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Abstract 

The purpose of this project was to build an engine that could be used to create various 
simulations involving programmable microorganisms.  The project was written using an 
object-oriented language called breve.  Separate object classes were created for the 
organisms, chemicals, sensors and emitters.  Several different quorum sensing and 
chemotaxis simulations were created in order to test the simulation engine.  The testing 
was performed on two different computer systems in order to evaluate the performance of 
different hardware as it relates to the simulation engine. 

 

 

 

 

 

 

 

 



1  Background 
Through the use of genetic engineering, it is possible to create microorganisms with a 
customized regulatory and coding “circuitry”.  Through the principles of self-
organization and emergent complex behavior, these programmable microorganisms could 
fulfill a variety of useful functions.  For instance, they could serve as extremely useful 
assistants in fields like robotics, where they could enable adaptive behaviors, such as self-
repairing and self-reconfiguration.  Because certain types of microorganisms are capable 
of surviving extreme environmental conditions, genetically engineering them for 
customized purposes could be a useful new approach for exploration and future 
development of such environments.  Deep oceanic and space exploration are just some of 
the fields that could potentially benefit from the development of programmable 
microorganism technology.  The goal of this project is to create a simulation environment 
that would enable the exploration of the general principles of self-organization by which 
programmable microorganisms could accomplish complex and useful tasks. 
 
The necessity of being able to conduct experiments in a simulated, rather than a physical 
environment is clear.  Simulations can significantly decrease the cost of a research study, 
as well as the total amount of time necessary for its completion.  Additionally, a good 
simulation system will be capable of always producing replicable results from a given set 
of input variable and starting conditions.  This is a significant benefit of simulations, 
since it is seldom possible to maintain a similarly high level of control over all variables 
in a real-life study. 
 

2  Introduction 
The primary aim of this PILOT has been the development of a simulation engine that 
would have two main capabilities.  First, it would allow the user to easily customize the 
microorganism with a variety of pre-defined components.  The user would not have to 
create these components, thus saving a considerable amount of time.  Second, it would 
enable the customization of the environment in which the agents will operate, simulating 
the presence or absence of certain chemicals.  Different chemicals can be easily 
programmed to cause various behavior patterns in the organisms.  For example, a positive 
or negative chemotaxis simulation can easily be created using this engine.  Because the 
simulation’s potential applications are interdisciplinary, a secondary goal has been to 
make the simulation environment accessible and user-friendly for individuals without 
extensive computer programming experience. 
 
In order to accomplish these goals, the simulation environment has been designed within 
the breve framework, which uses an easy to read, object-oriented language called steve to 
enable multi-agent simulations[1].  Each programmable microorganism was treated as an 
object consisting of a number of components.  These components include other objects, 
as well as built in methods that control the simulated microorganism’s behavior in 
various ways.  All objects involved in this project have been stored in a well-documented 



library.  As a result, a user with relatively little programming experience will be able to 
construct diverse simulation instances with relatively little effort. 
 

3  Discussion 
The following sections describe software implementation details.  First, the various 
classes that were created for this project are described.  A more technical version of the 
documentation is located in the “doc” subdirectory within the project directory.  Next, the 
testing of the simulation environment is described.  Several test simulations were created 
as part of the testing process.  The final section summarizes the limitations and 
recommended hardware specifications for this simulation environment. 

Software Implementation 

The following subsections describe the overall structure of the simulation engine code, as 
well as the details of each subclass.  The methods and capabilities of each subclass are 
summarized here, but a more complete version of the documentation is available in the 
“doc” project subdirectory.  Since the sections below frequently refer to specific methods 
implemented in the code, an explanation of the structure of a breve method is necessary.  
The following is a template for a breve method with two input arguments, an integer and 
a string: 

+ to method-name keyword#1 variable-name#1 (int) keyword#2 variable-name#2(string): 

For example, the following is the definition of a method that adds a number of sensors for 
a particular chemical to an organism: 

+ to add-sensors of name (string) numbering num (int) with max (float): 

In this example, “of”, “numbering” and “with” are keywords, and “name”, “num” and 
“max” are variable names.  While the method definitions may seem needlessly 
complicated, the goal is to improve the readability of the methods when they are called in 
the code.  The above method may be called as follows: 

TestOrg add-sensor of ActivatorChemical numbering 4 with max 1.0. 

