
Management of Requirements Changes in
Sequence-Based Specifications

Lan Lin, Stacy J. Prowell, and Jesse H. Poore

January 2007

Department of Computer Science
University of Tennessee
Knoxville, TN 37996

Technical Report ut-cs-07-588

Copyright c© 2007. All rights reserved.

1

Abstract

Ordinary requirements come in many forms, natural languages, equations, tables, charts, predecessor systems, and
ideas in the minds of domain experts. All forms can contain ambiguities, errors, and omissions. They change
both during and after a phase of development. Sequence-based specification has in many field applications been
effective in converting ordinary requirements to precise specifications through a constructive process. Algorithms
for managing requirements changes meet a very great need in applications of sequence-based specification. In this
paper we explore the change theory developed with the aid of an axiom system for sequence-based specification, and
present algorithms for managing requirements changes of various kinds. This has established the basis for maximizing
potential automation support and producing benefits in fieldapplications as well as further development of sequence-
based specification.
Keywords Software specification, requirements management, changing state diagrams, automata.

Introduction

At an age when software is embedded in everything from consumer appliances to automobiles to medical devices,
dependability of software has become an urgent requirement. Methodologies and tools are in great demand to make
sure conceptual mistakes are avoided in software development and code is correct by design. The sequence-based
specification method [1] was developed to contribute to thisgoal converting ordinary, or typical requirements and re-
quirements statements into mathematically precise specifications at an acceptable level of abstraction for deterministic
systems, and has proven very useful and efficient in practice[2–7]. Meanwhile due to the iterative nature of modern
software development, the need for managing changes of requirements in sequence-based specifications arises both as
a consequence of practicing this method and as a general topic in software requirements engineering.

Requirements documents of all forms usually contain ambiguities, errors, and omissions. The goal of requirements
analysis is to discover a precise specification from the informal requirements that resolves all these problems, assures
completeness and consistency, yet remains understandableso that it can then be validated for correctness by application
domain experts. The method of sequence-based specificationwas developed to bridge this gap through a constructive
process.

The behavior of a software system can be specified in terms of external stimuli and responses [8]. It is fully encoded
in a black box function that maps every possible sequence of stimuli to a response. To derive the black box function and
a formal specification we apply two central techniques: sequence enumeration and sequence abstraction. Sequence
enumeration involves systematically considering all stimulus sequences for any externally observable response and
partitioning the infinite stimulus sequence space into a finite number of equivalence classes based on future behavior.
Sequence abstraction further helps in controlling the growth of this inherently combinatorial process and avoiding any
inefficient work. The foundations of the sequence-based specification method are laid out in [1]. Specifications written
with this method are proven to be complete, consistent, and traceably correct.

If a sequence does not generate any externally observable response, we map it to a special null response0. If the
response to a sequence is physically impossible or otherwise makes no sense with respect to operational behavior, we
map it to another special responseω for being illegal. When enumerated according to some pre-defined total ordering,
each sequence is mapped either to an externally observable response, or0, orω, and checked to see if it is equivalent in
the sense of Mealy state machines [9] to (and hence reduced to) a previously enumerated sequence. Two sequences are
Mealy equivalent if and only if they always give the same response value however far extended by the same non-empty
sequence, i.e., their future behaviors will not differ fromeach other. Four rules guide the enumeration process:

1. (Reduction). A sequence can only be reduced to an unreduced sequence.

2. (Illegal Prefix). A sequence mapped toω need not be extended.

3. (Reduced Prefix). A reduced sequence need not be extended.

2

4. (Extension). Otherwise, a sequence must be extended by every stimulus.

The enumeration terminates (and is said to be complete) if all sequences of a certain length are either mapped toω

or reduced to prior sequences. Traces to tagged requirements or derived requirements are noted to justify decisions
regarding any mapped value for responses or equivalences. Both the black box and the state box functions of Mills [8]
are thereby constructed with traceability to the basis for the response and equivalence decisions, as illustrated below.

With a complete enumeration it is easy to obtain the mapped response for any stimulus sequence, no matter whether
the sequence itself shows up in the enumeration or not. The algorithm (referred to asA hereafter) is put forward in [1]
and proceeds as follows. We first check to see if the sequence is in the table; if so we read off its response value,
otherwise we find its longest prefix that is in the table. If theprefix is mapped toillegal, the sequence is also mapped
to illegal, otherwise we replace the prefix with its reduced value (in the equivalence column) in the original sequence
and repeat the process on the new sequence until a mapped response is identified. Since reductions in the table are
declared based on Mealy equivalence and the unreduced sequences imply equivalence classes that further represent
states of the automaton, this process amounts to traversingthe underlying Mealy machine and finding the output value
for any input sequence. Therefore, once we obtain a completeand finite enumeration from the requirements, the black
box function of the system is fully decoded.

It may be noticed that sequence-based specification has one distinct advantage over other state-based modeling
methods like the Trace Assertion Method (TAM) [10], Z [11], or Software Cost Reduction (SCR) [12]. While most
other methods deal with the description of the state machinerather than how to discover or invent the state machine,
sequence-based specification provides a systematic way to discover and derive the automaton. In cases where un-
derstanding of the system under specification is incomplete, limited, or immature such that inventing the right state
machine becomes difficult or infeasible, enumeration is especially productive. Likewise, the theory of managing re-
quirements changes in sequence-based specifications differs from the conventional state change theory in that it is
designed for active state machine development and revision.

For example, Korel [13] presented an approach of understanding model-based modifications that uses the original
model and the modified model to compute the effect of the modifications through affecting and affected transitions. It
assumes the availability of the modified model and bases the analysis on data and control dependence among inputs
and outputs. The change might be the result of maintenance, error correction, or change in functionality driven by
change in requirements. However, these algorithms would not support an original enumeration process, or complete
the revision of changes in an enumeration.

Seawright and Brewer [14] present “production-based specification” and use a similar base of language-automata
theory to convert grammar productions into hardware design. They, too, focus on external behavior relative to a well-
defined system boundary and its interfaces, and generate Mealy-Moore state machine descriptions as an intermediate
step toward circuit design. Although our algorithms could apply to production-based specification at their intermediate
state machine, it is not clear how such changes would reflect in their original productions. Their production language
is quite powerful, subject to debugging, and describes a larger class of Mealy machines than those represented by
enumerations.

The fundamental difference is again that sequence-based specification systematically explores an evolving behav-
ioral description as implied by requirements, and records the sequence equivalences entailed by the interpretation
of requirements. Our change algorithms do not contain all the information necessary to complete the change pro-
cess. They depend upon a human requirements analyst (specifier) to work systematically through the sequences in
length-lexicographical order to make and document the specification decisions that will complete the changes.

Finally, we must acknowledge that many students of state machine theory over the years have been taught or re-
quired to invent algorithms to change state machines in various ways. This however, does not detract from our need for
algorithms to support the enumeration process by which we convert ordinary requirements into precise specifications.
This work requires that we manage changes that stem from deeper understanding as the work progresses from new
news from the outside. The algorithms presented here managechanges with maximum tool support in a systematic,
constructive process. We hope that the widespread familiarity with state machine diagrams and regular expressions
will make this material somewhat intuitive even though it isused in an unfamiliar way.

3

Enumeration has proven to be practical in application and immensely powerful in eliciting errors and omissions in
statements of requirements (even of mature systems). Significant gains in quality and productivity have been reported
from projects carried out by the authors, and other groups inindustry that have been trained to apply sequence-based
specification [3,4]. Broadfoot [5,6] has been especially effective in the application of sequence enumeration, and has
incorporated the method with elements of Communicating Sequential Processes (CSP) [15] and Failures Divergence
Refinement (FDR) [16]. Enumeration has been applied in the automotive domain, for example in door control units [7]
to support automated testing.

Application clarifies the extent to which inputs (and histories of inputs) can be partitioned into subsets that do not
interact and, therefore, need not be enumerated together. This reduces what might be called the “breadth” of the input
space from tens of inputs to usually fewer than ten per enumeration. The “length” corresponds to the accumulation
of input information that is necessary to identify an indispensable state of the system. We find that if the length
of input sequences appears to grow beyond about ten, this is asign of poorly understood requirements or gratuitous
complexity, both of which are occasions for reconsidering the requirements. In real systems, after the requirements are
well understood, complete, consistent, and correct, one typically ends up with several enumerations each with a breadth
of fewer than ten interacting inputs and a sequence length ofless than ten. Of course, we have seen enumerations larger
in both dimensions.

Enumerations result in specifications that are complete, consistent, and traceably correct. However, the beginning
is always messy and we start over several times as the requirements are clarified and corrected. When one speaks of
changes in requirements, there is an implication that it is achange from one set of complete, consistent, and correct
requirements to another. The algorithms here assume a correct base and then address changes one at a time, at an
elemental level in order to preserve completeness, consistency, and correctness. As these algorithms are considered
one is struck by the far reaching consequences of seemingly innocuous and minor changes in requirements.

The SAFE Example

To acquaint the reader with both the sequence-based specification method and the enumeration process, we borrow
a safe controller example from [1]. Enumeration is done witha prototype tool developed by UTK SQRL1. The
completed specification is exported to html output. The screenshot in Fig. 1 shows the tagged requirements and
derived requirements (D1-D2) for the simple safe controller, and the list of interfaces between the system and the
environment. We diagram the system boundary in Fig. 2.

To make work efficient we introduce the abstraction of letting G denote entering the correct three digits in order
andB denote entering the combination incorrectly but up to the first mistake. Stimuli and responses (outputs) are
identified as in Fig. 3. An enumeration at this abstraction level is shown in Fig. 4.

