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Abstract

This paper describes the design concepts behind im-
plementations of mixed-precision linear algebra rou-
tines targeted for the Cell processor. It describes in
detail the implementation of code to solve linear sys-
tem of equations using Gaussian elimination in single
precision with iterative refinement of the solution to
the full double precision accuracy. By utilizing this
approach the algorithm achieves close to an order of
magnitude higher performance on the Cell processor
than the performance offered by the standard dou-
ble precision algorithm. Effectively the code is an
implementation of the high performance LINPACK
benchmark, since it meets all the requirements con-
cerning the problem being solved and the numerical
properties of the solution.
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1 Introduction

1.1 Motivation

Initially this work was motivated by the fact that
many processors today exhibit higher single preci-
sion performance than double precision performance
due to SIMD vector extensions. In fact the tech-
nology has been around since the late 90s. Exam-
ples include 3DNow! extensions for AMD processors,
SSE extensions for both Intel and AMD processors
and VMX/AltiVec extensions for PowerPC proces-
sors. Today in most cases these extensions offer a fac-
tor of two performance advantage for single precision
versus double precision calculations. The advent of
the Cell processor [1–4] introduced yet more dramatic
performance difference between single precision float-
ing point unit [5] and double precision floating point
unit [6] with the ratio of 14 for the synergistic pro-
cessing element (SPE) [7, 8] and the overall ratio of
more than 10 for the entire processor. With the ratio
of such magnitude, it is am extremely attractive idea
to exploit single precision operations whenever pos-
sible and resort to double precision at critical stages,
while attempting to provide the full double precision
accuracy.
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1.2 Iterative Refinement

Iterative refinement is a well known method for im-
proving the solution of a linear system of equations of
the form Ax = b [9]. Standard approach is to use the
technique of Gaussian elimination. First, the coeffi-
cient matrix A is factorized using LU decomposition
into the product of a lower triangular matrix L and
an upper triangular matrix U . Commonly, partial
row pivoting is used to improve numerical stability
resulting in the factorization PA = LU , where P is
the row permutation matrix. The system is solved
by solving Ly = Pb (forward substitution), and then
solving Ux = y (backward substitution). Due to the
roundoff error, the solution carries an error related to
the condition number of the coefficient matrix A. In
order to improve the computed solution, an iterative
refinement process is applied, which produces a cor-
rection to the computed solution, x, at each iteration,
which yields the basic iterative refinement algorithm
outlined on Figure 1.

Here mixed-precision iterative refinement approach
is presented. The factorization PA = LU and the so-
lution of the triangular systems Ly = Pb and Ux = y
are computed using single precision arithmetic. The
residual calculation and the update of the solution
are computed using double precision arithmetic and
the original double precision coefficients. The most
computationally expensive operations, including the
factorization of the coefficient matrix A and the for-
ward and backward substitution, are performed us-
ing single precision arithmetic and take advantage of
the single precision speed. The only operations exe-
cuted in double precision are the residual calculation
and the update of the solution. It can be observed
that all operations of O(n3) computational complex-
ity are handled in single precision, and all operations
performed in double precision are of at most O(n2)
complexity. The coefficient matrix A is converted to
single precision for the LU factorization. At the same
time, the original matrix in double precision has to
be retained for the residual calculation. By the same
token, the method requires 1.5 times the storage of
the strictly double precision method. The mixed-
precision iterative refinement algorithm is outlined
on Figure 2. More details of the algorithm, including

REPEAT
r = b−Ax

z = L\(U\Pr)

x = x + z

UNTIL x is ”accurate enough”

Figure 1: Iterative refinement of the solution of a
system of linear equations using MatlabTM notation.

A(32), b(32) ← A, b

L(32), U(32), P(32) ←SGETRF(A(32))

x
(1)
(32) ←SGETRS(L(32), U(32), P(32), b(32))

x(1) ← x
(1)
(32)

REPEAT

r(i) ← b−Ax(i)

r
(i)
(32) ← r(i)

z
(i)
(32) ←SGETRS(L(32), U(32), P(32), r

(i)
(32))

z(i) ← z
(i)
(32)

x(i+1) ← x(i) + z(i)

UNTIL x(i) is ”accurate enough”

Figure 2: Solution of a linear system of equations
with mixed-precision iterative refinement.

error analysis, can be found in [10].

