiment (i.e., the effect of the hardware
on the software). Clearly, the hardware cannot be ignored (especially in cases in which
the engineering is pushed to its limits), but in general hardware considerations are sec-
ondary and often an afterthought.

Software engineering is a new discipline and so it does not have a well-established
aesthetic tradition. We may look to other arts for suggestions and analogies, but soft-
ware’s lack of essential material embodiment implies that perceptual qualities will not
have so great a role as they do in the other arts. Rather, aesthetic considerations in soft-
ware engineering will be comparable to those in mathematics and theoretical science
(which are also Platonic in that abstract ideas constitute their primary subject matter).

Indeed, discussions of the aesthetics of mathematics and theoretical science often fo-
cus on such qualities as correctness (either consistency or empirical adequacy), generali-
ty, simplicity, and (abstract) beauty, and the same qualities are central to the aesthetic
evaluation of software. (See, for example, Curtin, 1982; Farmelo, 2002, Pref.; King,
2006; Wechsler, 1988.)

4 A Platonic Aesthetics for Software Engineering

The foregoing observations suggest that we may apply Platonic theories of aesthetics in
software engineering, a proposition that is not as anachronistic as it may seem. For as
Heisenberg remarks in his essay, “The Meaning of Beauty in the Exact Sciences” (1975),
these aesthetic theories stem from the same roots as the exact sciences, exemplified in the



discovery, attributed to Pythagoras, that harmonious sounds correspond to intelligible
mathematical relationships. For contemporary examples of the coincidence of beauty and
correctness in the exact sciences Heisenberg mentions relativity theory and quantum the-
ory. Another reason for looking to classical aesthetics is that the classical notion of beau-
ty (Grk., to kallon) included excellence and manifest fitness to purpose, and so it has a
functional aspect that is very appropriate to software engineering.

Since in classical aesthetics (and continuing into the eighteenth century) there were
two principal approaches to aesthetics stemming from Platonic philosophy and differing
in whether they focused on “the many” or “the one,” I will consider the applicability to
software of each of these theories, which we may call the Pythagorean (for it derives
from Pythagorean philosophy) and the Neoplatonic (as represented in Plotinus’ Enneads ).

4.1 Conformity of the Parts to One Another and to the Whole

The Pythagorean theory grounds the beauty of a composite object in the conformity of its
parts to one another and to the whole. As Plato (Philebus 64e) says, “The qualities of
measure (metron) and proportion (symmetron) invariably ... constitute beauty and excel-
lence.” That is, aesthetic excellence is grounded in order, harmony, symmetry, and pro-
portion among the parts. Furthermore, since beauty is an objective formal or structural
property, it has an intellectual character, and so beauty and intelligibility are inherently
related (Phil. 65d). Further, as Plato (Phaedrus 250d) observes, vision and hearing, the
senses most closely connected with rational cognition, are also the senses by means of
which we are able to perceive physical beauty. Thus, the most intelligible structure corre-
sponds to the most beautiful structure, as we have seen to be the case for elegant soft-
ware.

Therefore in judging the aesthetics of a software system, we should look first to the
conformity of the parts. They should be harmonious in a Pythagorean sense, for in an-
cient Greek harmonia refers to things that are well fitted together into a whole (Liddell,
Scott & Jones, 1968, s.v. &xppovic). We ask: Are they arranged symmetrically, so they
will be easier to comprehend? Are they ordered in an easily comprehensible way? Are
the numbers and sizes of the elements appropriate? To the extent that these structural
qualities obtain, the aesthetically sensitive engineer will experience the system as elegant
and even beautiful. Of course aesthetic appreciation will be enhanced by a visual presen-
tation that makes the intellectual order manifest (as is discussed later).