In the enumeration tables if a sequence has (-, -) as a pair forits response and equivalence entries, the sequence is
defined to be illegal. If it has a blank entry for response, theresponse is defined to benull. If it has “- - - - - - - - - - - -”
for equivalence, it is defined to be an unreduced sequence.

The sequence-based specification tool also guides the user through state variable definition and canonical sequence
analysis (Fig. 5), and generates a state box specification (Fig. 6). Notice that the state box tables have (,) as a
possible (Door, Error) pair. This represents a trap state ofthe automaton reached by all illegal sequences. We draw
this automaton diagram in Fig. 7, naming states after legal and unreduced sequences or the first illegal sequenceB.

An Axiomatic Treatment

Motivated by the need to characterize an existing enumeration regardless of whether it was obtained by the enumeration
process or in some other way (from TAM, SCR, or Z, for example), we developed an axiom system for sequence-based

1 Software Quality Research Lab, Department of Computer Science, University of Tennessee at Knoxville, http://www.cs.utk.edu/sqrl/.

4

Figure 1: Safe controller requirements and interfaces.

Figure 2: Safe controller system boundary.

5

Figure 3: Safe controller stimuli and responses.

6

Figure 4: Safe controller enumeration.

7

Figure 5: Safe controller canonical sequence analysis.

8

Figure 6: Safe controller state box.

9

Figure 7: A state machine diagram for the safe controller.

specifications [17]. The axioms help to prove a number of important properties about sequence-based specifications;
it also provides insight into the relationship of sequence-based specifications with other formal representations of a
software program, including finite-state machines, regular expressions, and prefix-recursive functions. In additionthe
axiom system was essential to the development of algorithmsto support requirements change management, the focus
of this paper.

We chose to present the theory rather informally through theuse of diagrams, with an attempt to motivate the
enumeration axioms and give the reader a flavor of the axiom system. For a thorough and formal treatment see [17].

SupposeS is a stimulus set that is finite, non-empty, and equipped witha total order< (the alphabetical order).
Let the order be extended to a total order onS∗ by length, and then alphabetically. SupposeR is a response set that
contains0, ω, and at least one other member. An enumeration is essentially a partial functionE : S∗ → R × S∗ that
maps certain stimulus sequences to (response, stimulus sequence) pairs. Ifu in S∗ has a mapped value(r, v) by E
(i.e., E(u) = (r, v)), then we sayu is mapped to responser (i.e., u 7→ r, or alternatively7→ (u) = r) and reduced
to sequencev (i.e.,u ⊲ v, or alternatively⊲(u) = v). We useu 67→ r to denoteu is mapped to a response other than
r. WhenE further satisfies a list of axioms to be an enumeration,u being defined forE is equivalent to sayingu is a
sequence in that enumeration.

If u is mapped toω, thenu is illegal, otherwise it is legal. Ifu is reduced tou, thenu is unreduced, otherwise it is
reduced (to a prior sequence in the total ordering, according to Axiom 2 below). Ifu is legal and unreduced, thenu is
extensible.

If the following Axioms 1-6 hold for the partial functionE it is called an enumeration. The enumeration is complete
if Axiom 7 further holds; it is finite if Axiom 8 further holds.The enumeration is complete and minimal if Axiom 9
holds in addition to 1-7. The axioms are paraphrased informally as follows:

Axiom 1: The empty sequence must be mapped tonull; (Empty sequence)

Axiom 2: Sequences can only be reduced to prior sequences or to themselves; (Partial order)

Axiom 3: Do not reduce to reduced sequences; (No reduction toreduced)

Axiom 4: Do not extend reduced sequences; (No extensions of reduced)

Axiom 5: Do not extend illegal sequences; (No extensions of illegals)

Axiom 6: Do not reduce illegal sequences to legal sequences unless all extensions of the legal sequence are
also illegal; (Reducing illegals to legals)

10

Axiom 7: Every extensible sequence must be extended by everystimulus in a complete enumeration; (Com-
pleteness)

Axiom 8: There must be a finite number of sequences in a finite enumeration; (Finiteness)

Axiom 9: Unreduced sequences must be pairwise distinguishable in a complete and minimal enumeration.
(Minimality)

Distinguishability as required by Axiom 9 is a relation overthe set of all unreduced sequences in a complete
enumeration. It is defined recursively as follows:

Rule 1: An illegal, unreduced sequence is distinguishable from an extensible sequence;

Rule 2: Two extensible sequences are distinguishable if they map to different responses when extended by
(the same) one single stimulus;

Rule 3: Two extensible sequences are distinguishable if they reduce to two distinguishable sequences when
extended by (the same) one single stimulus;

Rule 4: Two unreduced sequences are not distinguishable except by a finite number of applications of the
above rules.

Two unreduced sequences are indistinguishable if and only if they are not distinguishable from each other. Indistin-
guishability is proven to be an equivalence relation.

For a complete enumerationE , we further extend7→ and⊲ to total functionsˆ7→ and ⊲̂ on S∗ and prove that the
extended functions agree with the unextended ones for everystimulus sequence that is in the enumeration.

Given any complete and finite enumerationE satisfying the axiomatic definition, we prove thatˆ7→ performs the
same computation as the black box function denoted byE obtained by treatingE as a result of the enumeration process
and applying the algorithmA to it.

For a complete enumeration, the definitions of illegal / legal sequences can be extended to apply to any stimulus
sequence by substitutinĝ7→ for 7→. A sequence is illegal if it is mapped toω by the black box function̂7→, otherwise
it is a legal sequence.

Following [9] a Mealy machine is defined as a 6-tuple〈Q, Σ, Γ, δ, ν, q0〉, whereQ is a finite set of states,Σ is a
finite input alphabet,Γ is a finite output alphabet,q0 in Q is the initial state,δ : Q × Σ → Q is a total transition
function, andν : Q × Σ → Γ is a total output function.

It is evident that every complete and finite enumeration corresponds to a Mealy machine, however, the converse
is not true. Not every Mealy machine is obtainable through anenumeration. Those that can be obtained from com-
plete and finite enumerations form a proper subset of all Mealy machines. Based on the additional properties shared
among this subset and to ensure a 1-1 correspondence from allcomplete and finite enumerations onto it, we define an
enumeration Mealy machine as a Mealy machine〈Q, Σ, Γ, δ, ν, q0〉 satisfying the following constraints. FirstΓ has
to properly contain{0, ω}, andΣ has to be associated with a total order< (alphabetical order), which can be further
extended toΣ∗ first by length, and then alphabetically. We extendν as usual to sequences, assumingλ is mapped to0
by the extended output function, and require five more conditions hold:

Condition 1. States are namedq0, q1, . . . , qn−1 if Q hasn states;

Condition 2. Every state is reachable from the initial state(i.e., the automaton is connected);

Condition 3. For every state we compute a word for it that is the first word in canonical order taking the
automaton from the initial state to the state in question, then a state with a higher index
has a “greater” string associated according to the total ordering onΣ∗;

Condition 4. A state becomes a trap state if the computed wordfor it (i.e., its associated string) hasω
as its output by the extended output function;

Condition 5. All outgoing arcs of a state haveω as output if at least one incoming arc hasω as output.

11

(a) (b) (c) (d)

(e) (f)

Figure 8: Diagrams of six Mealy machines that share an input alphabetΣ = {a, b} with a < b and an output alphabet
Γ = {0, r, ω}. (a)M1. (b) M2. (c) M3. (d) M4. (e)M5. (f) M6.

Among these conditions 1 and 3 together set the rules for labeling states; they ensure the 1-1 correspondence from the
set of complete and finite enumerations onto the set of enumeration Mealy machines.

Suppose we have six Mealy machinesM1 − M6 with diagrams shown in Fig. 8. They share an input alphabet
Σ = {a, b} with a < b defining a total order onΣ, and an output alphabetΓ = {0, r, ω}. Among them onlyM6

qualifies as an enumeration Mealy machine;M1 − M5 fail to satisfy Conditions 1-5 respectively.
In [17] we first give two algorithms, one for converting any complete and finite enumeration to an enumeration

Mealy machine, the other for converting any enumeration Mealy machine to a complete and finite enumeration, then
prove a representation theorem that asserts the two transformations as inverse transformations and establishes the 1-1
correspondence between the two sets of mathematical objects. The direct transformations between complete and finite
enumerations and enumeration Mealy machines offer insightinto the requirements change algorithms that follow.

Managing Requirements Changes

Requirements change both during and after a phase of development. Algorithms for managing requirements changes
meet a very great need in field applications of sequence-based specifications. Changes of requirements may affect an
existing enumeration in different ways. We categorize themas follows and consider one change of one type at a time
when it comes to algorithm design.

The stimulus set could be changed as we identify a new stimulus across the system boundary or an old one no
longer of interest. Possible changes of stimuli include adding a stimulus into the stimulus set, deleting a stimulus from
the stimulus set, and combinations of stimulus addition anddeletion in any order. We are curious about the impact of
these operations on specifications as well as the relevance or irrelevance of order to the results.

