
Modeling of L2 Cache Behavior for Thread-Parallel Scientific

Programs on Chip Multi-Processors ∗

Fengguang Song, Shirley Moore, and Jack Dongarra

University of Tennessee

Computer Science Department

Knoxville, Tennessee 37996, USA

{song, shirley, dongarra}@cs.utk.edu

UT-CS-06-583

September 2006

Abstract

It is critical to provide high performance for
scientific programs running on a Chip Multi-
Processor (CMP). A CMP architecture often has a
shared L2 cache and lower storage hierarchy. The
shared L2 cache can reduce the number of cache
misses if the data are commonly shared by sev-
eral threads, but it can also lead to performance
degradation due to resource contention. Some-
times running threads on all cores can cause se-
vere contention and increase the number of cache
misses greatly.

To investigate how a thread’s performance
varies when it runs together with other threads
on different cores, we develop an analytical model
to predict the number of misses on the shared
L2 cache, especially for thread-parallel numerical
codes. We assume that the parallel threads work
on homogeneous tasks and share a fully associative
L2 cache. Stack processing technique and circu-
lar sequences are used to analyze the L2 trace to
predict the number of compulsory misses, capac-
ity misses on shared data, and capacity misses on
private data, respectively. It is the first work to
predict the number of L2 misses for threads that

∗This material is based upon work supported by the Na-

tional Science Foundation under grant No. 0444363.

have the nature of memory sharing. The model
has been validated by three typical scientific pro-
grams: matrix multiplication, blocked matrix mul-
tiplication, and sparse matrix-vector product on a
variety of matrix sizes. The average relative error
lies between 2% and 12%.

1 Introduction

Cache performance plays an important role in
software performance. With the increasing gap
between memory and CPU speeds, it is more es-
sential to utilize the cache to its full potential. In
recent years, Chip Multi-Processing (CMP) archi-
tectures have been developed to enhance perfor-
mance and power efficiency through the exploita-
tion of both instruction- and thread-level paral-
lelism. For instance, the IBM Power5 processor
enables two SMT threads to execute on each of its
two cores and four chips to be interconnected to
form an eight-core module [11]. Both Intel Mon-
tecito and AMD AMD64 processors can support
dual-thread dual-cores [9]. Sun also shipped eight-
core 32-way Niagara chips in early 2006 [7].

In these architectures, some share an on-chip L2
cache among cores and others have private L1/L2
caches. As described in the prior work by Fedorova

[5], an L2 cache miss penalty can be as high as 200-
300 cycles while an L1 miss only costs a few cy-
cles. Poor L2 cache behavior can dramatically in-
crease the amount of off-chip communication and
degrade the overall performance. So our work is
focused on modeling the behavior of the on-chip
shared L2 cache. For multi-threaded programs,
the shared L2 cache allows higher utilization of
the L2 cache as a thread reuses the same data
loaded previously by another thread. Such reuse
reduces power consumption and avoids duplicat-
ing hardware resources. However, parallel threads
often interfere with each other and contend for ac-
cesses to the shared L2 cache, leading to subopti-
mal performance. We present an analytical model
to predict the number of L2 cache misses for scien-
tific applications. By analyzing the L2 cache trace
which is recorded when a single thread is running,
our model is able to predict the number of misses
if we run the thread together with other threads
on the remaining cores. We assume there is one
thread on each core.

Considering the characteristics of thread-
parallel programs from scientific computation,
nearly all threads are homogeneous. That is, each
thread works on the same task in parallel and has
similar temporal behavior. Our model is an exten-
sion to Chandra’s work [3]. The difference is that
we use an offline approach to analyze the L2 cache
trace and take into account the factor of memory
sharing between threads. Being able to model the
effect of shared memory accesses leads to a more
powerful model that can predict the number of L2
misses for threads not only from the same process,
but also from different processes.