In classical aesthetics, however, beauty is a function not only of the interrelation of
the parts, but also of the relation of the parts to the whole. For example, Aristotle (Poet -
ics 23, 1458a) argues that a beautiful thing is an organic whole, which he explicitly analo-
gizes to a single living thing in its unity (zdon hen holon). That is, the parts are not only
orderly, symmetric, and harmonious in their interrelationships, but they all serve essential
and complementary roles as parts of a meaningful, unified whole; the parts and the whole
are mutually determining. Certainly, these are desirable criteria in any functional system.

Aristotle also argues that a beautiful work of art, like a beautiful organism, must be of
a certain appropriate size, and he relates this size to human cognitive capacities, such as
our memory and our ability to discriminate the work’s parts and to grasp the work in its
entirety (Poet. 7, 1450b-1451a). Similarly, beautiful software is structured in such a way
that we can grasp the components in their individuality and relation, and comprehend the



whole in our minds as an organic and functional unity. In summary, aesthetic evaluation
considers the relation of the parts to each other, to the whole, and to the perceiver.

Science attempts to comprehend a multiplicity of phenomena under a single principle,
expressed as a simple, elegant mathematical relationship among abstract ideas. Most
commonly the phenomena are dynamical relationships and processes evolving in time,
and so, as Heisenberg explains (in the case of Newtonian mechanics), “The parts are indi-
vidual mechanical processes ... And the whole is the unitary principle of form which all
these processes comply with [and which is expressed] in a simple system of axioms”
(Heisenberg, 1975, p. 174). In science, then, as in art, “Beauty is the proper conformity
of the parts to one another and to the whole” (loc. cit.).

The goals of the software engineer are similar to those of the scientist in that both are
attempting to give a static abstract description of material processes and interactions tak-
ing place in time. One difference, of course, is that the scientist is trying to describe natu-
rally occurring phenomena, whereas the engineer is attempting to design a static structure
(program) that will generate the desired temporal interactions.

As mechanical processes are described by the axioms of Newtonian mechanics, so a
program, contingent on external events, describes a set of possible execution sequences.
Individual execution sequences are the parts with respect to the infinite set of all se-
quences, for which the program provides an intensive (finite) definition. Beauty, then, re-
sides in the conformity of the execution sequences to each other and to the program.
They should form a harmonious ensemble (extension) and have a simple relation to the
program (intension). For elegant programs the dynamic possibilities (extension) will be
easy to visualize from the generative form (intension). The engineers will have a reliable
intuitive understanding of the consequences of their design.

Conversely, in designing a program, software engineers have certain desired execu-
tion sequences in mind, and they have to expand these in their minds into a coherent infi-
nite set of possible sequences (conformity of the parts to one another). From this multi-
plicity of possible dynamics they need to derive a finite and unified static generative form
(conformity of parts to the whole). Beauty resides in the simplicity, harmoniousness, or-
derliness, and symmetry of these relations, which elicit simultaneous intellectual and aes-
thetic appreciation.

4.2 The Character of the Whole

The Neoplatonic theory of beauty, as represented in Plotinus (esp. Enn. L.vi, V.viii, VI.vii)
is more difficult to apply in software engineering, and in fact with respect to its applica-
tion in the exact sciences Heisenberg (1975, p. 183) remarks, “in our own time it is hard
to speak of beauty from this aspect, and perhaps it is a good rule to adhere to the custom
of the age one has to live in, and to keep silent about that which it is difficult to say.”
Nevertheless, it will be worthwhile to see what it could contribute to our understanding of
software aesthetics.

From the perspective of the opposition of the many and the one, Pythagorean aesthet-
ics focuses on the many — the relation of the parts to one another and to the whole —
while Neoplatonic aesthetics focuses on the one, the whole without reference to its parts.
For Plotinus argues that mere orderliness of parts is neither necessary nor sufficient for
beauty, but that a thing is beautiful because it embodies an ideal form, an abstract unity,
which we recognize through the beautiful thing. Further, Plotinus’ view is that there are



no ndependent conditions of beauty, such as symmetry, separate from the unifying idea.
Orderliness of the parts, then, is a consequence of their subservience to the unifying idea.
The aesthetic experience arises from our appreciation of the organic unity of the thing as
a reflection of an ideal form, an appreciation that depends in part on a “resonance” or
“congruence” to (activation of) the form’s representation in the perceiver’s mind. In
more modern terms, we experience a perceptual Gestalt, or recognize an archetypal form
rooted in human cognition.