The response mapping could be changed as we identify a new response for a sequence in the enumeration. The
new response could be different from any element of the old response set and emerge from the new or changed
requirements. A response change refers to changing the response value of a specific sequence in a complete and
finite enumeration and handling all its consequences. Depending on the legality of this sequence before and after the
change, the response change is classified as from legal to legal, legal to illegal, or illegal to legal; the latter two cases

12

Table 1: Summary of possible requirements changes.

stimulus changes
adding a stimulus Algorithm 7
deleting a stimulus Algorithm 1
combinations of addition and deletion

response changes

from legal to legal Algorithm 2

from illegal to legal
for an unreduced sequenceAlgorithm 5
for a reduced sequence Algorithm 8

from legal to illegal
for a reduced sequence Algorithm 9
for an unreduced sequenceAlgorithm 10

equivalence changes

for an unreduced illegal sequence Algorithm 6
for an unreduced legal sequence Algorithm 3
for a reduced illegal sequence Algorithm 11

for a reduced legal sequence
keeping it reduced Algorithm 12
making it unreduced Algorithm 4

are also considered as legality changes. We must identify completely portions of the existing enumeration that need a
corresponding change.

Similarly the reduction could be changed as we identify a newreduced value for a sequence in the enumeration. An
equivalence change refers to changing the reduction (i.e.,declared equivalence) of a specific sequence in a complete
and finite enumeration and handling all its consequences. Here we try to capture all changes incurred by any single
equivalence change.

We summarize all possible requirements changes to be discussed in Table 1. As mentioned before, our work is
characterized by the systematic enumeration to construct and modify Mealy machines.

Part of the difficulty involved with managing requirements changes lies in the clarification and a precise specifica-
tion of the problem itself. In any case when a change is to be made to an existing enumeration, if the specifier started
all over again they would need only the following two types ofinformation to complete the new specification:

• response of a certain sequence according to the new requirements;

• whether equivalence to a prior sequence should be claimed for a certain sequence according to the new require-
ments.

In automating this process such information should be obtained from the specifier through their understanding and
interpretation of the new requirements if it cannot be obtained from the old enumeration or if the old enumeration
suggests more than one possibility. Any assumption made by the algorithm to avoid or minimize interaction with the
specifier needs to be explicitly stated.

To be precise the requirements changes we are to manage are essentially concrete changes to be made to an existing
specification that reflect changes in the old requirements. They may suggest small or big changes that ripple through
the specification under different assumptions about the newrequirements. The key to solving the problem is in figuring
out what else in the existing specification need or need not bechanged, and under what assumptions.

Changes made to the old enumeration can be put in the following two categories:

• changes that the specification tool can make without any human intervention;

• changes that the specifier must make (e.g., extensions) or should consider (if questions need to be asked to make
the changes).

13

In the analysis we make certain assumptions when needed, state all assumptions made in deriving the new specification,
and highlight entries in the new enumeration that might be questionable under different assumptions. In this way we
are always maintaining and evolving old specifications, while dealing with atomic changes one at a time, and keeping
the specifier informed of portions of the current enumeration that may need further changes until the final specification
is derived.

A Running Example: SAFE and Z-SAFE

Our algorithms for managing requirements changes are to be illustrated through a running example. To make it more
interesting let us suppose we have a new feature added to our safe controller. The new one has an additional inputZ

which is an employee ID given by a finger print scan. Now it takes the combination entry plus a valid finger print ID
(in whatever order) to unlock the safe. Setting up these two systems, we will show step by step how to derive one from
the other by applying our twelve algorithms.

As noticed from the safe enumeration we might encounter entries “- - - - - - - - - - - -” in the equivalence column.
This representation is used to make the display less visually cluttered and means to the person doing the work that
the sequence is not reduced to a prior sequence. In our theoretical treatment, this means that the sequence is actually
reduced to itself. Furthermore, in keeping with the theory,we make the first illegal sequence reduce to itself, and
all other illegals reduce to the first illegal sequence. Now our safe enumeration takes the form in Table 2, and the
algorithms that follow can be applied.

Likewise, the enumeration for the Z-SAFE (Table 3) and its state machine (Fig. 9) can be obtained independently.
A few requirements are updated (or derived through enumeration) for the new system:

3: Once the three digits of the combination are entered in thecorrect order and a finger print scan is validated
(before or after the combination entry), the safe unlocks and the door may be opened.

6: The safe ignores keypad entry and finger print scan when thedoor is open.

8: It is assumed (with risk) that the safe cannot be opened by means other than combination entry and valid finger
print scan while the software is running.

D3: Re-scanning of finger prints makes previous scans irrelevant.

We introduce a predicatep for finger print accepted. As shown in [1], predicate refinement is a handy technique
frequently used in enumerations to handle one form of non-determinism.

Table 3: Z-SAFE enumeration.

Sequence Response Equivalence Trace
λ 0 λ Method
B ω B D1
C ω B D1
D ω B D1
G ω B D1
L 0 L 5
U 0 U 5
Z ω B D1
LB 0 LB 1,2,7
LC 0 L 2,7
LD ω B 8

14

LG 0 LG 1,3,7
LL 0 L 5,D2
LU 0 U 5,D2
L[Z, p] 0 L[Z, p] 8
L[Z,¬p] 0 L 8
UB 0 U 6
UC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
UU 0 U 5,D2
UZ 0 U 6
LBB 0 LB 2,7
LBC 0 L 2,7
LBD ω B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2
LB[Z, p] 0 LB[Z, p] 8
LB[Z,¬p] 0 LB 8
LGB 0 LG 8
LGC 0 L 2
LGD ω B 8
LGG 0 LG 8
LGL 0 L 5,D2
LGU 0 U 5,D2
LG[Z, p] unlock U 1,3,7
LG[Z,¬p] 0 LG 8
L[Z, p]B 0 LB[Z, p] 8
L[Z, p]C 0 L[Z, p] 2,8
L[Z, p]D ω B 8
L[Z, p]G unlock U 1,3,7
L[Z, p]L 0 L 5,D2
L[Z, p]U 0 U 5,D2
L[Z, p][Z, p] 0 L[Z, p] 8,D3
L[Z, p][Z,¬p] 0 L 8,D3
LB[Z, p]B 0 LB[Z, p] 2,8
LB[Z, p]C 0 L[Z, p] 2,8
LB[Z, p]D ω B 8
LB[Z, p]G 0 LB[Z, p] 2,8
LB[Z, p]L 0 L 5,D2
LB[Z, p]U 0 U 5,D2
LB[Z, p][Z, p] 0 LB[Z, p] 2,8
LB[Z, p][Z,¬p] 0 LB 8,D3

15

Table 2: SAFE enumeration.

Sequence Response Equivalence Trace

λ 0 λ Method
B ω B D1
C ω B D1
D ω B D1
G ω B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD ω B 8
LG unlock U 1,3,7
LL 0 L 5,D2
LU 0 U 5,D2
UB 0 U 6
UC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
UU 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD ω B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2

16

Figure 9: A state machine diagram for Z-SAFE.

Each of our twelve algorithms handles one type of requirements changes (under one circumstance if more than one
exists). One thing to note about them is that they only apply to complete and finite enumerations. In reality we can
always make an incomplete enumeration complete before applying any algorithm by mapping all undefined extensions
to illegal. Outputs of these algorithms are proven to be complete and finite enumerations [17].

For the first part of the example let us start with Z-SAFE and reduce it to the original. StimulusZ will have to be
removed.

Deleting A Stimulus: Algorithm 1

As mentioned before, the representation theorem enables usto look at enumerations by way of automata. Most of
our change algorithms were guided by changes to the corresponding state machines. Since every unreduced sequence
in a complete and finite enumeration relates to a state of the underlying Mealy machine in such a way that it is the
first string in canonical order taking the automaton from theinitial state to that state, we name each state after its
corresponding unreduced sequence in the automaton diagrams.

When we delete stimulusx (see Algorithm 1), in view of the automaton all arcs labeled with x will disappear,
which may render some states unreachable from the initial state and being removed. For states that remain they might
only be reachable from the initial state by strings “greater” than their original names, as the previous “smallest” paths
may no longer exist in the new automaton. The key to this problem then lies in determining which states in the old
automaton remain in the new automaton, and furthermore how they should be named in the new automaton.

Lines 3-29 of Algorithm 1 derive this partial mappingκ from old state names to new state names. First observe
that a state whose name does not contain symbolx must remain in the new automaton and be named after the same
string. This provides a base case for the definition ofκ. Once we know a state that remains in the new automaton,
we have two possibilities: either the new name outputsω in the old automaton, or it outputs a legal response. In the
former case this state must be a trap state in the new automaton. In the latter case we conclude that its successor state
in the old automaton by any single arc other than the one labeled withx must remain in the new automaton as well,
and be named after a string no greater than the new name of the known state concatenated with the label on the arc.

Constructing the resulting enumeration is then mechanical, as these new state names indicate the unreduced se-
quences in it. In Fig. 10(a) we depict transitions in the old automaton that imply a row in the new enumeration table.
This row can be obtained either by rewriting an existing row in the old enumeration, or by adding a new row to the old
enumeration. It represents a transition in the new automaton (Fig. 10(b)). Although the new transition looks exactly
the same as the old one except for state renaming, the suggested changes in the enumeration could be much bigger and
more non-intuitive to recognize. This figure restates the two rules we are to follow when building the new enumeration

17

Algorithm 1. (Stimulus deletion algorithm)
Inputs: A complete and finite enumerationE with stimulus setS, a stimulusx in S.
Outputs: A complete and finite enumerationE ′ with stimulus setS − {x}.