The method presented in this paper classi-
fies cache misses into three types: compulsory
misses, capacity misses on shared data, and ca-
pacity misses on private data. Terms Shared and
private indicate whether the data is referenced
by more than one thread (shared) or by a single
thread (private). For instance, threads from dif-
ferent processes often have no overlapping mem-
ory accesses. We model the above three types of
misses with three different methods: an average
value for modeling compulsory misses, a probabil-
ity method for modeling misses on private data,

effective cache space and a probability method
for modeling misses on shared data. Our model
predicts the L2 cache behavior by finding out the
cause for which a cache hit becomes a miss as well
as for which a cache miss becomes a hit.

We validate the model using the cycle-accurate
simulator SESC [10]. Three scientific pro-
grams have been implemented for the experi-
ment: matrix multiplication using three nested
loops, blocked matrix multiplication, and sparse
matrix-vector multiplication taking as input ma-
trices from Matrix Market [2]. The average rela-
tive error of the model is between 4% and 12%.

This paper is organized as follows: the next
section introduces the related work. Section 3
outlines the concepts and techniques used by the
model. Section 4 describes in detail how we model
the three types of misses by different methods. In
Section 5 we present experimental results evalu-
ating the model. Finally, Section 6 concludes the
paper.

2 Related Work

Agarwal [1] developed a cache model that com-
bines measurement and analytical techniques to
efficiently give miss rates for a given trace. The
model is a function of a small number of factors
that affect cache performance. It estimate cache
performance for both a single process execution
and round-robined multiple processes. Thiébaut
[13] presented a model for cache-reload transients
occurring in a multitasking system. The estimate
provided by the model is dependent on the cache
size and the footprints of the competing processes.
Since both models only consider the process swap-
ping effect, they are not suitable for modeling con-
current accesses to a shared cache from multiple
processes or threads.

Mattson [8] described a technique called stack
processing to evaluate storage hierarchies. By
one-pass scanning an address trace, the frequency
of stack distances can be obtained that can be
used to determine the miss rate function. For
the LRU algorithm, this technique works for any
number of set-associativity. Suh [12] used a set
of hardware counters (i.e., fully-associative coun-

ters, way-counters, or set-counters) to monitor the
marginal gains in cache hits as the cache size is in-
creased. These methods can predict the miss rate
as a function of cache size, but they require that
address trace be fixed. Ding [4] measured program
locality by reuse distance and presented a two-step
strategy to maximize program locality. This strat-
egy alleviates the pressure on the insufficient mem-
ory bandwidth. Chandra [3] introduced an induc-
tive probability model using circular sequences to
predict cache interference from other threads. The
probability model assumes co-scheduled threads
need not share any address space. There are a lot
of scientific applications that use shared-memory
programming model (e.g., OpenMP programs).
Our model targets at this shared-address problem
and is the the first work towards solving it.

3 Methodology Overview

3.1 Stack Processing Technique

Gecsei introduces a technique called ”stack pro-
cessing” to evaluate storage hierarchies that use
stack algorithms as a replacement policy [8]. A
storage hierarchy consists of multiple levels of de-
vices that are partitioned into pages or blocks. The
input to the model is a page trace x1, x2, . . . , xN ,
where xi is the page number accessed by the pro-
gram. It is possible to apply the technique to any
level of the storage hierarchy as long as there is a
corresponding trace. We call the trace as a block
trace if we are examining caches.

Assume a fully-associative cache has C lines (or
ways). It is easy to see that at any time t under
LRU the cache contains the C most recently used
lines. Even if we increase the cache size to C + 1,
C + 2, . . . , the set of C lines are still in the cache.
This property is called the ”inclusion property”
and is formally defined in [8]. Because of the in-
clusion property, the content of the cache at any
time t is able to be represented as an LRU stack

S(t) = {s(t)(1), s(t)(2), · · · , s(t)(C)},

where

s(t)(i) = Blocks(t)(C = i) − Blocks(t)(C = i − 1).

s(t)(i) is also known as ”marginal gain” [12]. If a
cache line xt has been referenced before, the po-
sition of that line △ counted from the top of the
stack is called ”stack distance”. Let counter(△)

accumulate the number of times the stack distance
△ appears in the page trace. Such a set of coun-
ters forms a so-called stack distance profile. For
instance, counter(1) counts the number of hits
in the most recently used line, counter(C) counts
the number of hits in the least recently used line,
and counter(C + 1) counts the number of cache
misses.