As long as the programmer chooses the keywords well, much of the breve code will have 
the appearance of regular English sentences.  This can be of a significant advantage if the 
code needs to be modified by individuals who are not familiar with the standard 
programming languages, such as C, C++ and Java. 

Overall Code Structure 

This section describes the overall structure of the simulation engine.  The chart below 
(Fig. 1) shows summarizes this structure. 



 

 

Figure 1.  Simulation environment structure. 

A simulation is initialized and created via the Driver class.  The user manipulates various 
constants to alter the initial state of the simulation, as well as the behavior of the 
organisms during the course of the simulation.  The number the organisms (Org-type 
objects) may be defined by the user here.  Various visual qualities, such as the shape and 
color of the organisms may be altered here as well.  Additionally, the user may create 
several chemicals based on the Chem template class.  For the purposes of the simulation, 
a chemical is a non-physical object that diffuses within the user-specified environment.  
The way organisms interact with the chemicals determines the overall behavior of the 
simulation.  The organisms are initialized to contain a number of Sensor and Emitter 
objects.  Each sensor is set up to absorb some amount of a chemical.  The chemical and 
the maximum amount the sensor can absorb at any given time are defined by the user.  
Each emitter produces some amount of a chemical.  The chemical and the maximum 
amount the emitter can produces at any given time are defined by the user.  The chart 
below (Fig. 2) shows the structure of a simple example simulation instance. 
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Figure 2.  Initial structure of a simple example simulation. 

While complexity can vary depending on how the user chooses to initialize the many 
various simulation attributes, this affects only the number of organisms, chemicals, 
sensors and emitters.  The basic structure, as depicted above, remains the same. 

Driver Class Implementation Details and Capabilities 

The Driver class is contained within the Driver.tz file.  The simulation engine was 
designed so that most, if not all of the user’s interaction with the software would occur 
through modifications to the Driver class.  Most of these modifications consist of altering 
various constants (@define statements in breve).  The following tables include all of the 
constants, as well as a brief definition of each.  A more complete explanation for those 
constants that require one is available in the documentation folder.  Table 1 lists the 
constants that the user may utilize in order to determine the initial number of organisms, 
as well as the rate at which the organisms will reproduce. 
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Table 1.  User defined constants related to the number of organisms. 

Name in Code What the constant defines or controls Typical initial 
values range 

ORG_COUNT The number of organisms. 2-5000 

REP_SCALE 

Used with an activator-inhibitor chemical 
reproduction model.  Controls how much 
influence the Inhibitor has (higher values = 
more influence). 

0-100 

REP_THRESHOLD 
The minimum amount of a user-specified 
chemical that must be present in order for an 
organism to reproduce. 

0-1000 

REP_WAIT_TIME 
The number of iterations (amount of simulation 
time) that must pass before an organism can 
divide (reproduce) following a division. 

0-100000 

Table 2 lists the constants that the user may alter to determine the how the organisms will 
move in the simulation environment.  There are three choices:  random motion, gradient 
motion and comparison motion. 

If random motion is chosen, the organisms will simply select a nearby location at random 
and move there on the next iteration of the simulation. 

If gradient motion is selected, the organisms will sample the nearby environment (all 
adjacent locations plus the organism’s current location) for the highest concentration of a 
certain user-defined chemical.  The organism will then either move to the location with 
highest concentration or, if the present location happens to be the one with the highest 
concentration, it will remain in place. 

The third choice, comparison motion is somewhat similar in its effect to gradient motion, 
but it is computationally simpler.  When the user selects comparison motion, the 
organisms will constantly compare two variables, old_con (concentration of the chemical 
at the organism’s previous location) and new_con (concentration of the chemical at the 
organism’s current location).  This comparison determines whether the organism will 
keep traveling in the same direction as it is at the moment, will reverse direction, or will 
choose a random direction.  Overall, comparison motion tends to produce more chaotic 
and less “perfect” organism motion patterns than gradient motion.  When this motion 
type is selected, the organisms will sometimes exhibit “tumbling” behavior.  Generally, 
this is way of implementing organism motion is more realistic for bacteria than pure 
gradient motion [2]. 

 

 

 



Table 2.  User defined constants related to the movement of organisms. 

Name in Code What the constant defines or controls Typical initial 
values range 

MOVE_TYPE 
The organisms’ motion control type—this 
constant determines what internal method an 
organism will use to determine its next location.  