1. Initialize K0 = ∅, K1 = ∅, n = 0.
2. Collect all unreduced sequences inE into the setU .
3. For eachu in U

4. If u does not contain symbolx
5. Then
6. κ(u) = u is an unreduced sequence inE ′;
7. K1 = K1 ∪ {u};
8. The response ofu in E is the mapped response ofκ(u) under the black box function ofE denoted byˆ7→(κ(u)).
9. Endif
10. Endfor
11. While Kn 6= Kn+1

12. Do
13. Letn = n + 1.
14. For each non-empty sequenceps in E , wheres is a symbol not equal tox
15. If ps is reduced to sequencev in E for v not inKn

16. Then
17. If p is in Kn with ˆ7→(κ(p)) 6= ω

18. Then
19. Letκ(p)s be a candidate forκ(v).
20. Endif
21. Endif
22. Endfor
23. InitializeKn+1 = Kn.
24. For eachv that are designated candidate values for theκ mapping in Steps 14-22
25. Choose the first candidate in canonical order asκ(v);
26. Kn+1 = Kn+1 ∪ {v};
27. Compute the mapped response ofκ(v) under the black box function ofE , denoted byˆ7→(κ(v)).
28. Endfor
29. Enddo
30. InitializeE ′ to contain the empty sequenceλ only, with λ mapped to0 and reduced toλ.
31. For each non-empty sequenceus in E mapped tor and reduced tov, wheres is a symbol not equal tox
32. If κ(u) is defined withˆ7→(κ(u)) 6= ω

33. Then
34. Add a row for sequenceκ(u)s into E ′, mappingκ(u)s to r and reducingκ(u)s to κ(v).
35. Endif
36. Endfor
37. For each unreduced illegal sequenceu in E
38. If κ(u) is defined withˆ7→(κ(u)) 6= ω

39. Then
40. For eachs in S not equal tox
41. Add a row for sequenceκ(u)s into E ′, mappingκ(u)s to ω and reducingκ(u)s to κ(u).
42. Endfor
43. Endif
44. Endfor
45. ReturnE ′.

18

from the old one. We should be careful to extend in the new enumeration only extensible sequences (i.e., new state
names that output a legal response in the old automaton). In case a state represents an unreduced and illegal sequence
in the old enumeration but an extensible sequence in the new one, its extensions cannot be obtained by a search-and-
substitution on the old enumeration entries, and have to be written out explicitly. It is worth noting that no entry ever
need be highlighted for specifiers’ attention.

Now we apply Algorithm 1 to deleteZ. Unreduced sequences in Table 3 are identified asλ, B, L, U , LB, LG,
L[Z, p], LB[Z, p]. Among them strings not containing[Z, p] or [Z,¬p] as a symbol are defined forκ and included in
K1:

κ(λ) = λ ˆ7→ 0
κ(B) = B ˆ7→ ω

κ(L) = L ˆ7→ 0
κ(U) = U ˆ7→ 0
κ(LB) = LB ˆ7→ 0
κ(LG) = LG ˆ7→ 0.

They happen to be all the unreduced sequences defined forκ; the loop terminates atK2 = K1.
The derivation ofE ′ from E andκ is shown in Table 4. See the resulting enumeration in Table 5 and the state

machine in Fig. 11.
After deleting stimulusZ we notice thatLG should be mapped tounlock instead of0. This requires a response

change ofLG from a legal value to another legal value.

Changing A Response from Legal to Legal: Algorithm 2

In any case of a response change, we encounter the need to differentiate a general sequence in the original enumeration
from the one whose response is to be changed. We use the upright letteru in bold face to denote the latter. Likewise,
we use upright boldfacer for its new response after the change, and to differentiate it from a general response in the
original enumeration. One thing we are sure aboutu is that it cannot be the empty sequenceλ, whose response can
only be0 and not be changed. Hence we are able to splitu into a prefixp and a symbols that are both in upright
boldface letters as determined byu.

Consider the setup in Algorithm 2. In the old automaton (Fig.12(a)) we have an outgoing arc from statep to state
⊲(u) (i.e., the reduced value ofu in E) labeled with stimulussand associated with a legal response7→ (u). This output
on the arc is to be changed to another legal outputr . Performing this change on the arc gives us a new enumeration
Mealy machine (Fig. 12(b)).

Applying Algorithm 2 to Table 5 we arrive at the enumeration in Table 6. This is a single change to a single sequence.
The state machine looks the same as Fig. 11 except that the arcfrom qL to qLG labeled withG is now associated with
outputunlock.

Our next task is to change the equivalence ofLG from LG to the prior sequenceU . This is an equivalence change
for an unreduced legal sequence.

Changing An Equivalence for An Unreduced Legal Sequence: Algorithm 3

Following the notation for response changes, in any case of an equivalence change, we use upright boldface letters
u andv to denote respectively the sequence whose equivalence is tobe changed and its new reduced value after the
change. We claim also thatu cannot be the empty sequenceλ, hence it can be split into prefix sequencep and current
stimuluss, both in upright boldface letters as determined byu.

19

∀u ∈ E.∀s ∈ S. (us 7→ r, us ⊲ v, κ(u) ˆ67→ω, s 6= x)

∀u ∈ U. ∀s ∈ S. (u 7→ ω, κ(u) ˆ67→ω, s 6= x)

s/ω

u v
s/r

u

(a)

∀u ∈ E.∀s ∈ S. (us 7→ r, us ⊲ v, κ(u) ˆ67→ω, s 6= x)

∀u ∈ U. ∀s ∈ S. (u 7→ ω, κ(u) ˆ67→ω, s 6= x)

s/ω

κ(u) κ(v)
s/r

κ(u)

(b)

Figure 10: Automaton diagrams for deleting stimulusx. (a) Before deletingx. (b) After deletingx.

Figure 11: A state machine diagram for Z-SAFE after deletingZ.

20

Table 4: Derivation ofE ′ from E andκ for deleting stimulusZ from Z-SAFE.

E(λ) = (0, λ) E ′(λ) = (0, λ)
E(B) = (ω, B) E ′(B) = (ω, B)
E(C) = (ω, B) E ′(C) = (ω, B)
E(D) = (ω, B) E ′(D) = (ω, B)
E(G) = (ω, B) E ′(G) = (ω, B)
E(L) = (0, L) E ′(L) = (0, L)
E(U) = (0, U) E ′(U) = (0, U)
E(LB) = (0, LB) E ′(LB) = (0, LB)
E(LC) = (0, L) E ′(LC) = (0, L)
E(LD) = (ω, B) E ′(LD) = (ω, B)
E(LG) = (0, LG) E ′(LG) = (0, LG)
E(LL) = (0, L) E ′(LL) = (0, L)
E(LU) = (0, U) E ′(LU) = (0, U)
E(UB) = (0, U) E ′(UB) = (0, U)
E(UC) = (0, U) E ′(UC) = (0, U)
E(UD) = (lock, L) E ′(UD) = (lock, L)
E(UG) = (0, U) E ′(UG) = (0, U)
E(UL) = (0, L) E ′(UL) = (0, L)
E(UU) = (0, U) E ′(UU) = (0, U)
E(LBB) = (0, LB) E ′(LBB) = (0, LB)
E(LBC) = (0, L) E ′(LBC) = (0, L)
E(LBD) = (ω, B) E ′(LBD) = (ω, B)
E(LBG) = (0, LB) E ′(LBG) = (0, LB)
E(LBL) = (0, L) E ′(LBL) = (0, L)
E(LBU) = (0, U) E ′(LBU) = (0, U)
E(LGB) = (0, LG) E ′(LGB) = (0, LG)
E(LGC) = (0, L) E ′(LGC) = (0, L)
E(LGD) = (ω, B) E ′(LGD) = (ω, B)
E(LGG) = (0, LG) E ′(LGG) = (0, LG)
E(LGL) = (0, L) E ′(LGL) = (0, L)
E(LGU) = (0, U) E ′(LGU) = (0, U)

21

Table 5: Z-SAFE enumeration after deleting stimulusZ.

Sequence Response Equivalence Trace

λ 0 λ Method
B ω B D1
C ω B D1
D ω B D1
G ω B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD ω B 8
LG 0 LG 1,3,7
LL 0 L 5,D2
LU 0 U 5,D2
UB 0 U 6
UC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
UU 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD ω B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2
LGB 0 LG 8
LGC 0 L 2
LGD ω B 8
LGG 0 LG 8
LGL 0 L 5,D2
LGU 0 U 5,D2

22

Algorithm 2. (Response change algorithm – from legal to legal)
Inputs: A complete and finite enumerationE , a legal responser , a non-empty sequenceu (which can be split into a prefix sequencep and
a stimuluss) in E mapped to a legal response other thanr .
Outputs: A complete and finite enumerationE ′ in which u is mapped tor .

1. InitializeE ′ to contain no sequence.
2. For each sequenceu in E mapped tor and reduced tov
3. If u = u
4. Then
5. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
6. Else
7. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
8. Endif
9. Endfor
10. ReturnE ′.

p ⊲(u)
s/ 7→ (u)

u = ps, 7→ (u) 6= ω

(a)

p ⊲(u)
s/r

u = ps, r 6= ω, r 6= 7→ (u)

(b)

Figure 12: Automaton diagrams for changing the response ofu from legal to legal. (a) Before the response change.
(b) After the response change.

23

Table 6: Z-SAFE enumeration after deleting stimulusZ and changing the response ofLG from 0 to unlock.

Sequence Response Equivalence Trace

λ 0 λ Method
B ω B D1
C ω B D1
D ω B D1
G ω B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD ω B 8
LG unlock LG 1,3,7
LL 0 L 5,D2
LU 0 U 5,D2
UB 0 U 6
UC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
UU 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD ω B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2
LGB 0 LG 8
LGC 0 L 2
LGD ω B 8
LGG 0 LG 8
LGL 0 L 5,D2
LGU 0 U 5,D2

24

Algorithm 3. (Equivalence change algorithm – for an unreduced legal sequence)
Inputs: A complete and finite enumerationE with stimulus setS, a non-empty unreduced sequenceu (which can be split into a prefix
sequencep and a stimuluss) in E mapped to a legal response, an unreduced prior sequencev in E .
Outputs: A complete and finite enumerationE ′ in which u is reduced tov.