Our model is focused only on fully-associate
caches using the LRU algorithm and thus doesn’t
have conflict misses. It has been shown that
set-associative miss ratios are related to full-
associative ones and a model using Bayes rule is
able to make quite accurate predictions [6]. When
the number of set-associativity is large, a set-
associate cache often has a miss rate comparable
to a fully-associative cache.

Table 1 compares the number of extra L2 cache
misses happening on a fully-associative cache with
that happening on an eight-way set-associative
cache for matrix multiplication with different ma-
trix sizes. We conduct experiments on the SESC
simulator. The simulated architecture has a dual-
core processor, a private L1 cache on each core,
and a shared L2 cache. The L2 cache is of size
64KB and has a block size of 64B. The number of
extra L2 cache misses is computed by subtracting
the L2 misses when two threads are running simul-
taneously by the L2 misses when a single thread
is running. We observe that in Table 1 these two
caches have similar cache behavior most of the
time. Significant disagreement occurs when the
matrix dimension is a multiple of the cache block
size (i.e., 64 and 128), and when N=80 due to the
existence of ”hot sets”.

A stack distance profile is sufficient to estimate
the number of misses for a particular cache capac-
ity. However, a page trace is prone to change be-
cause of other threads running on different cores.
Hence we must acquire more information to model
the possible interferences from the other threads.
The concept of circular sequence profile was intro-
duced by Chandra [3] and successfully modeled

the effect of interferences from different processes.
Note that we can deduce a stack distance profile
from a circular sequence profile easily.

3.2 Circular Sequence Profile

A circular sequence is a sequence of cache lines
x1, x2, · · · , xn where x1 = xn, and x1 (or xn) is not
observed anywhere in the middle of the sequence
except for the beginning and the end positions [3].
It is possible that other circular sequences exist
in the sequence if one cache line appears several
times in the middle. For instance, the trace in
Figure 1 contains five circular sequences. We use
CSEQ(d, n) to denote a set of circular sequences,
in which each sequence is of length n and has d

distinct cache lines, that is,

CSEQ(d, n) = {α is a circular sequence | α

accesses n lines and has d distinct lines}.

In practice we use a counter to record the number
of elements in a nonempty set CSEQ(d, n). Every
nonempty set has a corresponding counter and the
list of counters comprise a circular sequence pro-
file.

We extended the SESC simulator to col-
lect the L2 cache trace that consists of
L2 references from all cores. In the trace
file each address is written in the form of

Table 1. Comparison of the extra number of
L2 cache misses on a fully-associative cache
to that on an eight-way set-associative cache
for dense matrix multiplications using three
nested loops.

N Extra Misses Extra Misses
(fully) (8-way)

64 21 849
72 30 38
80 53 544
88 4800 4363
96 165 234
104 303 372
112 243 345
128 1570 35706

 x1 x2 x3 x4 x3 x2 x1 x1 ... x4

Figure 1. An example of cache block trace
containing five circular sequences.

PhysicalAddress:CoreId:VirtualAddress.
The second field CoreId helps to keep track
of a specific thread’s trace, and the third field
VirtualAddress is used to distinguish the shared
data from the private data.

To obtain circular sequence profiles of each
core, we use a simple scan process to analyze
the trace. Figure 2 shows the process’s corre-
sponding C++ program, in which associative map
addr map records physical addresses and their in-
dices in the trace, array compulsory counts the to-
tal number of compulsory misses for each core, and
cseq shared and cseq private are circular se-
quence counters on shared or private data for each
core. This analysis process can output not only
compulsory misses for each core, but also circular
sequence profiles for shared data cseqshared(d, n)
and private data cseqprivate(d, n). Based on the
three components, we are able to estimate the
number of misses for running multiple threads si-
multaneously.