1.3 LINPACK Benchmark

The high performance LINPACK benchmark (HPL)
[11] is the most widely used method for measuring
performance of computer systems. The computa-
tional problem posed by the HPL benchmark is a
solution of a system of linear equations, where the
coefficient matrix is real, general and dense with ran-
dom uniform distribution of its elements. Since per-
formance gains can be achieved by sacrificing the
correctness of the solution, as a guard against such
practices, constraints are imposed on the numerical
properties of the solution. In general terms, the an-
swer is correct if it has the same relative accuracy
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as standard techniques, such as the Gaussian elim-
ination with partial pivoting used in the LINPACK
package, when performed in double precision. To be
more precise, the following scaled residuals are com-
puted:

rn =
‖Ax− b‖∞
‖A‖1 · n · ε

,

r1 =
‖Ax− b‖∞
‖A‖1 · ‖x‖1 · ε

,

r∞ =
‖Ax− b‖∞

‖A‖∞ · ‖x‖∞ · ε
,

where ε is the relative machine precision. A solu-
tion is considered numerically correct when all of
these quantities are of order O(1). In calculating the
floating-point execution rate, the formula 2n3/3+2n2

is used for the number of operations, regardless of the
actual number.

The mixed-precision iterative refinement algorithm
was implemented on the Cell processor as a proof of
concept prototype, with the goal to pave the way for a
wider range of algorithms in numerical linear algebra.
At the same time, the code meets all requirements
of the high performance LINPACK benchmark, most
notably the constrain on the accuracy of the solution.
By the same token, the code can be used to evaluate
the performance of the Cell processor in comparison
to other architectures.

1.4 Comments on the CBE Design

The most significant architectural feature of the
Cell processors is its multicore design based on one
PowerPC core, referred to as PPE, and eight syner-
gistic processing elements (SPEs). The most inter-
esting characteristic of the Cell is that it blurs the
line between shared memory and distributed mem-
ory systems. The main memory still plays the role
of the central repository for code and data, yet the
SPEs can only execute code in the local store [12] of
265KB, and only operate on data in the local store
with all code and data motion handled explicitly via
DMA transfers, in a message passing fashion. At the
same time, the communication is non-blocking in its
very nature, greatly facilitating overlapping of com-
munication and computation. Great effort has been

invested throughout the years in optimizing code per-
formance for cache-based system, in most cases lead-
ing to the programmers reverse engineering the mem-
ory hierarchy. By requiring explicit data motion, the
memory design of the Cell takes the guesswork out of
the equation and delivers predictable performance.

The SPEs are inherently vector units capable of
very fast single precision arithmetic. This work is
motivated in particular by the single to double per-
formance ratio of the Cell processor. An SPE can
issue a single precision vector fused multiplication-
addition operation per each clock cycle. A vector
of 128B contains four 32-bit single precision values,
which means that each SPE can execute 8 operations
per cycle. At the same time, a vector contains only
two 64-bit double precision values. Moreover, due to
space and power constraints, double precision oper-
ations are not fully pipelined. It takes one cycle to
issue a double precision operation, and the operation
requires a stall for another six cycles. As a result, one
vector can be processed every seven cycles. The fac-
tor of two and the factor of seven combined make the
ratio of single to double precision performance equal
to 14 for the SPEs. This means that for a 2.4 GHz
system the single precision peek of the eight SPEs
is 153.6 Gflop/s and the double precision peek is 11
Gflop/s. The VMX engine of the PPE can in theory
deliver single precision performance equal to this of
an SPE. At the same time, the double precision arith-
metic is fully pipelined on the PPE and can complete
one fused multiplication-addition operation per each
clock cycle. If the PPE performance is also consid-
ered, then the overall performance is 172.8 Gflop/s
for single precision and 15.8 Gflop/s for double preci-
sion. For the 3.2 GHz system single precision peek of
the SPEs is 204.8 Gflop/s and double precision peek
is 14.6 Gflop/s. The values are 230.4 Gflop/s and 21
Gflop/s if the PPE is included.