1. Initialize K0 = ∅, K1 = ∅, n = 0.
2. Collect all unreduced sequences inE into the setU .
3. For eachu in U

4. If u does not containu as a prefix
5. Then
6. κ(u) = u is an unreduced sequence inE ′;
7. K1 = K1 ∪ {u};
8. The response ofu in E is the mapped response ofκ(u) under the black box function ofE denoted byˆ7→(κ(u)).
9. Endif
10. Endfor
11. While Kn 6= Kn+1

12. Do
13. Letn = n + 1.
14. For each non-empty sequenceps other thanu in E , wheres is a stimulus
15. If ps is reduced to sequencev in E for v not inKn

16. Then
17. If p is in Kn with ˆ7→(κ(p)) 6= ω

18. Then
19. Letκ(p)s be a candidate forκ(v).
20. Endif
21. Endif
22. Endfor
23. InitializeKn+1 = Kn.
24. For eachv that are designated candidate values for theκ mapping in Steps 14-22
25. Choose the first candidate in canonical order asκ(v);
26. Kn+1 = Kn+1 ∪ {v};
27. Compute the mapped response ofκ(v) under the black box function ofE , denoted byˆ7→(κ(v)).
28. Endfor
29. Enddo
30. InitializeE ′ to contain the empty sequenceλ only, with λ mapped to0 and reduced toλ.
31. Add a row for sequenceu into E ′, mappingu to its response inE and reducingu to v.
32. For each non-empty sequenceux other thanu in E mapped tor and reduced tov, wherex is a stimulus
33. If κ(u) is defined withˆ7→(κ(u)) 6= ω

34. Then
35. Add a row for sequenceκ(u)x into E ′, mappingκ(u)x to r and reducingκ(u)x to κ(v).
36. Endif
37. Endfor
38. For each unreduced illegal sequenceu in E
39. If κ(u) is defined withˆ7→(κ(u)) 6= ω

40. Then
41. For each stimulusx
42. Add a row for sequenceκ(u)x into E ′, mappingκ(u)x to ω and reducingκ(u)x to κ(u).
43. Endfor
44. Endif
45. Endfor
46. ReturnE ′.

25

Consider the setup in Algorithm 3. Sinceu is unreduced and legal, it must have been extended by every stimulus.
Any prior sequence inE that is unreduced could be a candidate for the new reduced valuev of u. When we mapu to v
the outgoing arc from statep labeled withs is redirected to statev (Fig. 13), hence states in the old automaton whose
names containu as a prefix may or may not be reachable from the initial state. We note that these states correspond to
unreduced sequences inE that are eitheru or extensions ofu.

Applying a similar strategy as for stimulus deletion, we compute a partial mappingκ from old state names to new
state names. Basically if a state is still reachable from theinitial state in the new diagram, it is defined forκ with
the mapped value being the first sequence in canonical order taking the new automaton from the initial state to this
state, otherwise, it is not defined forκ representing a state that gets removed. In essence for each state whose name
containsu as a prefix, we check if there exists a path that does not contain u as a prefix from the initial state to it
in the old automaton such that no illegal output is generatedalong this path (otherwise some intermediate states may
become trap states and the path may be interrupted in the new automaton). We also search for the smallest possible
paths among all qualified ones and name the states after them.

Once we figure outκ, we have all unreduced sequences inE ′, from which constructingE ′ is straightforward by
applying the rules in Lines 30-45 of Algorithm 3 in a similar fashion as for stimulus deletion, further illustrated in
Fig. 13.

Now we apply Algorithm 3 to Table 6. Unreduced sequences are identified asλ, B, L, U , LB, LG. Strings that do
not containLG as a prefix are defined forκ and included inK1:

κ(λ) = λ ˆ7→ 0
κ(B) = B ˆ7→ ω

κ(L) = L ˆ7→ 0
κ(U) = U ˆ7→ 0
κ(LB) = LB ˆ7→ 0.

They happen to be all the unreduced sequences defined forκ; the loop terminates atK2 = K1.
The derivation ofE ′ from E andκ is mechanical and omitted. As a result we get the safe enumeration in Table 2

and its state machine in Fig. 7.
For the second half of the example we start with the original and build it up to the Z-SAFE. The first change made

is the response ofLG from unlock to 0.
Applying Algorithm 2 we get a slightly different enumeration than Table 2 (LG is mapped to0 instead ofunlock)

and a slightly different state machine than Fig. 7 (the arc from qL to qU labeled withG is associated with output0
instead ofunlock). NextLG is considered for an equivalence change, asLGD would map toillegal in the new system
butUD would map tolock.

After some thought we decide to reduceLG to itself, as it represents a state that confirms a correct combination
entry and awaits a valid finger print scan. This is an equivalence change for a reduced legal sequence to make it
unreduced.

Changing An Equivalence for A Reduced Legal Sequence and Making it Unreduced: Algorithm 4

Consider the setup in Algorithm 4. Sinceu is reduced and legal, when we make it an unreduced sequence inE ′,
it needs to be extended by every stimulus. We simply assume all extensions are mapped toillegal and reduced to
themselves to keep the solution simple and neutral (Fig. 14). Meanwhile we highlight all the new extensions to inform
the user of the need to address these sequences in a short while.

After applying Algorithm 4 we have the enumeration in Table 7and the state machine in Fig. 15.
Now it is time to work on the highlighted entries. First we would like to change the response ofLGB from ω to 0.

This is a response change from illegal to legal for an unreduced sequence.

26

∀u ∈ E.∀s ∈ S. (us 7→ r, us ⊲ v, us 6= u, κ(u) ˆ67→ω)

∀u ∈ U.∀s ∈ S. (u 7→ ω, κ(u) ˆ67→ω)

s/ω

u vs/r

u

p u
s/ 7→ (u)

u = ps, 7→ (u) 6= ω,v ∈ U,v < u

∀x ∈ S

x/ 7→ (ux)
⊲(ux)

v

(a)

∀u ∈ E.∀s ∈ S. (us 7→ r, us ⊲ v, us 6= u, κ(u) ˆ67→ω)

∀u ∈ U.∀s ∈ S. (u 7→ ω, κ(u) ˆ67→ω)

s/ω

κ(u) κ(v)
s/r

κ(u)

p κ(u)
s/ 7→ (u)

u = ps, 7→ (u) 6= ω,v ∈ U,v < u

v

(b)

Figure 13: Automaton diagrams for changing the equivalenceof u to v for unreduced legalu. (a) Before the equiva-
lence change. (b) After the equivalence change. Stateκ(u) in dashed line indicates that the state does not exist ifu is
not defined forκ.

27

Algorithm 4. (Equivalence change algorithm – for a reduced legal sequence which becomes unreduced)
Inputs: A complete and finite enumerationE with stimulus setS, a reduced sequenceu (which can be split into a prefix sequencep and a
stimuluss) in E mapped to a legal response,v beingu itself.
Outputs: A complete and finite enumerationE ′ in which u is reduced tov.

1. InitializeE ′ to contain no sequence.
2. For each sequenceu in E mapped tor and reduced tov
3. If u = u
4. Then
5. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
6. For each stimulusx
7. Add a row for sequenceux into E ′, mappingux to ω and reducingux to ux;
8. Highlight the row for sequenceux in E ′.
9. Endfor
10. Else
11. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
12. Endif
13. Endfor
14. ReturnE ′.

p ⊲(u)
s/ 7→ (u)

u = ps, 7→ (u) 6= ω,v = u

(a)

p ⊲(u)
s/ 7→ (u)

u = ps, 7→ (u) 6= ω,v = u

∀x ∈ S

u uxx/ω x/ω

(b)

Figure 14: Automaton diagrams for changing the equivalenceof u to v for reduced legalu and making it unreduced.
(a) Before the equivalence change. (b) After the equivalence change.

28

Table 7: SAFE enumeration after changing the response ofLG from unlock to 0 and the equivalence ofLG from U

to LG.

Sequence Response Equivalence Trace

λ 0 λ Method
B ω B D1
C ω B D1
D ω B D1
G ω B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD ω B 8
LG 0 LG 1,3,7
LL 0 L 5,D2
LU 0 U 5,D2
UB 0 U 6
UC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
UU 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD ω B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2
LGB ω LGB

LGC ω LGC

LGD ω LGD

LGG ω LGG

LGL ω LGL

LGU ω LGU

29

Figure 15: A state machine diagram for the safe controller after changing the response ofLG from unlock to 0 and
the equivalence ofLG from U to LG.

Algorithm 5. (Response change algorithm – from illegal to legal for an unreduced sequence)
Inputs: A complete and finite enumerationE with stimulus setS, a legal responser , an unreduced sequenceu (which can be split into a
prefix sequencep and a stimuluss) in E mapped toω.
Outputs: A complete and finite enumerationE ′ in which u is mapped tor .

1. InitializeE ′ to contain no sequence.
2. For each sequenceu in E mapped tor and reduced tov
3. If u = u
4. Then
5. Add a row for sequenceu into E ′, mappingu to r and reducingu to u.
6. For each stimulusx
7. Add a row for sequenceux into E ′, mappingux to ω and reducingux to ux;
8. Highlight the row for sequenceux in E ′.
9. Endfor
10. Else
11. If r = ω andv = p
12. Then
13. Add a row for sequenceu into E ′, mappingu to ω and reducingu to u.
14. Else
15. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
16. Endif
17. Endif
18. Endfor
19. ReturnE ′.