4 Modeling Strategy

We use the most well-known ”three Cs” model
(compulsory, capacity, and conflict misses) to clas-
sify cache misses. For simplicity, we only consider
the fully associative cache and there are no con-
flict misses in the model. The model takes as input
a thread’s circular sequence profile and estimates
the number of misses if the thread had run to-
gether with other threads. Since we don’t consider
Simultaneous Multi-Threading (SMT) on proces-
sor cores and always have one thread per core, we
interchangeably use ”thread” and ”core”

While hardware counters are able to monitor
the number of L2 cache misses, we can also use
the L2 trace to estimate the number of misses as

pos = 1;

while(not end of the file) {

read into paddr, coreid, vaddr;

if(addr_map[paddr] == 0) {

addr_map[paddr] = pos;

compulsory[coreid]++;

}else {

n = pos - addr_map[paddr] + 1;

d = get_num_distinct

(addr_map[paddr], pos-1);

addr_map[paddr] = pos;

if(is_shared(vaddr))

cseq_shared[coreid][n][d]++;

else

cseq_private[coreid][n][d]++;

}

pos++;

}

Figure 2. The C++ program to scan the L2
cache trace to obtain circular sequence pro-
files and the number of compulsory misses
for each core.

follows: The process listed in Figure 2 creates a
circular sequence profile, from which we can derive
the number of cache misses:

misses = compulsory +
∑

d>C

∑

n>d

|CSEQ(d, n)|.

When we run a thread together with other
threads on different cores, the trace of that thread
will be affected by references from the other
threads. We divide L2 cache references into two
types based on their address location: references
to the shared data among threads, and references
to the thread’s private data. Instead of using
a single circular sequence profile cseq(d, n), we
introduce cseqprivate(d, n) and cseqshared(d, n) for
each thread. For instance, consider two sequences:
ABCDA where A is shared and ZBCDZ where
Z is private. The first sequence increases the
counter cseqshared(4, 5) and the second increases
cseqprivate(4, 5).

Different types of references are affected to dif-
ferent extents by other threads. When two threads
are accessing the same data, the cache line previ-
ously loaded by one thread can save the other from

loading it again. Therefore a compulsory miss of a
thread may become a hit. Another type is that the
number of capacity misses on private data will def-
initely increase because a hit may become a miss
due to interferences from other threads. Finally,
the prediction of capacity misses on shared data
is more complicated. A cache miss on shared data
may become a hit because the other thread has
already loaded the data, meanwhile a hit may be-
come a miss owing to other threads’ interference.
In the following we will describe our methods to
predict these three types of misses respectively.

Misses
(co)
new denotes the predicted number of com-

pulsory misses, and Misses
(pr)
new denotes the pre-

dicted number of capacity misses on private data,

as well as Misses
(sh)
new denotes the number of ca-

pacity misses on shared data.

4.1 Modeling Compulsory Misses

An accurate method to determine how many
compulsory misses become hits is dependent upon
the relative speed of the concurrent threads and
how much their working sets overlap. Given
thread 0 and thread 1, and a shared data access
of b1, b2, b3, b4, thread 0 will have four compulsory
misses if it is running alone. With thread 1 run-
ning, thread 0’s misses will probably become less
if thread 1 loads some of the data, or remain to
be four if thread 1 always lags behind thread 0. It
is hard to provide a precise prediction unless we
know more detailed information or actually run
the two threads.

Since we are concerned with homogeneous
threads, it is reasonable to assume that the
shared data are loaded evenly by the participating
threads. This assumption has been validated by
our experiments and most of the times the rela-
tive error is less than 15%. Figure 3 presents an
example which executes two threads to compute
C = A×B using a block data distribution. Matrix
B is shared by thread 0 and thread 1. From the
perspective of thread 0, around half of its compul-
sory misses on matrix B may be loaded by thread
1.

When the total number of cache misses is dom-
inated by compulsory misses, the accuracy of the

= x

C A B

thread 0
thread 1

Figure 3. Two threads work on the matrix mul-
tiplication of C = A×B using block data dis-
tribution. For thread 0, half of its compulsory
misses on matrix B may be saved by data
loading of thread 1 (i.e., 1

4 of the number of
the original compulsory misses).

assumption determines the overall precision of our
model.

