

SIMULATION ENVIRONMENT FOR PROGRAMMABLE
MICROORGANISMS

Technical Report UT-CS-06-585

Andrey A. Puretskiy

Department of Computer Science
University of Tennessee, Knoxville

www.cs.utk.edu/~puretski/PILOT

December 12th, 2006

Abstract

The purpose of this project was to build an engine that could be used to create various
simulations involving programmable microorganisms. The project was written using an
object-oriented language called breve. Separate object classes were created for the
organisms, chemicals, sensors and emitters. Several different quorum sensing and
chemotaxis simulations were created in order to test the simulation engine. The testing
was performed on two different computer systems in order to evaluate the performance of
different hardware as it relates to the simulation engine.

1 Background
Through the use of genetic engineering, it is possible to create microorganisms with a
customized regulatory and coding “circuitry”. Through the principles of self-
organization and emergent complex behavior, these programmable microorganisms could
fulfill a variety of useful functions. For instance, they could serve as extremely useful
assistants in fields like robotics, where they could enable adaptive behaviors, such as self-
repairing and self-reconfiguration. Because certain types of microorganisms are capable
of surviving extreme environmental conditions, genetically engineering them for
customized purposes could be a useful new approach for exploration and future
development of such environments. Deep oceanic and space exploration are just some of
the fields that could potentially benefit from the development of programmable
microorganism technology. The goal of this project is to create a simulation environment
that would enable the exploration of the general principles of self-organization by which
programmable microorganisms could accomplish complex and useful tasks.

The necessity of being able to conduct experiments in a simulated, rather than a physical
environment is clear. Simulations can significantly decrease the cost of a research study,
as well as the total amount of time necessary for its completion. Additionally, a good
simulation system will be capable of always producing replicable results from a given set
of input variable and starting conditions. This is a significant benefit of simulations,
since it is seldom possible to maintain a similarly high level of control over all variables
in a real-life study.

2 Introduction
The primary aim of this PILOT has been the development of a simulation engine that
would have two main capabilities. First, it would allow the user to easily customize the
microorganism with a variety of pre-defined components. The user would not have to
create these components, thus saving a considerable amount of time. Second, it would
enable the customization of the environment in which the agents will operate, simulating
the presence or absence of certain chemicals. Different chemicals can be easily
programmed to cause various behavior patterns in the organisms. For example, a positive
or negative chemotaxis simulation can easily be created using this engine. Because the
simulation’s potential applications are interdisciplinary, a secondary goal has been to
make the simulation environment accessible and user-friendly for individuals without
extensive computer programming experience.

In order to accomplish these goals, the simulation environment has been designed within
the breve framework, which uses an easy to read, object-oriented language called steve to
enable multi-agent simulations[1]. Each programmable microorganism was treated as an
object consisting of a number of components. These components include other objects,
as well as built in methods that control the simulated microorganism’s behavior in
various ways. All objects involved in this project have been stored in a well-documented

library. As a result, a user with relatively little programming experience will be able to
construct diverse simulation instances with relatively little effort.

3 Discussion
The following sections describe software implementation details. First, the various
classes that were created for this project are described. A more technical version of the
documentation is located in the “doc” subdirectory within the project directory. Next, the
testing of the simulation environment is described. Several test simulations were created
as part of the testing process. The final section summarizes the limitations and
recommended hardware specifications for this simulation environment.

Software Implementation

The following subsections describe the overall structure of the simulation engine code, as
well as the details of each subclass. The methods and capabilities of each subclass are
summarized here, but a more complete version of the documentation is available in the
“doc” project subdirectory. Since the sections below frequently refer to specific methods
implemented in the code, an explanation of the structure of a breve method is necessary.
The following is a template for a breve method with two input arguments, an integer and
a string:

+ to method-name keyword#1 variable-name#1 (int) keyword#2 variable-name#2(string):

For example, the following is the definition of a method that adds a number of sensors for
a particular chemical to an organism:

+ to add-sensors of name (string) numbering num (int) with max (float):

In this example, “of”, “numbering” and “with” are keywords, and “name”, “num” and
“max” are variable names. While the method definitions may seem needlessly
complicated, the goal is to improve the readability of the methods when they are called in
the code. The above method may be called as follows:

TestOrg add-sensor of ActivatorChemical numbering 4 with max 1.0.