Finally, it should be noted that the SPE float-
ing point unit only implements truncation rounding,
flushes denormal numbers to zero, and handles NaNs
as normal numbers [5], which can potentially cause
numerical problems. No numerical problems were en-
countered for input matrices with random uniform
distribution of elements. Nevertheless, the issue de-
serves further attention.
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2 Design and Implementation

2.1 Overview

At the top level the algorithm is driven by a FOR-
TRAN 77 routine, named DGESIRSV after its LA-
PACK [13] double precision counterpart DGESV
and, in principle, offering the same functionality,
but using mixed-precision approach. The routine is
planned to be also included in the LAPACK library,
possibly with slight modifications. Development of
more mixed-precision routines is planned to address
a wider range of problems in linear algebra including
linear systems and least square problems as well as
singular value and eigenvalue problems.

The mixed-precision routine is build on top of ex-
isting LAPACK and BLAS [14] routines and, in turn,
LAPACK is designed to rely on a BLAS implemen-
tation optimized for a specific hardware platform to
deliver the desired performance. Due to availability
of both LAPACK and a reference implementation of
BLAS in source code, the functionality can be de-
livered immediately on the Cell processor by compil-
ing the necessary components for execution on the
PPE. The lack of existence of a FORTRAN 77 com-
piler in the SDK can be addressed by either using the
F2C utility [15] or compilation on the Cell hardware
using existing PowerPC Linux compilers, GNU G77
or IBM XLF, although only the first one is publicly
available at this moment. Also, the reference BLAS
can be replaced with a more optimized implementa-
tion. Possibilities include ATLAS [16], GOTO BLAS
[17] and ESSL [18], with the first two being freely
available at this time. All these implementations are
engineered to make an efficient use of the memory hi-
erarchy and the vector/SIMD extension of the PPE
[19], and, as a result, are much faster than the refer-
ence BLAS. At the same time, by utilizing only the
PPE, they are capable of delivering only a tiny frac-
tion of the overall performance of the Cell processor.
Due to unavailability of an implementation of BLAS
parallelized between the SPEs at this moment, the
performance of the code has to be engineered from
scratch.

Nevertheless, code compiled for execution on the
PPE only was used as a starting point for iterative de-

velopment o the optimized version. The initial hope
was that only Level 3 BLAS would have to be re-
placed with vectorized code parallelized between the
SPEs. The emphasis in LAPACK is on implement-
ing most of computational work in Level 3 BLAS
routines. As a result, it frequently is the case that
Level 2 BLAS routines only contribute O(n2) factor
to algorithms of O(n3) complexity and optimal per-
formance of Level 2 BLAS is not crucial. At the same
time, on many multiprocessor systems parallelization
of Level 2 BLAS routines not only does not result in
a speedup, but often yields a slowdown. This turned
out not to be the case on the Cell, where the paral-
lelization of Level 2 BLAS proved not only to be ben-
eficial, but in most cases also necessary in order not to
degrade the performance of the whole algorithm. By
the same token, only Level 1 BLAS routines could re-
main implemented in the PPE BLAS and for simplic-
ity the reference BLAS implementation from Netlib
was chosen to provide this functionality.

2.2 SPE Parallelization

The basic model for developing the SPE-parallel ver-
sion of the optimized routines is master-worker, with
the PPE playing the role of the master, and the SPEs
as the workers. The PPE overlooks the execution of
the overall algorithm relying on the SPEs to deliver
computational services. The PPE is responsible for
launching and terminating the workers. The SPE
execution cycle consists of waiting for a request, per-
forming the requested task and sending back a re-
sponse, which can be a positive acknowledgment, an
error message or a return value.