1 = random 

2 = gradient 

3 = comparison 

GRADIENT-MOVE-
CHANCE 

The chance that gradient motion will be used by 
the organism to determine its next location.  If 
the value is less than 1.0, random motion is 
introduced with the probability of occurring 
equal to (1-GRADIENT-MOVE-CHANCE) 

0.0-1.0 

GRADIENT-MOVE-
THRESHOLD 

Used when gradient motion is selected by the 
user. This is the minimum amount of a 
chemical that would cause an organism to 
move. 

0.0-10.0 

COMPARE-MOVE-
THRESHOLD 

Used when comparison motion is selected by 
the user. This is the minimum amount of a 
chemical that would cause an organism to 
move. 

0.0-10.0 

SIGNIFICANT-
DIFFERENCE 

Used when comparison motion is selected, this 
constant symbolizes the difference between the 
chemical concentration at the organism’s 
current and previous location that is considered 
to be significant (an insignificant difference will 
cause random organism motion. 

 

Table 3 lists the constants that may be used to customize the organisms to absorb and/or 
produce certain chemicals.  The more sensors for a chemical an organism has, the faster it 
will absorb that chemical.  The more emitters of a particular chemical an organism has, 
the faster it will produce that chemical.  This may affect the overall reproduction rate of 
the organisms. 

 

 

 

 

 



Table 3.  User defined constants related to the composition of the organisms. 

Name in Code What the constant defines or controls Typical initial 
values range 

SENSOR-COUNT-A The number of sensors for one of the two built 
in chemicals (ChemA). 0-10 

SENSOR-COUNT-B The number of sensors for one of the two built 
in chemicals (ChemB). 0-10 

EMITTER-COUNT-A The number of emitters of one of the two built 
in chemicals (ChemA). 0-10 

EMITTER-COUNT-B The number of emitters of one of the two built 
in chemicals (ChemB). 0-10 

MAX-SENSOR-
ABSORBTION 

The amount of a chemical that a single sensor 
can absorb during one simulation iteration. 1.0-100.0 

MAX-EMITTER-
PRODUCTION 

The amount of a chemical that single emitter 
can produce during one simulation iteration. 1.0-100.0 

The remaining constants are too few to warrant a category of their own.  Therefore, they 
are all described in a single table (Table 4) below. 

Table 4.  Miscellaneous user defined constants. 

Name in Code What the constant defines or controls Typical initial 
values range 

NAME-A The name the user chooses to give to one of the 
two built in default chemicals. Any string 

NAME-B The name the user chooses to give to one of the 
two built in default chemicals. Any string 

RU 

The diffusion scaling factor that can control the 
overall rate of chemical diffusion.  Lower 
values will cause the chemicals to diffuse more 
slowly. 

0.0000001-10.0 

XSIZE The size of the simulation environment’s X-
dimension. 1-32 

YSIZE The size of the simulation environment’s Y-
dimension. 1-32 

ZSIZE The size of the simulation environment’s Z-
dimension. 1-32 

The methods included in the driver class can be divided into two categories.  The first 
category consists of the mandatory breve methods.  A driver class must extend the built 
in Controller class in order to run.  It also must include an init and an iterate method.  
The former initializes the simulation state, while the latter describes the actions that will 
be taken during each iteration of the simulation.  Although quite a bit of customization 
can be done by altering the constants described above, there may be times when further 



customization is necessary.  In these cases, the user may need to make changes to one or 
both of these methods. 

The second category consists of internal methods that are called either from within the 
driver class, or from one of the other classes that constitute the simulation engine.  These 
methods, though included in the documentation, are not meant to be altered or called in 
any fashion different from the current. 

Organism Class Implementation Details and Capabilities 

Most of the work done by the simulation engine takes place within the Org class.  The 
methods that constitute this class can be divided into three main categories:  initialization, 
chemical interaction and motion control. 

1. Initialization methods.  An Org object is created using the init xsize x (float) 
ysize y(float) zsize z (float).  The three arguments specify the size of the 
simulation environment.  These arguments are assigned to the objects internal 
global variable for easy access by all motion control methods.  The init method 
also initializes several internal variables, and sets the default shape and color of 
the organism.  The methods init-color and init-shape can then be called by the 
user to alter the color and shape of the organism.  Calling these methods, however, 
is not required.  One more method is required to complete the initialization, and 
that is init-location to V (vector).  The organism’s location is defined by the 
vector that serves as the input argument to this method.  An organism can be 
assigned an ID number (unique or not), using the set-id to inp (int) method.  An 
organism may also have a type that can be set using the set-type to inp (string) 
method.  Both of these have corresponding get- methods.  
 