We introduce F
(co)
m2h to denote the fraction of

a thread’s compulsory misses that may become
cache hits:

F
(co)
m2h =

Overlapped Blocks

TotalBlocks × NumCores
.

The fraction of compulsory misses that remain to

be compulsory misses F
(co)
miss is as follows:

F
(co)
miss = 1 − F

(co)
m2h.

Thus the predicted number of compulsory misses
when we run the thread together with other
threads is expressed as:

Misses(co)
new = Misses

(co)
old × F

(co)
miss,

where Misses
(co)
old is the number of compulsory

misses when the thread is running alone.

4.2 Modeling Capacity Misses on Private

Data

It is easy to see that every capacity miss on pri-
vate data is always a miss regardless of whether
the thread is running alone or with another thread.
But a cache hit may become a miss because ref-
erences of other threads will likely stretch out the

thread0

a1
a2
a2
a3
a3
a4
a4
a1

thread 1

a10
a10
a11
a11
a12
a12

thread0:a1a2a2a10a10a3a3a11a11a4a4a1a12a12

CSEQ(6,12)
C
S
E
Q
(
4
,
8
)

Figure 4. A cache hit of thread 0 becomes a
cache miss because of references of thread
1.

circular sequence too much. Figure 4 illustrates
how a cache hit could become a miss for a cache
of capacity C = 4. The sequence at the bottom is
likely to happen if we run thread 0 and thread 1
together. At this time, the second reference to a1
becomes a cache miss.

Let thread 0 and thread 1 run in parallel on
two different cores. CSEQ0(d, n) corresponds to
cache hits of thread 0 if d ∈ [1, C]. We have seen
that CSEQ0(d, n) is a set of circular sequences
with length n and d distinct addresses. During the
time thread 0 accesses the n addresses, thread 1 is
also accessing the shared L2 cache. The references
from thread 1 may insert extra distinct addresses
∆d into the circular sequence. When d + ∆d > C,
thread 0’s hit develops into a miss. For simplicity
we assume all the references inserted are different
from those in the original sequence.

We use Prob
(pr)
h2m to compute the probability

that a hit on private data becomes a miss (ex-
tended from [3] and applied only to private-data
profile):

Prob
(pr)
h2m(cseq(pr)(d, n)) =

∑

d̂>C−d

Prob(seq(d̂, n)),

where d ≤ C. Since we only consider homogeneous

threads, our model can scan the trace to compute
the interference probability Prob(seq(d̂, n)) in lin-
ear time. The inductive probability function used
by [3] is more complex and essentially exponen-
tial. In our implementation, the computation of
∑

d̂>C−d
Prob(seq(d̂, n̄)) is actually performed by

scanning the trace file to find the frequency of
sequences with length n̄ and greater than d dis-
tinct addresses. It has a linear time complexity of
O(TraceSize).

The modeling process takes as input the circular
sequence profile for private data CSEQ(pr)(d, n)
and works as follows:

1. Compute the total number of capacity misses
when a single thread is running:

Misses
(pr)
old =

∑

d>C

∑

n>d

|CSEQ(pr)(d, n)|

2. Compute the number of cache hits becoming
misses:
for d = 1 to C do

n̄ =

∑

n>d

(

|CSEQ(pr)(d, n)| × n
)

∑

n>d |CSEQ(pr)(d, n)|

Prob
(pr)
h2m(d, n̄) =

∑

d̂>C−d

Prob(seq(d̂, n̄))

total n =
∑

n>d

|CSEQ(pr)(d, n)|

∆Misses(pr)+ = total n × Prob
(pr)
h2m

end for

3. Finally, compute the predicted number of ca-
pacity misses on private data:

Misses(pr)
new = Misses

(pr)
old + ∆Misses(pr)

4.3 Modeling Capacity Misses on Shared

Data

The number of capacity misses happening on
the shared data between threads are more dif-
ficult to model than the above two types. We
partition the shared-data circular sequence pro-
file CSEQ(sh)(d, n) into two categories: hits (i.e.,
sequences with d ≤ C) and misses (i.e., sequences

with d > C). Similarly, hits may become misses
because references from other threads stretch out
the sequence length, and misses may become hits
because another thread has already loaded the
data into L2. We adopt two different approaches
to predict these two categories.