At the time of the creation of SPE threads the
main memory address is passed to the global control
block, which is then pulled by each SPE to its local
store by a DMA transfer. The control block con-
tains global execution parameters and main memory
addresses of synchronization variables as well as ef-
fective addresses of the local store of each SPE to
facilitate direct DMA transfers between local stores
when it is desired. After this initial exchange of infor-
mation each SPE waits for commands sent from the
PPE to its inbound mailbox. The commands are in-
tegral values representing particular BLAS routines.
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Next, the SPE fetches the list of arguments specific
for a given routine from the main memory through a
DMA transfer from a location specified in the global
control block. The list contains what would typically
be BLAS function call arguments including input ar-
ray sizes and their memory locations. Then the SPE
proceeds to the computational task. When the task
is finished, the SPE acknowledges the completion to
the PPE by sending a response through a DMA barri-
ered with the last data transfer. The cycle continues
until the PPE decides to terminate the servers by
sending a termination command, at which the SPEs
finish their execution by simply returning from the
main function.

Work partitioning is done by one- or two-
dimensional decomposition of the input arrays, com-
monly referred to as tiling, and cyclic processing of
the tiles by the SPEs. Each SPE processes a set of
tiles, by pulling them from the main memory, per-
forming the calculations, and writing the result back
to main memory. Assignment of the tiles can be static
or dynamic, with dynamic assignment used in the LU
factorization and static assignment used for all other
operations. In this case the decision was arbitrary
and the use of one approach versus the other should
be further investigated. For many operations there
are no dependencies between the tiles processed by
different SPEs, and, as a result, no communication
or synchronizations between the SPEs is necessary.
In certain cases it is possible to remove existing de-
pendencies by providing each SPE with an auxiliary
space to store intermediate results, which are later
combined by the PPE to form the final result. The
implementation of matrix vector product in double
precision is an example of this approach. When com-
munication and synchronization is required, like in
the case of panel factorization in LU decomposition,
it is implemented by direct local store to local store
DMA exchanges.

The majority of the routines in the code are build
around the idea of overlapping computation and com-
munication by pipelining of operations, which is fa-
cilitated by the DMA engines attached to the SPEs.
Most of the routines follow the pattern depicted on
Figure 3 with differences in the number and shape of
buffers used. In many situations it is sufficient to use

Prologue
Receive tile 1
Receive tile 2
Compute tile 1
Swap buffers

Loop body
FOR I=2 TO N-1

Send tile I-1
Receive tile I+1
Compute tile I
Swap buffers

END FOR

Epilogue
Send tile N-1
Compute tile N
Send tile N

Figure 3: Basic model of overlapping communication
and computation with tiling and pipelined processing
of tiles.

the technique of double buffering, where, for a given
data stream, one tile is processed when another is
being transferred. Good example of such operation
is matrix multiplication C = A × B, where double
buffering can be applied to the tiles of each matrix.
In this case, in each step of the algorithm, one tile
of A and B can be read in, and one tile of C can be
written back. The concept of triple buffering can be
utilized when the data has to be read in, modified
and written back, as it is in the case of calculating
C = C −A×B. Here double buffering is still used to
bring in the tiles of A and B. However, calculation
of a tile of C has to be overlapped with fetching of
the next tile of C, as well as returning the tile result-
ing from the previous step of the loop. In this case
three buffers are rolled instead of two buffers being
swapped. It is also possible to use just two buffers
for the tiles of C by using the same buffer for reading
and writing and ordering the operations with a fence,
a solution actually utilized in the code.
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2.3 Local Store Usage

One of the most prominent features of the Cell pro-
cessor is the local store, which provides limited space
of 256KB for both data and code. This enforces tiling
of the matrix operations and raises the question of
the optimal tile size. For a number of reasons the
size of 64 by 64 elements in single precision was cho-
sen. In particular, for this size, an optimized matrix
multiplication kernel can achieve within 98% of the
peak of an SPE. Also, matrix multiplication, imple-
mented using tiles of this size, has the communica-
tion to computation ratio, which allows to fully over-
lap communication with computation. At the same
time, the size of a tile is 16KB, which is the maximum
size of a single DMA transfer. By the same token, if
block layout [20, 21] is used (§2.4), a whole tile can
be transferred in one DMA transfer. Moreover, the
size of a tile is a multiplicity of 128B, which is the
size of a cache line. This means that, if a matrix
is aligned at a 128B boundary, then each of its tiles
is aligned on a 128B boundary, what is beneficial for
the performance of DMA transfers. Lastly, cache line
aligned DMA of size 16KB perfectly balances mem-
ory accesses to all 16 memory banks, allowing for
maximum utilization of the memory bandwidth. Not
without significance is the fact that the tile size is
a power of two, which can simplify efficient imple-
mentations of recursive formulations of many linear
algebra algorithms.