2. Chemical Interaction methods make up the second category of Org class 
methods.  In turn, these can be divided into chemical interaction initialization and 
active interaction methods.  The former consist of add-sensors of name (string) 
numbering num (int) with max (float) and add-emitters of name (string) 
numbering num (int) with max (float).  These methods are called from the Driver 
class as part of the simulation initialization.  They initialize and add a user defined 
number of sensors and emitters to every organism.  The latter consist of use-
sensors of Name (string) and use-emitters of Name (string).  Both of these are 
called by the Driver class’s iterate method as part of the simulation execution.  
The use-sensors method absorbs a chemical (as defined by its input argument) 
from the environment, while use-emitters releases a chemical (as defined by its 
input argument) into the environment. 

 

3. The third category consists of the organism Motion Control methods.  There are 
three main methods that may be called by the Driver class, depending on the 
user’s choice of the motion model:  update-location-based-on-comparison of 



new_con (float) with thresh1 (float) and-with thresh2 (float), update-location-
based-on-gradient of Name (string) with chance (float) and-with thresh (float) 
and update-location-randomly.  The first method uses a comparison between the 
concentration of a chemical at the organism’s current location and its 
concentration at the organism’s previous location.  The results of this comparison 
determine whether the organism will:  (1) continue moving in its current 
direction; (2) move in the opposite direction; (3) move randomly.  The thresholds 
that serve as the input arguments to this method affect this choice.  The second 
method surveys the organism’s surrounding environment for the highest 
concentration of a certain chemical (as defined by the input arguments).  The 
organism then moves in the direction of the highest concentration.  The third 
method selects a nearby location randomly.  The organism then moves to that 
location.  This method is called by the first two under certain conditions--for 
example, if the user would like to introduce a random error into the gradient 
motion method.  It can also be called from the Driver class, if the simulation 
requires the organisms to use pure random motion. 

In addition to the above, there are several miscellaneous internal methods within the Org 
class.  Since these methods are used primarily for code modularity within the class, they 
are not described here.  However, their descriptions are available in the documentation. 

Chemical Class Implementation Details and Capabilities 

The Chem class represents a diffusing chemical.  It uses breve’s built in Patch Grid class 
to simulate this process visually.  A chemical’s initial appearance and behavior are 
determined by the following four methods: 

+ to init-size xsize XSIZE (float) ysize YSIZE (float) zsize ZSIZE (float): 

+ to init-value to val (float) at-x x (float) at-y y (float) at-z z (float): 

+ to init-color to choice (string): 

+ to set-name to some-name (string): 

The first one sets the size of the environment in which the chemical will diffuse.  The 
second one initializes the concentration of the chemical at a given location.  The third one 
sets the color that will represent the chemical in the simulation.  The fourth method is 
used to name the chemical.  Several other methods use the chemical’s name for various 
purposes, so it is important that the user keep track of the names of the chemicals in the 
simulation. 

There are two methods that other classes use to interact with a Chem object.  The first is 
get-value at-x x (float) at-y y (float) at-z z (float).  This method simply returns the 
concentration of the chemical at the given location back to the calling object.  The second 
method is update-chem rate RU (float) tstep TIMESTEP (float) on-grid grid (object).  



This method diffuses the chemical and re-draws its concentrations on the provided Patch 
Grid object.  Typically, it is called by the iterate method of the Driver class only. 

Sensor Class Implementation Details and Capabilities 

Each sensor is tailored to absorb one particular chemical, up to a certain maximum value.  
This is done using the init-to chem name (string) with-maximum val (float) method.  An 
Org object’s use-sensors method calls the Sensor object’s sense at-x x (float) at-y y 
(float) at-z z (float) method.  This method works through the Driver to modify the 
concentration of a chemical in the environment. 

Emitter Class Implementation Details and Capabilities 

Each emitter is tailored to produce one particular chemical, up to a certain maximum 
value.  This is done using the init-to chem name (string) with-maximum val (float) 
method.  An Org object’s use-emitters method calls one of the following Emitter object 
methods: 

+ to emit-constant at-x x (float) at-y y (float) at-z z (float): 

+ to emit amount val (float) at-x x (float) at-y y (float) at-z z (float): 

+ to emit-percent percent p (float) at-x x (float) at-y y (float) at-z z (float): 

These methods work through the Driver to modify the concentration of a chemical in the 
environment.  The first one simply produces 1.0 units of some chemical.  The second one 
allows the calling class to specify the amount that will be produced.  The third one allows 
the called class to specify the percentage of the internal chemical concentration that will 
be emitted into the environment. 