4.3.1 Hits Become Capacity Misses

A thread is unable to occupy all the lines of the L2
cache when it is running concurrently with other
threads. A fraction of the cache lines will contain
data from the other threads. Since all threads have
similar temporal behavior, the effective cache size
of thread t0 Ceff (t0) is proportional to the per-
centage of its footprint size to the overall footprint
size:

Ceff (t0) =
|footprint(t0)|

|
⋃

i footprint(ti)|
× C.

The number of additional cache misses Misses
(sh)
h2m

which used to be hits is computed by applying Ceff

to the circular sequence profile of the concerned
thread:

Misses
(sh)
h2m =

C
∑

d=Ceff +1

∑

n>d

|CSEQ(d, n)|

4.3.2 Capacity Misses Become Hits

To consider the situation where capacity misses
on shared data become hits, we use the same ap-
proach used to predict the compulsory misses de-
scribed in Section 4.1. If m cache lines are com-
monly accessed by n threads, we assume each
thread will load m

n
blocks. Therefore the fraction

of capacity misses that become hits F
(sh)
m2h is ex-

pressed as:

F
(sh)
m2h = 1 −

1

Number of Threads
,

and the reduced number of capacity misses is equal
to:

Misses
(sh)
m2h = Misses

(sh)
old × F

(sh)
m2h.

Based on Sections 4.3.1 and 4.3.2, we can es-
timate the number of capacity misses on shared

data:

Misses(sh)
new = Misses

(sh)
old − Misses

(sh)
m2h + Misses

(sh)
h2m

= Misses
(sh)
old ×

1

Number of Threads

+ Misses
(sh)
h2m

5 Experimental Results

The implementation of our model consists of
a PERL script analyzing the L2 trace to cre-
ate circular sequence profiles for each core, and
a C++ library realizing the analytical model. We
validate the model using three examples typical
of scientific computing. All three examples per-
form double-floating point operations on matri-
ces/vectors that are stored contiguously in mem-
ory. We use the simple 1-D block data distribution
to allocate tasks to two threads. The three exper-
iments are:

• Dense matrix multiplication using three
nested loops. We denote it as dgemm.

• Dense matrix multiplication using the tiling
technique. The tile size is equal to eight. It
is denoted as blocked dgemm.

• Spare matrix-vector multiplication. The ex-
periment is referred to as spmv.

Our experiments are conducted on an extended
version of the SESC simulator. Table 2 shows the
parameters of the two-core CMP architecture.

5.1 Result for DGEMM

Table 3 does a comparison between the pre-
dicted number of misses and the actual number
of misses for running two threads. The relative
error lies in the range of 2% to 20% except for one
case. For each N, there are three rows that dis-
play the actual number of misses when we run a
single thread, the actual number when we run two
threads, and the predicted number for running two
threads, respectively.

For different applications, the total number of
cache misses is dominated by one of the three

types of misses. For instance, the DGEMM ex-
periment has a large number of capacity misses
on shared data. Please note that when N = 112,
96.5% of the original compulsory misses remain
to be misses (compared between running a single
thread and running two threads), instead of 75%
computed by our model. The disagreement im-
plies an imbalance problem. The immediate (di-
rect) reason for the imbalance is that thread 0 of-
ten runs faster than thread 1 and thus loads the
shared data before thread 1. Since our simulator
is always deterministic, the phenomenon is likely
to happen theoretically.