The tile size of 64 by 64 is perfect for implement-
ing matrix multiplication C = A × B, in particular
when A, B and C are of considerable size and rel-
atively square. The most time consuming part of
the LINPACK benchmark is the update to the trail-
ing matrix in the LU factorization in single precision,
C = C−A×B. Although in principle the operation is
a matrix multiplication, it would better be described
as a block outer product, since C is of size m× n, A
is of size m×NB and B is of size NB×n, NB being
the block size. Unfortunately, this operation is much
more demanding in terms of communication. It could
only achieve the peek in theory if bus utilization was
perfect. In practice it achieves 80% of the peek, so
in the future bigger tile sizes should be taken under
consideration.

Second question is the number of tile buffers to
be allocated. Again, the most demanding operation
here is the update to the trailing matrix in the LU
factorization in single precision, C = C −A×B. In,
order to update a tile of matrix C, an SPE has to
read in a tile of C, a tile of A and a tile of B, per-
form the computation and write back the updated
tile of C. If buffer usage is maximized for the sake of
communication overlapping, the tiles of A and B are
double buffered and the tiles of C are triple buffered
(§2.2), which means that the total of seven buffers
are required. Alternatively, reading in a tile of C
and writing it back after the update can be sepa-
rated with a fence, in which case tiles of C are double
buffered and only the total of number of six buffers
is required. The implementation actually allocates
eight buffers for a couple of reasons. Obviously, it is
beneficial for the number of buffers to be a power of
two. For some operations it may be advantageous to
temporarily transpose a tile, in which case an auxil-
iary buffer may be necessary. Larger buffer space can
be taken advantage of when certain operations can
be executed entirely in the local store, without the
need to write back intermediate results to the main
memory. It also allows to queue more DMA requests
for memory intensive operations, like the conversion
from standard to block layout. On the other hand,
eight tiles of 16KB sum up to 128KB, what consti-
tutes half of the local store and going beyond that
would be a serious limitation for the space for code.

Finally, the last issue is the tile size in double pre-
cision, which cannot be the same as tile size in single
precision. The minimum of six buffers is required
to implement matrix multiplication efficiently. Six
buffers of size 64 by 64 in double precision would
consume 192KB of the local store, leaving danger-
ously little space for the code. The choice was made
to use the closest smaller power of two of 32, in which
case, same as in single precision, the 128B memory
alignment property also holds for each tile, each tile
can be transferred in a single DMA and utilization
of memory banks is fully balanced when block layout
is used. In the general case, the use of a smaller tile
introduces inefficiencies due to bigger communication
overhead and worse ratio of memory accesses to float-
ing point operations. In this case, however, these
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inefficiencies are negligible due to an order of mag-
nitude lower speed of double precision arithmetic.
Since the double precision buffers are aliased to the
single precision buffers, 16 double precision buffers
are available. Although such number is not requited
for the matrix multiplication, same as for single pre-
cision, they prove useful for operations, which can
take place entirely in the local store and for memory
intensive storage and precision conversions.

2.4 Block Layout and Large Pages

Traditionally the matrices are stored in the main
memory in a column-major or row-major order,
where all column elements, or row elements respec-
tively, are stored continuously in memory, which is
further referred to as standard layout. Column-major
order is assumed unless stated otherwise. Optimized
linear algebra routines use block algorithms in or-
der to implement most of their operations in Level
3 BLAS, and frequently access submatrices of sizes
being multiplicities of the block size. At the same
time, most matrix operations on the Cell have to be
implemented with tiling, due to limited size of the
local store. By the same token, the data in memory
is accessed by blocks of fixed size most of the time.