Testing 

The simulation engine was tested extensively using two types of simulations:  quorum 
sensing and chemotaxis.  Multiple simulation instances were created for each type.  The 
behavior of the simulation engine was monitored for any abnormalities. 

Quorum Sensing Simulations 

In a quorum sensing simulation test, the goal was to demonstrate that the organisms are 
capable of determining that a certain number (quorum) of organisms has been reached.  
All quorum sensing simulations were set up with the following qualities: 

• The organisms are capable of reproducing. 
• Reproduction is triggered by the presence of an Activator chemical (chemical A). 
• Reproduction can be stopped by a certain level of an Inhibitor chemical (chemical 

B). 



• The organisms are capable of moving. 
• The concentration of chemical A affects organism motion. 
• The organisms absorb both chemical A and chemical B via sensor(s). 
• The organisms emit chemical B, but not chemical A. 
• At the start of the simulation, a certain amount of chemical A is present in the 

environment. 

In order to test the simulation engine thoroughly, the following parameters were varied 
across different quorum sensing simulation instances: 

• The overall rate of reproduction, as controlled by several user-defined constants 
(described above). 

• The motion model used by the organisms. 
• The motion thresholds (minimum amount of chemical that must be present in 

order for motion to occur). 
• The initial number of the organisms. 
• The initial concentration of chemical A. 
• The initial locations of the organisms and the spatial distribution of chemical A. 
• The diffusion rate of the chemicals. 
• The number of sensors and emitters for chemical A and chemical B that each 

organism would have. 
• The maximum amount of chemical that a sensor could absorb. 
• The amount of chemical that an emitter would emit. 

In all of the testing simulations, the organisms were to indicate that a quorum had been 
reached by a cessation of motion.  In all instances, the organisms eventually 
demonstrated quorum sensing behavior. 

Chemotaxis Simulations 

In the chemotaxis simulation testing, the goal was to demonstrate that the organisms were 
capable of using either gradient or comparison motion to converge upon a high 
concentration of a diffusing chemical.  All chemotaxis simulations were set up with the 
following qualities: 

• The organisms are capable of moving. 
• The concentration of chemical A affects organism motion. 
• The organisms use either the comparison or the gradient motion model.  In either 

case, there is no chance of a random move. 
• The organisms absorb both chemical A and chemical B via sensor(s). 
• The organisms emit chemical B, but not chemical A. 
• At the start of the simulation, the environment contains a slowly diffusing, 

centrally located quantity of chemical A. 

In order to test the simulation engine thoroughly, the following parameters were varied 
across different chemotaxis simulation instances: 



• Whether the organisms reproduce. 
• The overall rate of reproduction, as controlled by several user-defined constants 

(described above). 
• The initial location of the organisms. 
• The initial location of the highest chemical A concentration point. 
• The rate of chemical A’s diffusion. 
• The number of the sensors for chemical A that each organism would have. 

As expected, in all test instances the organisms eventually converged upon the region 
containing the highest concentration of chemical A. 

Hardware Requirements and Limitations 

Two different computer systems were used to test the simulation engine, with the purpose 
of determining the maximum simulation complexity that each would handle.  On both 
systems, it was determined that the engine does not process an environment larger than 
32x32x32 well.  The following table summarizes the maximum number of organisms and 
chemicals that each system processed without excessive lag: 

Table 5.  System Performance Summary 

 System 1 System 2 

Operating System Mac OS X version 10.4.8 
Windows XP Home Edition 

SP2 

Processor 2.16 GHz Intel Core Duo 1.6 GHz AMD Athlon XP 
1900+ 

Memory 1 GB 667 MHz DDR2 SDRAM 768 MB 
Maximum Number 
of Organisms 2000 1200 

Maximum Number 
of Chemicals 10* 10* 

For the maximum number of organisms testing, the number of chemicals was set to two.  
For the maximum number of chemicals testing, the number of organisms was set to a 
constant (non-reproducing) ten.  The maximum number of chemicals was not tested 
beyond ten.  This is because ten chemicals did not seem to place significantly more 
demand on the system than just one or two.  It appears that the number of organisms is 
the primary limiting factor on the simulation engine’s performance. 
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