As long as the programmer chooses the keywords well, much of the breve code will have
the appearance of regular English sentences. This can be of a significant advantage if the
code needs to be modified by individuals who are not familiar with the standard
programming languages, such as C, C++ and Java.

Overall Code Structure

This section describes the overall structure of the simulation engine. The chart below
(Fig. 1) shows summarizes this structure.

Figure 1. Simulation environment structure.

A simulation is initialized and created via the Driver class. The user manipulates various
constants to alter the initial state of the simulation, as well as the behavior of the
organisms during the course of the simulation. The number the organisms (Org-type
objects) may be defined by the user here. Various visual qualities, such as the shape and
color of the organisms may be altered here as well. Additionally, the user may create
several chemicals based on the Chem template class. For the purposes of the simulation,
a chemical is a non-physical object that diffuses within the user-specified environment.
The way organisms interact with the chemicals determines the overall behavior of the
simulation. The organisms are initialized to contain a number of Sensor and Emitter
objects. Each sensor is set up to absorb some amount of a chemical. The chemical and
the maximum amount the sensor can absorb at any given time are defined by the user.
Each emitter produces some amount of a chemical. The chemical and the maximum
amount the emitter can produces at any given time are defined by the user. The chart
below (Fig. 2) shows the structure of a simple example simulation instance.

Simulation Driver
(Driver.tz)

Organism Class
(Org.tz)

Chemical Class
(Chem.tz)

Sensor Class
(Sensor.tz)

Emitter Class
(Emitter.tz)

Figure 2. Initial structure of a simple example simulation.

While complexity can vary depending on how the user chooses to initialize the many
various simulation attributes, this affects only the number of organisms, chemicals,
sensors and emitters. The basic structure, as depicted above, remains the same.

Driver Class Implementation Details and Capabilities

The Driver class is contained within the Driver.tz file. The simulation engine was
designed so that most, if not all of the user’s interaction with the software would occur
through modifications to the Driver class. Most of these modifications consist of altering
various constants (@define statements in breve). The following tables include all of the
constants, as well as a brief definition of each. A more complete explanation for those
constants that require one is available in the documentation folder. Table 1 lists the
constants that the user may utilize in order to determine the initial number of organisms,
as well as the rate at which the organisms will reproduce.

Driver

org
1

org
2

org
3

org
4

org
5

Sensor
for

chem
A

Sensor
for

chem
B

Sensor
for

chem
A

Sensor
for

chem
B

Sensor
for

chem
A

Sensor
for

chem
B

Sensor
for

chem
A

Sensor
for

chem
B

Sensor
for

chem
A

Sensor
for

chem
B

Emitter
of chem

B

Emitter
of chem

B

Emitter
of chem

B

Emitter
of chem

B

Emitter
of chem

B

chem
A

chem
B

Table 1. User defined constants related to the number of organisms.

Name in Code What the constant defines or controls Typical initial
values range

ORG_COUNT The number of organisms. 2-5000

REP_SCALE

Used with an activator-inhibitor chemical
reproduction model. Controls how much
influence the Inhibitor has (higher values =
more influence).

0-100

REP_THRESHOLD
The minimum amount of a user-specified
chemical that must be present in order for an
organism to reproduce.

0-1000

REP_WAIT_TIME
The number of iterations (amount of simulation
time) that must pass before an organism can
divide (reproduce) following a division.

0-100000

Table 2 lists the constants that the user may alter to determine the how the organisms will
move in the simulation environment. There are three choices: random motion, gradient
motion and comparison motion.

If random motion is chosen, the organisms will simply select a nearby location at random
and move there on the next iteration of the simulation.

If gradient motion is selected, the organisms will sample the nearby environment (all
adjacent locations plus the organism’s current location) for the highest concentration of a
certain user-defined chemical. The organism will then either move to the location with
highest concentration or, if the present location happens to be the one with the highest
concentration, it will remain in place.

The third choice, comparison motion is somewhat similar in its effect to gradient motion,
but it is computationally simpler. When the user selects comparison motion, the
organisms will constantly compare two variables, old_con (concentration of the chemical
at the organism’s previous location) and new_con (concentration of the chemical at the
organism’s current location). This comparison determines whether the organism will
keep traveling in the same direction as it is at the moment, will reverse direction, or will
choose a random direction. Overall, comparison motion tends to produce more chaotic
and less “perfect” organism motion patterns than gradient motion. When this motion
type is selected, the organisms will sometimes exhibit “tumbling” behavior. Generally,
this is way of implementing organism motion is more realistic for bacteria than pure
gradient motion [2].