The communication mechanism of the Cell offers a
convenient way of accessing tiles in the main mem-
ory by using DMA lists, which in principle can be as
fast as DMA transfers of continuous memory blocks.
That is, however, only if TLB misses and optimal us-
age of memory banks do not come into play. Pulling
a tile from the main memory using a DMA list is
an example of strided memory access and, unfortu-
nately, due to the two issues mentioned, its perfor-
mance largely depends on the stride, which in this
case is the leading dimension of the input matrix.
The memory subsystem of the Cell has 16 banks
interleaved on cache line boundaries, and addresses
2KB apart access the same bank. For a tile of 64 by
64 in single precision the transfer of each DMA list
element accesses two banks. The worst case scenario
is, when the leading dimension of the matrix is 2KB
or 512 single precision elements. In this case, each
DMA list element accesses the same two banks, and
only those two banks are accessed for the transfer of

the entire tile. The fact that more than one SPE
can be issuing requests to the same memory banks
may further aggrevate the situation. One possible
approach is to simply try to avoid the troublesome
matrix sizes. In general this is not a satisfactory so-
lution though.

The second problem is that, with the standard page
size of 4KB, accesses to strided data are likely to ac-
cess different memory pages and generate many TLB
misses, which may turn out to be fatal in case of rela-
tively small TLBs of the SPEs (256 entries, vs. 1024
entries for the PPE [22]). For instance if the lead-
ing dimension of the matrix is larger than the page
size, which typically is 4KB or 1024 single precision
elements, then each DMA list element accesses a dif-
ferent page, and can potentially generate a page fault.
As large numbers of pages are accessed, TLB thrash-
ing occurs, resulting in performance degradation.

The solution to the first problem is storage of the
matrices in block layout. Here blocks of 64 by 64
single precision elements are stored continuously in
the memory and row-major order is used within the
blocks as well as on the block level. The same storage
is used for double precision with blocks of size 32 by
32. In this case each single DMA operates on either a
16KB or a 8KB continuous memory blocks uniformly
distributing accesses to all 16 memory banks with
the additional benefit, that a single tile can be read
or written with a single DMA instead of a DMA list.

Since the input matrices are stored in the standard
column-major layout, conversion operations are re-
quired. Due to the fact that the iterative refinement
algorithm requires the conversion of the coefficient
matrix from single precision to double precision, this
operation is performed first. Then the single preci-
sion matrix is translated to block layout with 64 by 64
blocks and the double precision matrix is translated
to block layout with 32 by 32 blocks. The conversion
from single to double, as well as the two conversions
from standard to block layout, are performed in par-
allel by all SPEs. Also, both the transposition in the
layout conversion step and the precision conversion
are subject to vectorization.

The solution to the TLB thrashing problem is the
use of large pages. Here pages of 16MB are used.
There is the question to what extent block layout can
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Figure 4: Performance of block outer product C =
C − A × B, where C is of size N × N , A is of size
N × 64 and B is of size 64 × N , on a 2.4 GHz Cell
BE.

solve the problem of page faults when small pages are
used. It could potentially solve the TLB performance
problem in the main algorithm. Unfortunately, there
still remain the operations performing the conversion
from standard storage to block layout. The experi-
ence shows that the use of small pages can degrade
the performance of these conversions by an order of
magnitude, effectively making them prohibitively ex-
pensive. The issue can be further investigated. Fig-
ure 4 shows the performance impact of using large
pages and block layout on the calculation of block
outer product in single precision.

2.5 More on Optimizations

Manual vectorization with inlined assembler [23] and
C intrinsics [24] and manual loop unrolling are heav-
ily used for performance optimization of the code.
The code relies largely in its performance on opti-
mized math kernels for processing of the tiles. The
best example is the matrix multiplication implement-
ing the functionality of the BLAS routine SGEMM.

The code is manually unrolled and relies heavily on
inlined assembler statements. It is also manually
tuned to maximize the amount of dual issue and
achieving the dual issue ratio above 90%. In many
cases inlined assembler and manual optimization for
dual issue are not used. Nevertheless, vectorization
with C language intrinsics and manual loop unrolling
is prevalent in the code, and even applied to such aux-
iliary operations as precision conversions and DMA
list creation.