In the context of software engineering these archetypal forms would be, for example,
complete procedures, operations, or patterns of interaction that are innate or deeply in-
grained in the viewer’s unconscious mind. Although it is difficult to catalog these
archetypal structures, it is not necessary to do so, for to a large extent we know them
when they see them, because they engage our neurocognitive structures and elicit recog-
nition and an aesthetic response. When we see an algorithm whose correctness and effi-
ciency are intuitively obvious, we may be responding to such an ideal form. Heisenberg
(1975, p. 175) similarly observes that in science an aesthetic response to the whole often
precedes intellectual exploration of the details. He asks (ibid.), “How comes it that with
this shining forth of the beautiful into exact science the great connection becomes recog-
nizable, even before it is understood in detail and before it can be rationally demonstrat-
ed?” It is not a result of conscious analysis, for “Among all those who have pondered on
this question, it seems to have been universally agreed that this immediate recognition is
not a consequence of discursive (i.e., rational) thinking” (op. cit., p. 177). Indeed,
thinkers as diverse as Kepler, Pauli, and Jung (Heisenberg, op. cit., 177-80) have attribut-
ed the process “to innate archetypes that bring about the recognition of forms” (p. 178).
Thus Pauli (1955, p. 153): “As ordering operators and image-formers in this world of
symbolical images, the archetypes thus function as the sought-for bridge between the
sense perceptions and the ideas and are, accordingly, a necessary presupposition even for
evolving a scientific theory of nature.” It is important to seek these structures, for they
represent the channels in which our thought is predisposed to flow (whether innately or
through learning).

S Visual Programming Languages

Because of the abstract nature of software, we have been focusing on Plato’s aesthetics,
but even he acknowledged that sensuously perceivable beauty is a means toward appre-
hension of the intellectual beauty of abstract forms. Therefore I will consider briefly the
role of visual beauty in software design.

Visual programming languages (VPLs), in which programs are represented as two-di-
mensional figures rather than as text, have been investigated since the earliest days of
electronic computing (e.g., AMBIT/G, SKETCHPAD), and VPLs continue to be devel-
oped (e.g., Alice, StarLogo TNG), especially for introductory programming instruction
(e.g., Eades & Zhang, 1996; Stasko, Domingue, Brown & Price, 1998). In these lan-
guages formal relations between program parts are represented as spatial relations be-
tween visual forms. Early VPLs represented programs as flowcharts, in which connect-
ing edges represented possible paths of control flow, but after the introduction of struc-
tured programming around 1970 it became more popular to represent visually the hierar-
chical structure of the program, which reflects both the logical and dynamical structure of
a structured program.



Often visual representations of hierarchical program structure take the form of some
kind of tree diagram. Sometimes these are graphs, in which leaves represent atomic pro-
gram components (individual programming language statements), interior nodes repre-
sent composite program components, and edges connect composite components to their
immediate constituents. A more recent style, facilitated by improved computer graphics
capabilities, represents program components by two-dimensional shapes reminiscent of
jigsaw puzzle pieces, which can be interlocked only in conformity with the programming
language’s syntax (e.g., Alice, StarLogo TNG).