Table 2. User defined constants related to the movement of organisms.

Name in Code What the constant defines or controls Typical initial
values range

MOVE_TYPE
The organisms’ motion control type—this
constant determines what internal method an
organism will use to determine its next location.

1 = random

2 = gradient

3 = comparison

GRADIENT-MOVE-
CHANCE

The chance that gradient motion will be used by
the organism to determine its next location. If
the value is less than 1.0, random motion is
introduced with the probability of occurring
equal to (1-GRADIENT-MOVE-CHANCE)

0.0-1.0

GRADIENT-MOVE-
THRESHOLD

Used when gradient motion is selected by the
user. This is the minimum amount of a
chemical that would cause an organism to
move.

0.0-10.0

COMPARE-MOVE-
THRESHOLD

Used when comparison motion is selected by
the user. This is the minimum amount of a
chemical that would cause an organism to
move.

0.0-10.0

SIGNIFICANT-
DIFFERENCE

Used when comparison motion is selected, this
constant symbolizes the difference between the
chemical concentration at the organism’s
current and previous location that is considered
to be significant (an insignificant difference will
cause random organism motion.

Table 3 lists the constants that may be used to customize the organisms to absorb and/or
produce certain chemicals. The more sensors for a chemical an organism has, the faster it
will absorb that chemical. The more emitters of a particular chemical an organism has,
the faster it will produce that chemical. This may affect the overall reproduction rate of
the organisms.

Table 3. User defined constants related to the composition of the organisms.

Name in Code What the constant defines or controls Typical initial
values range

SENSOR-COUNT-A The number of sensors for one of the two built
in chemicals (ChemA). 0-10

SENSOR-COUNT-B The number of sensors for one of the two built
in chemicals (ChemB). 0-10

EMITTER-COUNT-A The number of emitters of one of the two built
in chemicals (ChemA). 0-10

EMITTER-COUNT-B The number of emitters of one of the two built
in chemicals (ChemB). 0-10

MAX-SENSOR-
ABSORBTION

The amount of a chemical that a single sensor
can absorb during one simulation iteration. 1.0-100.0

MAX-EMITTER-
PRODUCTION

The amount of a chemical that single emitter
can produce during one simulation iteration. 1.0-100.0

The remaining constants are too few to warrant a category of their own. Therefore, they
are all described in a single table (Table 4) below.

Table 4. Miscellaneous user defined constants.

Name in Code What the constant defines or controls Typical initial
values range

NAME-A The name the user chooses to give to one of the
two built in default chemicals. Any string

NAME-B The name the user chooses to give to one of the
two built in default chemicals. Any string

RU

The diffusion scaling factor that can control the
overall rate of chemical diffusion. Lower
values will cause the chemicals to diffuse more
slowly.

0.0000001-10.0

XSIZE The size of the simulation environment’s X-
dimension. 1-32

YSIZE The size of the simulation environment’s Y-
dimension. 1-32

ZSIZE The size of the simulation environment’s Z-
dimension. 1-32

The methods included in the driver class can be divided into two categories. The first
category consists of the mandatory breve methods. A driver class must extend the built
in Controller class in order to run. It also must include an init and an iterate method.
The former initializes the simulation state, while the latter describes the actions that will
be taken during each iteration of the simulation. Although quite a bit of customization
can be done by altering the constants described above, there may be times when further

customization is necessary. In these cases, the user may need to make changes to one or
both of these methods.

The second category consists of internal methods that are called either from within the
driver class, or from one of the other classes that constitute the simulation engine. These
methods, though included in the documentation, are not meant to be altered or called in
any fashion different from the current.

Organism Class Implementation Details and Capabilities

Most of the work done by the simulation engine takes place within the Org class. The
methods that constitute this class can be divided into three main categories: initialization,
chemical interaction and motion control.

1. Initialization methods. An Org object is created using the init xsize x (float)
ysize y(float) zsize z (float). The three arguments specify the size of the
simulation environment. These arguments are assigned to the objects internal
global variable for easy access by all motion control methods. The init method
also initializes several internal variables, and sets the default shape and color of
the organism. The methods init-color and init-shape can then be called by the
user to alter the color and shape of the organism. Calling these methods, however,
is not required. One more method is required to complete the initialization, and
that is init-location to V (vector). The organism’s location is defined by the
vector that serves as the input argument to this method. An organism can be
assigned an ID number (unique or not), using the set-id to inp (int) method. An
organism may also have a type that can be set using the set-type to inp (string)
method. Both of these have corresponding get- methods.