For both performance, as well as correctness, of
the DMA transfers, all memory allocations are made
with alignment to the cache line size of 128B, and
most of control data structures are rounded up in
size to 128B by padding with empty space.

Also, for performance reasons the code does not
pay particular attention to possible numerical prob-
lems, which is further commented on in the following
section.

2.6 Limitations

Although in principle the top level FORTRAN 77
routine accepts multiple right hand sides, the under-
laying Cell-specific code only supports a single right
hand side.

The code requires that the input coefficient matrix
is in standard FORTRAN 77 style column-major lay-
out. Due to the use of block layout the size has to be
a multiplicity of the block size of 64. The translation
from standard to block layout is included in program
timing and in the calculation of the Gflop/s num-
ber, and turns out not to pose a significant perfor-
mance problem. However, at this moment the code
excessively allocates memory due to the fact that the
coefficient matrix is stored in both double and sin-
gle precision and in both standard and block layout.
This considerably limits the size of problems which
can be solved with a given amount of main memory.
Also, the code requires large page support or other-
wise the performance is unacceptable, mainly due to
slow speed of the layout and precision conversion op-
erations. It is assumed that pages of size 16MB are
used.

The number of numerical problems are neglected
at this time due to performance reasons. Obviously,
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smaller range of numbers is representable in single
precision than in double precision, and a check for
overflow would be desirable, but, at the same time,
introduce unacceptable performance overhead. Over-
flow is also possible when calculating norms of vec-
tors and matrices, and for the same reasons it is not
checked for. For instance the LAPACK DLANGE
routine is basically implemented as DDOT.

If for these or other reasons the result does not
meet the required bound on the backward error, as a
fall-back strategy, the factorization is performed en-
tirely in double precision, and, at this moment, by
calling to the PPE BLAS. More details on the nu-
merical behavior of the algorithm can be found in
[10].

3 Results

The results presented here were collected on a 2.4
GHz Cell blade using only one of the two processors
located on the board. The Gflop/s numbers reported
here mean the actual number of floating point opera-
tions over time for the codes running exclusively sin-
gle or double precision calculations. For the mixed-
precision iterative refinement code, the Gflop/s num-
ber means performance relative to the double preci-
sion case. In other words, it is the speed required by
the double precision code to deliver the same results
in the same amount of time.

Due to very suboptimal use of memory, the largest
system which could be run was of size 3712 by 3712.
Uniform random matrix was used as the coefficient
matrix. The relative norm-wise backward error of
O(10−14) was achieved in four iterations of the iter-
ative step. The system was solved in in 0.37 second,
with the relative speed of 84 Gflop/s, which is 5.4
times greater than the total double precision peek
of the Cell, including all eight SPEs and the PPE,
7.7 times greater than the double precision peek of
the eight SPEs only, and 9.9 times greater than the
actual speed of solving the system entirely in dou-
ble precision on the eight SPEs. Figure 5 shows the
performance comparison between the single precision
algorithm, the double precision algorithm and the
mixed-precision iterative refinement algorithm.
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Figure 5: Performance comparison of solving linear
system of equation A× x = b on a 2.4 GHz Cell BE
using single precision, double precision and mixed-
precision approach.

Figure 6 shows the breakdown of the execution
time for the mixed-precision algorithm. Individual
routines are referred to using their equivalent BLAS
or LAPACK names with the exception of the conver-
sion from single to double precision (s2d) and double
to single precision (d2s), the conversion from stan-
dard (LAPACK) layout to block layout in single pre-
cision (l2b) and the conversion from standard layout
to block layout in double precision (l2b d). The most
time is spent in the factorization of the coefficient
matrix in single precision, which is the desired behav-
ior. The two operations which contribute the most
to the overhead of iterative refinement are solution
of the triangular system in single precision (sgetrs)
and matrix-vector multiplication in double precision
(dgemm/dgemv), which is to be expected. The over-
head from all other routines, including layout and
precision conversions, is minimal.

The code was also run on a 3.2 GHz Cell system.
It achieved 98.05 Gflop/s, which is less than the ex-
pected gain from the faster clock comparing to the
2.4 GHz system. Due to limited availability of the 3.2
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Figure 6: Breakdown of the execution time of solv-
ing linear system of equations using mixed-precision
iterative refinement on a 2.4 GHz Cell BE.