Visual representations of hierarchical program structure would seem to be ideal as a
medium for elegant program design, and they are certainly superior in this regard to
flowcharts. By representing abstract relations spatially, they create a correspondence be-
tween the domains of abstract forms and of spatial forms, and facilitate the visual percep-
tion (and aesthetic appreciation) of well-organized, symmetric, and balanced structures;
that is, beauty coincides with intelligibility. Unfortunately, in practice these visual repre-
sentations have limitations, for even small program modules can be quite deeply nested
(and it can be argued that for very small modules visual representation is not important).
As a consequence, the visual representations can be quite large in whatever dimension
represents nesting depth. Due to the limitations of human visual perception and practical
computer screen size, we are faced with the undesirable alternatives of displaying the en-
tire structure, but with many tiny components, which are difficult to discern, or of dis-
playing only a portion of the structure at one time and having to use devices such as pan-
ning and zooming to explore the structure sequentially. Neither is conducive to Gestalt
recognition of the program’s structure, or to an intuitive intellectual comprehension and
aesthetic appreciation of it. Perhaps the problem is that VPLs result in a too literal repre-
sentation of program structure in perceptible form, and that an aesthetically satisfying ex-
pression of the design will require a less literal representation.

6 Embodiment and Non-Platonic Aesthetics

Fishwick and his colleagues have explored a more metaphorical approach to program-
ming aesthetics (e.g., Fishwick, 2002). Noting that graphs are “largely devoid of texture,
sound, and aesthetic content,” he seeks to make software “more useful, interesting, and
comprehensive” by an approach that begins with a model; this is the “craft-worthy, artis-
tic step.” The model is intended to be the usual representation of the software design, the
textual program being relegated to a secondary, marginalized status comparable to assem-
bly language. However, since most software concepts are abstract and do not have real-
world correspondents, they are represented metaphorically. Therefore, once the model is
determined an aesthetic must be chosen as a foundation for the metaphors. For example,
if architecture were chosen, then abstract control-flow relations in the program could be
represented by corridors in a building through which avatars move. Notice that such a
metaphorical representation recruits our embodied understanding of physical space and
motion to improve our understanding of the program (see below). Similarly, our aesthet-
ic understanding of architectural space guides the design of the program and our aesthetic
and intellectual appreciation of it. The metaphorical model is the principal representation
of the software, which becomes an object of aesthetic expression and appreciation, there-
by enriching the experience of software. Fishwick notes that even three-dimensional vi-
sual programming languages tend to use simple iconography rather than sensuously rich
objects: “One is aesthetically-challenged and Platonic whereas the other promotes famil-

10



iar sensory appeal.” Fishwick (2006) contains recent contributions to aesthetic comput-
ing (“the impact and effects of aesthetics on the field of computing,” p. 3)

Recent developments in psychology have illuminated the essential role played in cog-
nition by embodiment, thus confirming insights from phenomenological philosophy and
psychology (e.g., Gibbs, 2006). Much of our understanding of the world is rooted in our
sensorimotor capacities, both those that are part of our genetic inheritance, and those that
are acquired, especially in early childhood. Indeed, Lakoff & Nufiez (2000) have argued
that our understanding even in such abstract domains as mathematics is built on a net-
work of interrelated metaphors grounded in sensorimotor skills. For example, at an intu-
itive level abstract sets are understood as physical containers, abstract trajectories as
paths through physical space, and so forth.

All human beings have an enormous repertoire of sensorimotor skills, and it is normal
to feel pleasure when acting skillfully, competently, and fluently, and to be dissatisfied
otherwise; this is part of the feedback mechanism that increases the range and depth of
our skills. Therefore to the extent that users’ interactions with a system, such as a pro-
gram, are accomplished through an existing repertoire of sensorimotor skills, they will
feel competent and satisfied when they use it. In this way, aesthetic appreciation arises
from the correspondence between people’s embodied skills and the sensorimotor inter-
face and abstract structure of the system, which is a different sort of resonance or congru-
ence between the system and human cognitive structures.

Therefore aesthetic appreciation and satisfaction will be improved if a system and its
parts, including the interface, behave similarly to the physical world, including the ob-
jects and processes that are familiar to most people. For example, if when we pull on or
drag an object on a computer screen it behaves similarly to a physical object (e.g., in
terms of stretching or inertia), then our sensorimotor skills will be engaged, and our skill-
ful manipulation will be pleasurable (Karlsson & Djabri, 2001).