2. Chemical Interaction methods make up the second category of Org class
methods. In turn, these can be divided into chemical interaction initialization and
active interaction methods. The former consist of add-sensors of name (string)
numbering num (int) with max (float) and add-emitters of name (string)
numbering num (int) with max (float). These methods are called from the Driver
class as part of the simulation initialization. They initialize and add a user defined
number of sensors and emitters to every organism. The latter consist of use-
sensors of Name (string) and use-emitters of Name (string). Both of these are
called by the Driver class’s iterate method as part of the simulation execution.
The use-sensors method absorbs a chemical (as defined by its input argument)
from the environment, while use-emitters releases a chemical (as defined by its
input argument) into the environment.

3. The third category consists of the organism Motion Control methods. There are
three main methods that may be called by the Driver class, depending on the
user’s choice of the motion model: update-location-based-on-comparison of

new_con (float) with thresh1 (float) and-with thresh2 (float), update-location-
based-on-gradient of Name (string) with chance (float) and-with thresh (float)
and update-location-randomly. The first method uses a comparison between the
concentration of a chemical at the organism’s current location and its
concentration at the organism’s previous location. The results of this comparison
determine whether the organism will: (1) continue moving in its current
direction; (2) move in the opposite direction; (3) move randomly. The thresholds
that serve as the input arguments to this method affect this choice. The second
method surveys the organism’s surrounding environment for the highest
concentration of a certain chemical (as defined by the input arguments). The
organism then moves in the direction of the highest concentration. The third
method selects a nearby location randomly. The organism then moves to that
location. This method is called by the first two under certain conditions--for
example, if the user would like to introduce a random error into the gradient
motion method. It can also be called from the Driver class, if the simulation
requires the organisms to use pure random motion.

In addition to the above, there are several miscellaneous internal methods within the Org
class. Since these methods are used primarily for code modularity within the class, they
are not described here. However, their descriptions are available in the documentation.

Chemical Class Implementation Details and Capabilities

The Chem class represents a diffusing chemical. It uses breve’s built in Patch Grid class
to simulate this process visually. A chemical’s initial appearance and behavior are
determined by the following four methods:

+ to init-size xsize XSIZE (float) ysize YSIZE (float) zsize ZSIZE (float):

+ to init-value to val (float) at-x x (float) at-y y (float) at-z z (float):

+ to init-color to choice (string):

+ to set-name to some-name (string):

The first one sets the size of the environment in which the chemical will diffuse. The
second one initializes the concentration of the chemical at a given location. The third one
sets the color that will represent the chemical in the simulation. The fourth method is
used to name the chemical. Several other methods use the chemical’s name for various
purposes, so it is important that the user keep track of the names of the chemicals in the
simulation.

There are two methods that other classes use to interact with a Chem object. The first is
get-value at-x x (float) at-y y (float) at-z z (float). This method simply returns the
concentration of the chemical at the given location back to the calling object. The second
method is update-chem rate RU (float) tstep TIMESTEP (float) on-grid grid (object).

This method diffuses the chemical and re-draws its concentrations on the provided Patch
Grid object. Typically, it is called by the iterate method of the Driver class only.

Sensor Class Implementation Details and Capabilities

Each sensor is tailored to absorb one particular chemical, up to a certain maximum value.
This is done using the init-to chem name (string) with-maximum val (float) method. An
Org object’s use-sensors method calls the Sensor object’s sense at-x x (float) at-y y
(float) at-z z (float) method. This method works through the Driver to modify the
concentration of a chemical in the environment.

Emitter Class Implementation Details and Capabilities

Each emitter is tailored to produce one particular chemical, up to a certain maximum
value. This is done using the init-to chem name (string) with-maximum val (float)
method. An Org object’s use-emitters method calls one of the following Emitter object
methods:

+ to emit-constant at-x x (float) at-y y (float) at-z z (float):

+ to emit amount val (float) at-x x (float) at-y y (float) at-z z (float):

+ to emit-percent percent p (float) at-x x (float) at-y y (float) at-z z (float):

These methods work through the Driver to modify the concentration of a chemical in the
environment. The first one simply produces 1.0 units of some chemical. The second one
allows the calling class to specify the amount that will be produced. The third one allows
the called class to specify the percentage of the internal chemical concentration that will
be emitted into the environment.