Among all of our experiments, this is the only
exception. To further investigate it, we performed
the same set of experiments on IBM Power4 and
Intel Woodcrest machines and found all of them
are balanced. We also improve the average relative
error to 8.8% when we apply an empirical value

of F
(co)
m2h (e.g. based on measurement on N=72)

to all the inputs. Since we are interested in an
analytical approach, Table 3 does not show the
improved result.

5.2 Result for Blocked DGEMM

This experiment is a tiling version of dgemm.
It uses a block size of 8 to compute the matrix
multiplication. Table 4 lists the actual number of
misses for running one thread alone, the actual
number for running two threads together, and the

Table 2. Parameters of the two-core CMP sim-
ulated architecture.

Processor Two cores, 5.0GHz

out of order issue

L1(private) ICache: LRU, 4-way, 32KB

64B line, write-through

DCache: LRU, 4-way, 8KB

64B line, write-through

MESI protocol

L2(shared) Unified, LRU, 64B line

64KB, fully associative

write-back

200

400

600

800

1000

1200

1400

1600

1800

2000

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5. Sparse matrix of dw2048 (nnz =
10, 114).

predicted number for running two threads. The
relative error is between 1% and 20%.

5.3 Result for SpMV

Finally, we conducted experiments on sparse
matrix-vector multiplications. The matrices used
are dw2048 and qc324 which were downloaded
from the Matrix Market web site. dw2048 is a
2048×2048 sparse matrix with 10114 non-zero ele-
ments, while qc is a 324×324 matrix having 26730
non-zero elements. Figures 5 and 6 show their
images correspondingly. Table 5 lists the perfor-
mance results. To estimate the number of compul-
sory misses for matrix qc324, we observe that the
two threads are working on nearly-disjoint subsets
of the shared memory area, therefore we simply
keep the number of compulsory misses unchanged.

6 Conclusions and Future Work

In this paper we have presented an analytical
model to predict the number of L2 cache misses
on a chip multi-processor quantitatively. We have
used circular sequences and the stack processing
technique to analyze an L2 trace. The trace file is
first scanned to generate a circular sequence pro-
file. Next the analytical model reads in the profile
and estimates the number of cache misses for run-
ning multiple threads. Since we are concentrat-
ing on a fully associative L2 cache, cache misses

50

100

150

200

250

300

50 100 150 200 250 300

Figure 6. Sparse matrix of qc324 (nnz =
26, 730).

can be decomposed into three types: compulsory
misses, capacity misses on shared data, and capac-
ity misses on private data. Each miss type is mod-
eled using a different method since its behavior is
affected variously by other threads. While the fac-

tors of F
(co)
m2h and F

(sh)
m2h are sometimes inaccurate,

we have shown that it is accurate for most of the
experiments and has a relative error less than 15%.
Our ongoing work is continuing to improve its ac-
curacy, finding the reason for the imbalance prob-
lem. In addition, we plan to integrate this quan-
titative model within a thread-scheduler to deter-
mine an optimal number of threads on chip multi-
processors using offline feedback-directed analysis.

References

[1] A. Agarwal, M. Horowitz, and J. Hennessy. An
analytical cache model. ACM Trans. Comput.
Syst., 7(2):184–215, 1989.

[2] R. Boisvert, R. Pozo, K. Remington, R. Barrett,
and J. Dongarra. Matrix Market: a web resource
for test matrix collections. In Quality of Numeri-
cal Software, pages 125–137, 1996.

[3] D. Chandra, F. Guo, S. Kim, and Y. Soli-
hin. Predicting inter-thread cache contention on
a chip multi-processor architecture. In High-
Performance Computer Architecture, 2005, pages
340–351, Feb. 2005.

[4] C. Ding and K. Kennedy. Improving effec-
tive bandwidth through compiler enhancement of
global cache reuse. J. Parallel Distrib. Comput.,
64(1):108–134, 2004.

[5] A. Fedorova, M. Seltzer, and M. Smith. A non-
work-conserving operating system scheduler for
smt processors. In Proceedings of the Workshop
on the Interaction between Operating Systems and
Computer Architecture, June 2006.

[6] M. Hill and A. Smith. Evaluating associativ-
ity in CPU caches. IEEE Trans. Computers,
38(12):1612–1630, 1989.