7 Applying Aesthetic Principles in Software
Engineering

The foregoing remarks have merely sketched an approach to an aesthetic theory appropri-

ate to software engineering, and so it will be worthwhile to say a little about how such a

theory might be further developed. We can progress by four simultaneous activities,
which we may call experiment , criticism , theory , and practice .

Experiment refers to learning by means of the self-conscious practice of the art of
program design and the empirical evaluation of the results. For this to be effective, soft-
ware engineers must be aware of aesthetic issues during the design, and they must evalu-
ate the aesthetics of the resulting designs as experienced by themselves and others (evalu-
ated phenomenologically and statistically). This entire activity presupposes greater aes-
thetic awareness in programmers.

Criticism plays an important role in all of the arts, most obviously to provide the gen-
eral public with aesthetic evaluations, but more importantly to make various aesthetic is-
sues salient, which influences the aesthetic sensibilities of both the producers and con-
sumers of art. Even when artists disagree with criticism, they are encouraged to defend
their aesthetic choices in word or deed. Thus criticism provides an important feedback
loop that can improve artistic quality. To accomplish this we need more published aes -

11



thetic criticism of software, both of its external appearance and behavior, and of its inter-
nal structure and design, focusing on aesthetics in both cases.

Theory refers to the use of research results from cognitive neuropsychology and allied
fields, which will continue to provide insights into the qualities that make something si-
multaneously intellectually comprehensible and aesthetically pleasing (that is to say, ele -
gant). Theoretical understanding contributes by explaining the results of previous aes-
thetic experiments, and by suggesting new ones.

In spite of all the foregoing, the art of program design is neither a body of theory nor
a set of design rules; rather, it is a practice . Both the long history of aesthetic debate and
the analogy of aesthetic considerations in mathematics and the exact sciences suggest that
beauty is an illusive concept. Therefore, in programming as in the other arts, while many
aesthetic principles can be stated explicitly, others must remain implicit and essentially
embodied in the practices of skilled artisans. This raises the question of how software
aesthetics can be taught, which I’ll consider briefly.

Explicit aesthetic principles can, of course, be taught and practiced, as they have been
in the arts for centuries. This does not imply that software should adhere to rigid quanti-
tative rules of symmetry and proportion, as were taught in the neoclassical aesthetics of
the Renaissance, or that the principles are inviolable. Indeed, most aesthetic principles
are qualitative guidelines that serve to focus the artist’s attention on important issues, but
do not compel their aesthetic choices, which are subject to a broader-based aesthetic
judgment (as well as other, practical considerations).

Therefore, as in all forms of expert behavior (Dreyfus & Dreyfus, 1986), aesthetic
rules are applied within an unformalizable context of practices and concerns, which con-
stitutes the background to the principles, which are in the foreground. Thus we may ex-
pect that software designers will acquire their aesthetic sensibilities in much the same
way that students in theoretical science and mathematics acquire theirs: by exposure to
existing elegant designs and by mutual evaluation and criticism of prior and new designs.
For maximum effectiveness, these educational activities should be incorporated in all
computing courses and not confined to an aesthetics course. In this manner, over time, an
authentic software aesthetics can evolve.

8 Conclusions

Although classical aesthetics may be criticized, as it has been since at least the eighteenth
century, for its limitations as a general theory of aesthetics, I have argued that the Platonic
character of software makes the classical theory an appropriate basis for an aesthetics for
software engineering, in which beauty coincides with intelligibility, as it does in the exact
sciences at their best. With this approach, abstract interrelationships are reflected in per-
ceptible forms, so elegant structures engage both our cognitive faculties and our embod-
ied understanding, leading to aesthetic appreciation and pleasure, which in turn serve as
guides for the intuitive design of intellectually manageable software.