GHz hardware, it was not possible to address some of
the performance issues. Nevertheless, as of the Au-
gust 1st 2006 the 3.2 GHz Cell system is included
in the LINPACK report [25], where it outperforms a
number systems based on modern HPC processors.

4 Conclusions

The results presented here show huge potential of the
mixed precision approach to development of numeri-
cal algorithms in particular in the area of numerical
linear algebra. The method is applicable to a wide
range of algorithm for solutions of linear systems and
least square problems as well as singular and eigen-
value problems.

The results also prove a huge potential of the Cell
processor for high performance numerical applica-
tions. The Cell architecture allows for much finer
granularity of parallelism then the traditional archi-
tectures. It also encourages much more dynamic
and asynchronous algorithm behavior and may be
a good target for testing concepts like work-queue

parallelization. By bluring the boundaries between
shared and distributed memory systems the Cell has
the potential to inspire new algorithmic discoveries
in the area of numerical computing.

5 Future Plans

Despite the fact that significant effort was invested in
the current implementation, the code suffers from nu-
merous performance problems. The block size used
here does not allow the block outer product opera-
tion to achieve the peek when parallelized between all
eight SPEs. Wasteful memory usage limits the size
of systems which can be solved. At the same time,
the cost of panel factorization prevents the code from
achieving good performance for systems of moderate
sizes. Also, the triangular solve is not parallelized be-
tween SPEs at this time. Although the reported per-
formance is rather impressive, addressing the short-
comings listed above should yield substantial further
performance increases. Finally, right now the code
can only utilize a single Cell processor, and paral-
lelization between multiple Cell systems with message
passing is envisioned in the future.

Hopefully the early experiences with the iterative
refinement code can guide the design of BLAS for the
Cell processor. A number of crucial design questions
remain. Probably the most important is the one of
block layout. The experience shows that block layout
offers unquestionable performance advantages. At
the same time, it seems unlikely that data layout can
be hidden within BLAS and not exposed to higher
software layers in one way or another. In particular
LAPACK uses block operations and it will be neces-
sary to synchronize the block sizes between LAPACK
and BLAS. At the same time, LAPACK has no no-
tion of block layout and code modifications would be
required to facilitate it. The question remains if, and
how, the block layout should be exposed to the user,
and if conversion is required, how is it handled. It
does not help the situation that different block sizes
may be necessary for single and double precision and
in both cases the question of the optimal block size
remains unanswered. Related issue is the one of in-
troducing constraints to the BLAS and possibly also
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LAPACK implementations. In both BLAS and LA-
PACK significant inefficiencies are caused by matrix
sizes not being a multiplicity of the block size. In case
of the Cell the impact can reach such proportions that
introduction of constraints in the input array sizes
can be justifiable. At this time it is quite certain
that a library like BLAS will not be able to fit in the
local store in its entirety. Code motion at runtime
will be necessary and, although the concept is sim-
ple in principle, the question remains if it should be
resolved internally in BLAS or exposed to the higher
level library. Also, reliance on parallel BLAS can
prevent interesting algorithmic improvements and it
may be desirable to bypass the standard BLAS API
and directly utilize the underlaying high performance
kernels. The question remains of utilizing the PPE
of the Cell, which is capable in matching the per-
formance of an SPE in single precision, and is much
more powerful than a single SPE in double precision.
Implementations of the PPE BLAS already exist, al-
though as of today none of them is well tunned for
the hardware. The availability of BLAS in all three
instances of single SPE BLAS, SPE-parallel BLAS
and PPE BLAS would provide the application de-
veloper with an extremely flexible and powerful tool
and not only facilitate quick port of libraries like LA-
PACK, but also enable the pursuit of new algorithms
in numerical linear algebra and other computational
disciplines.

Although it is hard to predict the future hardware
road map for the Cell processor, improvements to the
double precision performance of the processor would
be very welcome, as long as single precision perfor-
mance is not sacrificed. One interesting concept is
the Cell+ architecture [26].
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