[7] P. Kongetira, K. Aingaran, and K. Olukotun. Ni-
agara: A 32-way multithreaded sparc processor.
IEEE Micro, 25(2):21–29, 2005.

[8] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger.
Evaluation techniques for storage hierarchies.
IBM Systems Journal, 9(2):78–117, 1970.

[9] C. McNairy and R. Bhatia. Montecito: A dual-
core, dual-thread itanium processor. IEEE Micro,
25(2):10–20, 2005.

[10] J. Renau, B. Fraguela, J. Tuck, W. Liu, and
M. Prvulovic. SESC simulator, Jan. 2005.
http://sesc.sourceforge.net.

[11] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer,
and J. Joyner. Power5 system microarchitec-
ture. IBM Journal of Research and Development,
49(4/5):505–521, 2005.

[12] G. Suh, S. Devadas, and L. Rudolph. A new
memory monitoring scheme for memory-aware
scheduling and partitioning. In Proceedings of
the Eighth International Symposium on High-
Performance Computer Architecture (HPCA’02),
pages 117–128, Feb. 2002.

[13] D. Thiébaut and H. Stone. Footprints in the
cache. ACM Trans. Comput. Syst., 5(4):305–329,
1987.

Table 3. Result for dgemm: prediction of the total number of L2 misses for thread 0 if ru nning with
another thread. For each N, there are three rows. The 1st row s hows the measured result for a single
thread, then the second row measured result for two threads, and the third row shows the predicted
result for the two threads.

N Total Compulsory Capacity(private) Capacity(shared) Error
64 single 1039 1024 15
64 double 734 709 25
64 predict 811 768 43 0 +10.490%
72 single 1312 1296 16
72 double 830 797 33
72 predict 989 972 17 0 +19.156%
80 single 1632 1600 32
80 double 1189 1125 64
80 predict 1225 1200 25 0 +3.028%
96 single 56894 2304 54590
96 double 27397 1541 25856
96 predict 29248 1728 447 27073 +6.756%
104 single 72301 2704 69597
104 double 38170 1754 36416
104 predict 37728 2028 1223 34477 -1.157%
112 single 90078 3136 86942
112 double 79508 3027 76481
112 predict 46176 2352 703 43121 -41.923%
144 single 190658 5184 185474
144 double 104360 3269 101091
144 predict 97348 3888 1443 92017 -6.719%
Average Error 12.747%

Table 4. Result for blocked dgemm: prediction of the total number of L2 misses for thread 0 if ru nning
with another thread. For each N, there are three rows. The 1st row shows the measured result for
a single thread, then the second row measured result for two t hreads, and the third row shows the
predicted result for the two threads.

N Total Compulsory Capacity(private) Capacity(shared) Error
64 single 1040 1024 16
64 double 687 656 31
64 predict 826 768 58 0 +20.2329%
80 single 4397 1600 2797
80 double 2934 1202 1732
80 predict 3078 1200 54 1824 +4.9080%
96 single 8161 2304 5857
96 double 4766 1672 3094
96 predict 4793 1728 184 2881 +0.5665%
112 single 12695 3136 9559
112 double 7621 2380 5241
112 predict 7209 2352 152 4705 -5.4061%
144 single 26243 5184 21059
144 double 16794 4253 12541
144 predict 14584 3888 327 10369 -13.1595%
Average Error 8.854%

Table 5. Result for spmv: prediction of the total number of L2 misses for thread 0 if ru nning with
another thread. For each sparse matrix, there are three rows . The 1st row shows the measured
result for a single thread, then the second row measured resu lt for two threads, and the third row
shows the predicted result for the two threads.

N Total Compulsory Capacity(private) Capacity(shared) Error
dw single 1483 1403 80
dw double 1483 1391 92
dw predict 1412 1324 88 0 -4.787%
qc single 2807 2693 114
qc double 2841 2668 173
qc predict 2840 2693 147 0 -0.0352%
Average Error 2.411%