Testing

The simulation engine was tested extensively using two types of simulations: quorum
sensing and chemotaxis. Multiple simulation instances were created for each type. The
behavior of the simulation engine was monitored for any abnormalities.

Quorum Sensing Simulations

In a quorum sensing simulation test, the goal was to demonstrate that the organisms are
capable of determining that a certain number (quorum) of organisms has been reached.
All quorum sensing simulations were set up with the following qualities:

• The organisms are capable of reproducing.
• Reproduction is triggered by the presence of an Activator chemical (chemical A).
• Reproduction can be stopped by a certain level of an Inhibitor chemical (chemical

B).

• The organisms are capable of moving.
• The concentration of chemical A affects organism motion.
• The organisms absorb both chemical A and chemical B via sensor(s).
• The organisms emit chemical B, but not chemical A.
• At the start of the simulation, a certain amount of chemical A is present in the

environment.

In order to test the simulation engine thoroughly, the following parameters were varied
across different quorum sensing simulation instances:

• The overall rate of reproduction, as controlled by several user-defined constants
(described above).

• The motion model used by the organisms.
• The motion thresholds (minimum amount of chemical that must be present in

order for motion to occur).
• The initial number of the organisms.
• The initial concentration of chemical A.
• The initial locations of the organisms and the spatial distribution of chemical A.
• The diffusion rate of the chemicals.
• The number of sensors and emitters for chemical A and chemical B that each

organism would have.
• The maximum amount of chemical that a sensor could absorb.
• The amount of chemical that an emitter would emit.

In all of the testing simulations, the organisms were to indicate that a quorum had been
reached by a cessation of motion. In all instances, the organisms eventually
demonstrated quorum sensing behavior.

Chemotaxis Simulations

In the chemotaxis simulation testing, the goal was to demonstrate that the organisms were
capable of using either gradient or comparison motion to converge upon a high
concentration of a diffusing chemical. All chemotaxis simulations were set up with the
following qualities:

• The organisms are capable of moving.
• The concentration of chemical A affects organism motion.
• The organisms use either the comparison or the gradient motion model. In either

case, there is no chance of a random move.
• The organisms absorb both chemical A and chemical B via sensor(s).
• The organisms emit chemical B, but not chemical A.
• At the start of the simulation, the environment contains a slowly diffusing,

centrally located quantity of chemical A.

In order to test the simulation engine thoroughly, the following parameters were varied
across different chemotaxis simulation instances:

• Whether the organisms reproduce.
• The overall rate of reproduction, as controlled by several user-defined constants

(described above).
• The initial location of the organisms.
• The initial location of the highest chemical A concentration point.
• The rate of chemical A’s diffusion.
• The number of the sensors for chemical A that each organism would have.

As expected, in all test instances the organisms eventually converged upon the region
containing the highest concentration of chemical A.

Hardware Requirements and Limitations

Two different computer systems were used to test the simulation engine, with the purpose
of determining the maximum simulation complexity that each would handle. On both
systems, it was determined that the engine does not process an environment larger than
32x32x32 well. The following table summarizes the maximum number of organisms and
chemicals that each system processed without excessive lag:

Table 5. System Performance Summary

 System 1 System 2

Operating System Mac OS X version 10.4.8
Windows XP Home Edition

SP2

Processor 2.16 GHz Intel Core Duo 1.6 GHz AMD Athlon XP
1900+

Memory 1 GB 667 MHz DDR2 SDRAM 768 MB
Maximum Number
of Organisms 2000 1200

Maximum Number
of Chemicals 10* 10*

For the maximum number of organisms testing, the number of chemicals was set to two.
For the maximum number of chemicals testing, the number of organisms was set to a
constant (non-reproducing) ten. The maximum number of chemicals was not tested
beyond ten. This is because ten chemicals did not seem to place significantly more
demand on the system than just one or two. It appears that the number of organisms is
the primary limiting factor on the simulation engine’s performance.

4 Information Sources

1. Klein, Jon. "breve a 3d Simulation Environment for Multi-Agent Simulations and

Artificial Life." http://www.spiderland.org/node/291.
2. Hartl, Daniel L. (1994). Genetics, 3rd ed. Boston & London: Jones & Bartlett, pp.

254-263.