30

p u
s/ω

u = ps

∀a, b, x ∈ S.∀u, v ∈ E.
(ub ⊲ p, ub 7→ ω, va ⊲ p, va 7→ r, r 6= ω)

a/r

u

b/ω
x/ω

v

(a)

p u
s/r

u = ps, r 6= ω
∀a, b, x ∈ S.∀u, v ∈ E.
(ub ⊲ p, ub 7→ ω, va ⊲ p, va 7→ r, r 6= ω)

a/r

u b/ω

x/ω

v ux x/ω

ub

x/ω

(b)

Figure 16: Automaton diagrams for changing the response ofu from illegal to legal for unreducedu. (a) Before the
response change. (b) After the response change.

Changing A Response from Illegal to Legal for An Unreduced Sequence: Algorithm 5

Consider the setup in Algorithm 5. Sinceu is unreduced, after we change its response fromω to a legal valuer
it becomes an extensible sequence that needs to be extended.As before we make all extensions mapped toillegal,
reduced to themselves, and highlighted. We also check for illegal sequences that are reduced top in E . If any such
sequence exists, it cannot be reduced top in E ′, asps would no longer map toillegal. We reduce all such sequences
to themselves and keep the rest of the enumeration the same (Fig. 16).

Applying Algorithm 5 to Table 7 produces the enumeration in Table 8.
Then we apply Algorithm 3 for an equivalence change ofLGB from LGB to LG and obtain Table 9. The state

machine is shown in Fig. 17.
Similarly as forLGB we complete the response and the equivalence changes forLGC, LGG, LGL, andLGU by

applying Algorithms 5 and 4 together. The resulting enumeration and state machine are shown in Table 10 and Fig. 18
respectively.

For the remaining highlighted sequenceLGD, we want to change its equivalence to the first illegal sequenceB.
This is an equivalence change for an unreduced illegal sequence.

Changing An Equivalence for An Unreduced Illegal Sequence:Algorithm 6

Consider the setup in Algorithm 6. Sinceu is unreduced and illegal, the new reduced valuev of u has to satisfy
several conditions so that the change will be meaningful andnot contradict Axioms 2, 3, and 6 for an enumeration. In
particularv has to be a prior unreduced sequence that either maps toillegal or has all extensions map toillegal. We
simply check every sequence inE ; if it is reduced tou we reduce it tov in E ′. Henceu becomes a reduced sequence
in E ′. Stateu becomes an isolated state and is removed in the new automaton(Fig. 19).

Applying Algorithm 6 to Table 10 gives us the enumeration in Table 5 and the state machine in Fig. 11.
Next we work on the newly added stimulusZ.

31

Table 8: SAFE enumeration after changing the response ofLG from unlock to 0, the equivalence ofLG from U to
LG, and the response ofLGB from ω to 0.

Sequence Response Equivalence Trace

λ 0 λ Method
B ω B D1
C ω B D1
D ω B D1
G ω B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD ω B 8
LG 0 LG 1,3,7
LL 0 L 5,D2
LU 0 U 5,D2
UB 0 U 6
UC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
UU 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD ω B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2
LGB 0 LGB 8
LGC ω LGC

LGD ω LGD

LGG ω LGG

LGL ω LGL

LGU ω LGU

LGBB ω LGBB

LGBC ω LGBC

LGBD ω LGBD

LGBG ω LGBG

LGBL ω LGBL

LGBU ω LGBU

32

Table 9: SAFE enumeration after changing the response ofLG from unlock to 0, the equivalence ofLG from U to
LG, the response ofLGB from ω to 0, and the equivalence ofLGB from LGB to LG.

Sequence Response Equivalence Trace

λ 0 λ Method
B ω B D1
C ω B D1
D ω B D1
G ω B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD ω B 8
LG 0 LG 1,3,7
LL 0 L 5,D2
LU 0 U 5,D2
UB 0 U 6
UC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
UU 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD ω B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2
LGB 0 LG 8
LGC ω LGC

LGD ω LGD

LGG ω LGG

LGL ω LGL

LGU ω LGU

33

Figure 17: A state machine diagram for the safe controller after changing the response ofLG from unlock to 0, the
equivalence ofLG from U to LG, the response ofLGB from ω to 0, and the equivalence ofLGB from LGB to LG.

Figure 18: A state machine diagram for the safe controller after changing the response ofLG from unlock to 0, the
equivalence ofLG from U to LG, and a few more response and equivalence changes forLGB, LGC, LGG, LGL,
LGU .

34

Table 10: SAFE enumeration after changing the response ofLG from unlock to 0, the equivalence ofLG from U to
LG, and a few more response and equivalence changes forLGB, LGC, LGG, LGL, LGU .

Sequence Response Equivalence Trace

λ 0 λ Method
B ω B D1
C ω B D1
D ω B D1
G ω B D1
L 0 L 5
U 0 U 5
LB 0 LB 1,2,7
LC 0 L 2,7
LD ω B 8
LG 0 LG 1,3,7
LL 0 L 5,D2
LU 0 U 5,D2
UB 0 U 6
UC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
UU 0 U 5,D2
LBB 0 LB 2,7
LBC 0 L 2,7
LBD ω B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2
LGB 0 LG 8
LGC 0 L 2
LGD ω LGD

LGG 0 LG 8
LGL 0 L 5, D2
LGU 0 U 5, D2

35

Algorithm 6. (Equivalence change algorithm – for an unreduced illegal sequence)
Inputs: A complete and finite enumerationE with stimulus setS, an unreduced sequenceu (which can be split into a prefix sequencep and
a stimuluss) in E mapped toω, an unreduced prior sequencev that is either mapped toω or have all one-stimulus extensions mapped toω

in E .
Outputs: A complete and finite enumerationE ′ in which u is reduced tov.

1. InitializeE ′ to contain no sequence.
2. For each sequenceu in E mapped tor and reduced tov
3. If v = u
4. Then
5. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
6. Else
7. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
8. Endif
9. Endfor
10. ReturnE ′.

p u
s/ω

u = ps,v ∈ U,v < u,
v 7→ ω or ∀a ∈ S.va 7→ ω
∀u ∈ E. ∀x ∈ S. (ux 7→ r, ux ⊲ u)

u

v

x/r

(a)

p u

s/ω

u = ps,v ∈ U,v < u,
v 7→ ω or ∀a ∈ S.va 7→ ω
∀u ∈ E. ∀x ∈ S. (ux 7→ r, ux ⊲ u)

u

v

x/r

(b)

Figure 19: Automaton diagrams for changing the equivalenceof u to v for unreduced illegalu. (a) Before the
equivalence change. (b) After the equivalence change.

Algorithm 7. (Stimulus addition algorithm)
Inputs: A complete and finite enumerationE with stimulus setS, a stimulusx not inS.
Outputs: A complete and finite enumerationE ′ with stimulus setS ∪ {x}.

1. Collect all extensible sequences inE into the setE.
2. InitializeE ′ to contain no sequence.
3. For each sequenceu in E mapped tor and reduced tov
4. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
5. Endfor
6. For eachu in E

7. Add a row for sequenceux into E ′, mappingux to ω and reducingux to ux;
8. Highlight the row for sequenceux.
9. Endfor
10. ReturnE ′.

36

∀u ∈ E

u

(a)

∀u ∈ E.∀s ∈ S ∪ {x}

x/ω
u ux s/ω

(b)

Figure 20: Automaton diagrams for adding stimulusx. (a) Before addingx. (b) After addingx.

Adding A Stimulus: Algorithm 7

When we add a new stimulusx (see Algorithm 7), every extensible sequence is to be extended byx. We simply make
all extensions mapped toillegal and reduced to themselves (Fig. 20). These entries in the table are highlighted. One
must consider each sequence and redefine them by performing response or equivalence changes as required by the
new requirements.

The enumeration after adding inZ is in Table 11.
More changes (see Table 12) are performed in the listed orderby applying the available algorithms and predicate

refinement. The details are similar to examples already shown, hence omitted. As a consequence we obtain the
Z-SAFE enumeration (Table 3) and state machine (Fig. 9); ourexample is completed.

For completeness we give formal statements of the algorithms not covered by our running example as well as their
proofs by picture as follows.

Changing A Response from Illegal to Legal for A Reduced Sequence: Algorithm 8

This algorithm is the same as Algorithm 5 except that there are no extensions ofu after the response change as it is a
reduced sequence inE and we assume it remains so inE ′, as Fig. 21 illustrates.

Changing A Response from Legal to Illegal for A Reduced Sequence: Algorithm 9

When we mapu to illegal we also reduce it to itself representing a newly added trap state (Fig. 22). The rest of the
enumeration remains the same.

Changing A Response from Legal to Illegal for An Unreduced Sequence: Algorithm 10

Sinceu is legal and unreduced inE , it must have been extended by every stimulus. When we map it to ω we can
reduce it to itself representing a newly added trap state (Fig. 23). The outgoing arc from statep labeled withs is then
redirected to this new trap state. States in the old automaton named after a string that containsu as a prefix may or may
not be reachable from the initial state as a result. These states that will possibly be removed correspond to unreduced
sequences inE that are eitheru or extensions ofu.