12



9 Bibliography
Billington, D. (1983). The Tower and the Bridge. New York, NY: Princeton University
Press.

Curtin, D. (Ed.). (1982). The Aesthetic Dimension of Science. New York, NY:
Philosophical Library, Inc.

Dreyfus, H., & Dreyfus, S. (1986). Mind over Machine. New York, NY: Free Press.

Eades, P., & Zhang, K. (Eds.). (1996). Software Visualization. New York, NY: World
Scientific Publishing Company, Inc.

Farmelo, G. (Ed.). (2002). It Must Be Beautiful. New York, NY: Granta Books.

Ferguson, E. S. (1992). Engineering and the Mind’s Eye. Cambridge, MA: MIT Press.

Fishwick, P. (2002). “Aesthetic programming: Crafting personalized software,” Leonardo
35 (4): 383-390.

Fishwick, P. (2003). “Aesthetic computing manifesto,” Leonardo , 36 (4): 255-256. [not
cited]

Fishwick, P. (Ed.). (2006). Aesthetic Computing . Cambridge, MA: MIT Press.

Gelernter, D. (1998). Machine Beauty: Elegance and the Heart of Technology . New York,
NY: Basic Books. [not cited]

Gelernter, D. (1998). Aesthetics of Computing. New York, NY: Phoenix House. [not
cited]

Gibbs, R. W., Jr. (2006). Embodiment and Cognitive Science. New York, NY: Cambridge
University Press.

Heisenberg, W. (1975). “The Meaning of Beauty in the Exact Sciences,” in W.
Heisenberg, Across the Frontiers , transl. Peter Heath. New York, NY: Harper & Row,
1975, pp. 166-83.

Ihde, D. (1986). Consequences of Phenomenology . Albany, NY: State University of New
York.

Ihde, D. (1993). The Philosophy of Technology: An Introduction . New York, NY: Paragon
House.

Karlsson, P., & Djabri, F. (2001). “Analogue styled user interfaces: An exemplified set of

principles intended to improve aesthetic qualities in use,” Proceedings of Mobile HCI
2001: Third International Workshop on Human- Computer Interaction with Mobile

Devices .
King, J. (2006). The Art of Mathematics. New York, NY: Dover Publications.

Lakoff, G. & Nuiiez, R. E. (2000). Where Mathematics Comes From: How the Embodied
Mind Brings Mathematics Into Being . New York, NY: Basic Books.

Liddell, H. G., Scott, R., & Jones, H. S. (1968). A Greek- English Lexicon, With a
Supplement, 1968, 9th ed. Oxford: Oxford University Press.

MacLennan, B. J. (1999). Principles of Programming Languages: Design, Fvaluation,
and Implementation , 3rd ed. New York, NY: Oxford Univ. Press.

Norman, D. (1988). The Psychology of Everyday Things. New York, NY: Basic Books.

Norman, D. (1998). The Invisible Computer. New York, NY: MIT Press.

Norman, D. (2005). Emotional Design. New York, NY: Basic Books.

13



Pauli, W. (1955). “The influence of archetypal ideas on the scientific theories of Kepler,”
in C. G. Jung & W. Pauli, The Interpretation of Nature and Psyche . New York, NY:
Pantheon Books, pp. 147-240.

Stasko, J., Dominue, J., Brown, M. H., & Price, B. A. (Eds.). (1998). Software
Visualization. New York, NY: MIT Press.

Wechsler, J. (1988). On Aesthetics in Science. New York, NY: Birkhauser Verlag.

14



	1Introduction
	2Importance of Aesthetics in Software Engineering
	2.1Designer’s Perspective
	2.2User’s Perspective

	3Software Engineering as “Platonic Technology”
	4A Platonic Aesthetics for Software Engineering
	4.1Conformity of the Parts to One Another and to the Whole
	4.2The Character of the Whole

	5Visual Programming Languages
	6Embodiment and Non-Platonic Aesthetics
	7Applying Aesthetic Principles in Software Engineering
	8Conclusions
	9Bibliography