We have encountered a very similar situation when we handle an equivalence change for an unreduced legal
sequence, except that there we redirect the arc to an existing state in the automaton instead of a newly added trap state.
We employ the same strategy to construct the resulting enumeration (Fig. 23).

37

Table 11: SAFE enumeration after all response and equivalence changes incurred byLG, and adding stimulusZ.

Sequence Response Equivalence Trace

λ 0 λ Method
B ω B D1
C ω B D1
D ω B D1
G ω B D1
L 0 L 5
U 0 U 5
Z ω Z

LB 0 LB 1,2,7
LC 0 L 2,7
LD ω B 8
LG 0 LG 1,3,7
LL 0 L 5,D2
LU 0 U 5,D2
LZ ω LZ

UB 0 U 6
UC 0 U 6
UD lock L 4
UG 0 U 6
UL 0 L 5,D2
UU 0 U 5,D2
UZ ω UZ

LBB 0 LB 2,7
LBC 0 L 2,7
LBD ω B 8
LBG 0 LB 2,7
LBL 0 L 5,D2
LBU 0 U 5,D2
LBZ ω LBZ

LGB 0 LG 8
LGC 0 L 2
LGD ω B 8
LGG 0 LG 8
LGL 0 L 5,D2
LGU 0 U 5,D2
LGZ ω LGZ

38

Table 12: Remaining Changes Made to Obtain Z-SAFE.

1 changing the equivalence ofZ from Z to B

2 changing the response ofL[Z, p] from ω to 0
3 changing the response ofL[Z,¬p] from ω to 0
4 changing the equivalence ofL[Z,¬p] from L[Z,¬p] to L

5 changing the response ofUZ from ω to 0
6 changing the equivalence ofUZ from UZ to U

7 changing the response ofLB[Z, p] from ω to 0
8 changing the response ofLB[Z,¬p] from ω to 0
9 changing the equivalence ofLB[Z,¬p] from LB[Z,¬p] to LB

10 changing the response ofLG[Z, p] from ω to unlock

11 changing the equivalence ofLG[Z, p] from LG[Z, p] to U

12 changing the response ofLG[Z,¬p] from ω to 0
13 changing the equivalence ofLG[Z,¬p] from LG[Z,¬p] to LG

14 changing the response ofL[Z, p]B from ω to 0
15 changing the equivalence ofL[Z, p]B from L[Z, p]B to LB[Z, p]
16 changing the response ofL[Z, p]C from ω to 0
17 changing the equivalence ofL[Z, p]C from L[Z, p]C to L[Z, p]
18 changing the equivalence ofL[Z, p]D from L[Z, p]D to B

19 changing the response ofL[Z, p]G from ω to unlock

20 changing the equivalence ofL[Z, p]G from L[Z, p]G to U

21 changing the response ofL[Z, p]L from ω to 0
22 changing the equivalence ofL[Z, p]L from L[Z, p]L to L

23 changing the response ofL[Z, p]U from ω to 0
24 changing the equivalence ofL[Z, p]U from L[Z, p]U to U

25 changing the response ofL[Z, p][Z, p] from ω to 0
26 changing the equivalence ofL[Z, p][Z, p] from L[Z, p][Z, p] to L[Z, p]
27 changing the response ofL[Z, p][Z,¬p] from ω to 0
28 changing the equivalence ofL[Z, p][Z,¬p] from L[Z, p][Z,¬p] to L

29 changing the response ofLB[Z, p]B from ω to 0
30 changing the equivalence ofLB[Z, p]B from LB[Z, p]B to LB[Z, p]
31 changing the response ofLB[Z, p]C from ω to 0
32 changing the equivalence ofLB[Z, p]C from LB[Z, p]C to L[Z, p]
33 changing the equivalence ofLB[Z, p]D from LB[Z, p]D to B

34 changing the response ofLB[Z, p]G from ω to 0
35 changing the equivalence ofLB[Z, p]G from LB[Z, p]G to LB[Z, p]
36 changing the response ofLB[Z, p]L from ω to 0
37 changing the equivalence ofLB[Z, p]L from LB[Z, p]L to L

38 changing the response ofLB[Z, p]U from ω to 0
39 changing the equivalence ofLB[Z, p]U from LB[Z, p]U to U

40 changing the response ofLB[Z, p][Z, p] from ω to 0
41 changing the equivalence ofLB[Z, p][Z, p] from LB[Z, p][Z, p] to LB[Z, p]
42 changing the response ofLB[Z, p][Z,¬p] from ω to 0
43 changing the equivalence ofLB[Z, p][Z,¬p] from LB[Z, p][Z,¬p] to LB

39

Algorithm 8. (Response change algorithm – from illegal to legal for a reduced sequence)
Inputs: A complete and finite enumerationE with stimulus setS, a legal responser , a reduced sequenceu (which can be split into a prefix
sequencep and a stimuluss) in E mapped toω.
Outputs: A complete and finite enumerationE ′ in which u is mapped tor .

1. InitializeE ′ to contain no sequence.
2. For each sequenceu in E mapped tor and reduced tov
3. If u = u
4. Then
5. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
6. Else
7. If r = ω andv = p
8. Then
9. Add a row for sequenceu into E ′, mappingu to ω and reducingu to u.
10. Else
11. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
12. Endif
13. Endif
14. Endfor
15. ReturnE ′.

p ⊲(u)
s/ω

u = ps

∀a, b ∈ S.∀u, v ∈ E.
(ub ⊲ p, ub 7→ ω, va ⊲ p, va 7→ r, r 6= ω)

a/r

u

b/ω

v

(a)

p ⊲(u)
s/r

u = ps, r 6= ω
∀a, b, x ∈ S.∀u, v ∈ E.
(ub ⊲ p, ub 7→ ω, va ⊲ p, va 7→ r, r 6= ω)

a/r

u b/ω

v

ub

x/ω

(b)

Figure 21: Automaton diagrams for changing the response ofu from illegal to legal for reducedu. (a) Before the
response change. (b) After the response change.

40

Algorithm 9. (Response change algorithm – from legal to illegal for a reduced sequence)
Inputs: A complete and finite enumerationE with stimulus setS, a reduced sequenceu (which can be split into a prefix sequencep and a
stimuluss) in E mapped to a legal response.
Outputs: A complete and finite enumerationE ′ in which u is mapped toω.

1. InitializeE ′ to contain no sequence.
2. For each sequenceu in E mapped tor and reduced tov
3. If u = u
4. Then
5. Add a row for sequenceu into E ′, mappingu to ω and reducingu to u.
6. Else
7. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
8. Endif
9. Endfor
10. ReturnE ′.

p ⊲(u)
s/ 7→ (u)

u = ps, 7→ (u) 6= ω

(a)

p ⊲(u)
s/r

u = ps, r = ω
∀x ∈ S

u

x/ω

(b)

Figure 22: Automaton diagrams for changing the response ofu from legal to illegal for reducedu. (a) Before the
response change. (b) After the response change.

41

Algorithm 10. (Response change algorithm – from legal to illegal for an unreduced sequence)
Inputs: A complete and finite enumerationE with stimulus setS, a non-empty unreduced sequenceu (which can be split into a prefix
sequencep and a stimuluss) in E mapped to a legal response.
Outputs: A complete and finite enumerationE ′ in which u is mapped toω.

1. Initialize K0 = ∅, K1 = ∅, n = 0.
2. Collect all unreduced sequences inE into the setU .
3. For eachu in U

4. If u does not containu as a prefix
5. Then
6. κ(u) = u is an unreduced sequence inE ′;
7. K1 = K1 ∪ {u};
8. The response ofu in E is the mapped response ofκ(u) under the black box function ofE denoted byˆ7→(κ(u)).
9. Endif
10. Endfor
11. While Kn 6= Kn+1

12. Do
13. Letn = n + 1.
14. For each non-empty sequenceps other thanu in E , wheres is a stimulus
15. If ps is reduced to sequencev in E for v not inKn

16. Then
17. If p is in Kn with ˆ7→(κ(p)) 6= ω

18. Then
19. Letκ(p)s be a candidate forκ(v).
20. Endif
21. Endif
22. Endfor
23. InitializeKn+1 = Kn.
24. For eachv that are designated candidate values for theκ mapping in Steps 14-22
25. Choose the first candidate in canonical order asκ(v);
26. Kn+1 = Kn+1 ∪ {v};
27. Compute the mapped response ofκ(v) under the black box function ofE , denoted byˆ7→(κ(v)).
28. Endfor
29. Enddo
30. InitializeE ′ to contain the empty sequenceλ only, with λ mapped to0 and reduced toλ.
31. Add a row for sequenceu into E ′, mappingu to ω and reducingu to u.
32. For each non-empty sequenceux other thanu in E mapped tor and reduced tov, wherex is a stimulus
33. If κ(u) is defined withˆ7→(κ(u)) 6= ω

34. Then
35. Add a row for sequenceκ(u)x into E ′, mappingκ(u)x to r and reducingκ(u)x to κ(v).
36. Endif
37. Endfor
38. For each unreduced illegal sequenceu in E
39. If κ(u) is defined withˆ7→(κ(u)) 6= ω

40. Then
41. For each stimulusx
42. Add a row for sequenceκ(u)x into E ′, mappingκ(u)x to ω and reducingκ(u)x to κ(u).
43. Endfor
44. Endif
45. Endfor
46. ReturnE ′.

42

∀u ∈ E.∀s ∈ S. (us 7→ r, us ⊲ v, us 6= u, κ(u) ˆ67→ω)

∀u ∈ U.∀s ∈ S. (u 7→ ω, κ(u) ˆ67→ω)

s/ω

u vs/r

u

p u
s/ 7→ (u)

u = ps, 7→ (u) 6= ω
∀x ∈ S

x/ 7→ (ux)
⊲(ux)

(a)

∀u ∈ E.∀s ∈ S. (us 7→ r, us ⊲ v, us 6= u, κ(u) ˆ67→ω)

∀u ∈ U.∀s ∈ S. (u 7→ ω, κ(u) ˆ67→ω)

s/ω

κ(u) κ(v)
s/r

κ(u)

p κ(u)
s/r

u = ps, r = ω
∀x ∈ S

u

x/ω

(b)

Figure 23: Automaton diagrams for changing the response ofu from legal to illegal for unreducedu. (a) Before the
response change. (b) After the response change. Stateκ(u) in dashed line indicates that the state does not exist ifu is
not defined forκ.

43

Algorithm 11. (Equivalence change algorithm – for a reduced illegal sequence)
Inputs: A complete and finite enumerationE with stimulus setS, a reduced sequenceu (which can be split into a prefix sequencep and a
stimuluss) in E mapped toω, an unreduced prior sequencev different from the reduced value ofu in E that is either mapped toω or have
all one-stimulus extensions mapped toω, or v beingu itself.
Outputs: A complete and finite enumerationE ′ in which u is reduced tov.

1. InitializeE ′ to contain no sequence.
2. For each sequenceu in E mapped tor and reduced tov
3. If u = u
4. Then
5. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
6. Else
7. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
8. Endif
9. Endfor
10. ReturnE ′.

Changing An Equivalence for A Reduced Illegal Sequence: Algorithm 11

Sinceu is reduced and illegal, the new reduced valuev of u could beu itself, or any prior unreduced sequence as long
as it is different from the old reduced value ofu, and either maps toillegal or has all extensions map toillegal. Except
for reducingu to v no change needs to be made to obtainE ′ (Fig. 24).

Changing An Equivalence for A Reduced Legal Sequence and Keeping it Reduced: Algorithm 12

Sinceu is a reduced legal sequence, ifu remains as a reduced sequence after the change, any unreduced prior sequence
different from the old reduced value ofu could be chosen as its new reduced valuev. Except for reducingu to v no
change needs to be made to obtainE ′ (Fig. 25).

Combinations of Stimulus Addition and Deletion

It is proven in [17] that in case we have more than one stimulusto be added or deleted, or both addition and deletion are
to be performed, the order in which these operations are applied does not affect the final result (both the enumeration
and the highlighted entries, if there are any).

Summary

Sequence-based specification has in many field applicationsshown its effectiveness in converting informal require-
ments to precise specifications through a constructive process. Theory for managing changes of requirements in
sequence-based specifications has a huge practical impact on maintaining specifications over time in the presence of
change. In this paper we explore the change theory developedwith the aid of an axiom system for sequence-based
specification, and present algorithms for adding and deleting inputs, changing outputs of sequences of use, changing
their legality status, and changing the equivalences that ultimately define the state space of the specification. Each
change algorithm is illustrated with an example and an informal proof. The axiomatic approach turns out to be essen-
tial in developing these algorithms to help push various requirements changes through to changes in sequence-based
specifications, and prove important properties of the algorithms. This has established the basis for the maximum
degree of tool support for managing requirements changes for sequence-based specifications.

Sequence-based specification is a notation-free and syntax-free system, beyond giving stimuli and responses short
names to facilitate enumeration. The specification tool maintains internal files (XML format) with every action and
can generate the full documentation at any time. After the specification is complete, and following canonical sequence

44

p ⊲(u)
s/ω

u = ps,v ∈ U ∪ {u},v ≤ u,v 6= ⊲(u),
v 7→ ω or ∀a ∈ S.va 7→ ω

v

(a)

p ⊲(u)
s/ω

u = ps,v ∈ U ∪ {u},v ≤ u,v 6= ⊲(u),
v 7→ ω or ∀a ∈ S.va 7→ ω

v

(b)

Figure 24: Automaton diagrams for changing the equivalenceof u to v for reduced illegalu. (a) Before the equivalence
change. (b) After the equivalence change.

Algorithm 12. (Equivalence change algorithm – for a reduced legal sequence which keeps reduced)
Inputs: A complete and finite enumerationE , a reduced sequenceu (which can be split into a prefix sequencep and a stimuluss) in E
mapped to a legal response, an unreduced prior sequencev different from the reduced value ofu in E .
Outputs: A complete and finite enumerationE ′ in which u is reduced tov.

1. InitializeE ′ to contain no sequence.
2. For each sequenceu in E mapped tor and reduced tov
3. If u = u
4. Then
5. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
6. Else
7. Add a row for sequenceu into E ′, mappingu to r and reducingu to v.
8. Endif
9. Endfor
10. ReturnE ′.

p ⊲(u)
s/ 7→ (u)

u = ps, 7→ (u) 6= ω
v ∈ U,v < u,v 6= ⊲(u)

v

(a)

p ⊲(u)
s/ 7→ (u)

u = ps, 7→ (u) 6= ω
v ∈ U,v < u,v 6= ⊲(u)

v

(b)

Figure 25: Automaton diagrams for changing the equivalenceof u to v for reduced legalu and keeping it reduced.
(a) Before the equivalence change. (b) After the equivalence change.

45

analysis, it is rendered in the form of state transition tables. Of course, the specification could be represented in
various other state-based systems. Since we also have algorithms [17] to convert enumerations to and from prefix-
recursive functions, and regular expression sets, the possibilities for connecting with other systems are quite extensive.
For example, we generate a directed graph from the specification for use as the structure of Markov chain testing
models [18]. One could also generate other tables and schemafrom the XML representation, as well as code and
testing models [3, 5]. Sequence-based specification is all about the discovery, invention, and maintenance of the
specification and agnostic about how the result is represented and used. Since most other specification notations and
representations stand in a one-to-one correspondence withenumerations, and those corresponding enumerations can be
produced algorithmically and tested against the sequence-based specification axioms, it follows that the consequences
of changes in requirements are similar for most representations. The algorithms presented here apply.

References

[1] S. J. Prowell and J. H. Poore, “Foundations of Sequence-Based Software Specification”,IEEE Transactions on
Software Engineering, May 2003, 29(5), pp.417-429.

[2] S. J. Prowell and J. H. Poore, “Sequence-Based Software Specification of Deterministic Systems”,Software -
Practice and Experience, March 1998, 28(3), pp.329-344.

[3] S. J. Prowell, C. J. Trammell, R. C. Linger and J. H. Poore,Cleanroom Software Engineering: Technology and
Process, Addison-Wesley-Longman, 1999.

[4] S. J. Prowell and T. W. Swain, “Sequence-Based Specification of Critical Software Systems”,Proceedings of the
Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls and
Human-Machine Interface Technology (NPIC & HMIT), American Nuclear Society, 2004.

[5] G. H. Broadfoot and P. J. Broadfoot, “Academia and Industry Meet: Some Experiences of Formal Methods in
Practice”,Proceedings of the Tenth Asia-Pacific Software EngineeringConference, IEEE CS Press, 2003, pp.49-59.

[6] P. J. Hopcroft and G. H. Broadfoot, “Combining the Box Structure Development Method and CSP for Software
Development”,Electronic Notes in Theoretical Computer Science, 2005, 128(6), pp.127-144.

[7] T. Bauer, T. Beletski, F. Boehr, R. Eschbach, D. Landman and J. H. Poore, “From Requirements to Automated
Testing of QUASAR Aussenspiegeleinstellung”,Fraunhofer IESE Technical Report 007.07E, January 2007.

[8] H. D. Mills, “Stepwise Refinement and Verification in Box-Structured Systems”,IEEE Computer, June 1988,
21(6), pp.23-36.

[9] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory, Languages, and Computation, Addison-Wesley,
1979.

[10] R. Janicki and E. Sekerinski, “Foundations of the TraceAssertion Method of Module Interface Specification”,
IEEE Transactions on Software Engineering, July 2001, 27(7), pp.577-598.

[11] J. M. Spivey,The Z Notation - A Reference Manual, Prentice-Hall, 1989.

[12] C. L. Heitmeyer, J. Kirby, B. G. Labaw and R. Bharadwaj, “SCR*: A Toolset for Specifying and Analyzing
Software Requirements”,Proceedings of the Tenth International Conference on Computer Aided Verification,
Springer-Verlag, 1998, pp.526-531.

[13] B. Korel and L. H. Tahat, “Understanding Modifications in State-Based Models”,Proceedings of the Twelfth
IEEE International Workshop on Program Comprehension, IEEE CS Press, 2004.

46

[14] A. Seawright and F. Brewer, “Clairvoyant: A Synthesis System for Production-Based Specification”,IEEE
Transactions on VLSI Systems, June 1994, 2(2), pp.172-185.

[15] C. A. R. Hoare,Communicating Sequential Processes, Prentice Hall, 1985.

[16] A. W. Roscoe, “Model-Checking CSP”,A Classical Mind: Essays in Honor of C. A. R. Hoare, Prentice Hall,
1994, pp.353-378.

[17] L. Lin, Management of Requirements Changes in Sequence-Based Software Specifications, PhD dissertation,
University of Tennessee, 2006, http://sqrl.cs.utk.edu/btw/files/lin.pdf.

[18] J. H. Poore and C. J. Trammell, “Engineering Practices for Statistical Testing”,Crosstalk, April 1998, 11(4),
pp.24-28.

47

http://sqrl.cs.utk.edu/btw/files/lin.pdf

