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Abstract

This  report  addresses  the  work  done  on  knowledge  representation  and 
automated reasoning before the invention of computers, including the work by 
Leibniz, Boole, and Jevons.  We show how pre-computer work in formal logic, 
artificial  languages,  and  automated  reasoning  devices  contributed  to  the 
development of AI.  Topics include scholastic logic; the art of memory; Lull’s 
inference  mechanisms;  Leibniz’  design  of  inferential  calculi,  knowledge 
representation methods, and calculating devices; Wilkins’ design of a logically-
structured language;  Boole’s investigations of the “laws of thought”;  Jevons’ 
construction of the “logical abacus” and “logical piano.”

* This report an extended, unedited draft of an article for the Encyclopedia of Information Science 
and Technology, 2nd  Ed., ed. by Mehdi Khosrow-Pour, Idea Group.
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1 Introduction
The history of artificial intelligence (AI) is commonly supposed to begin with Tur-

ing’s (1950) discussions of machine intelligence, and to have been defined as a field at 
the 1956  Dartmouth Summer Research Project on Artificial Intelligence. However, the 
ideas on which AI is based, and in particular those on which symbolic AI (see below) is 
based, have a very long history in the Western intellectual tradition, dating back, in fact, 
to ancient Greece. It is important for modern researchers to understand this history, for it 
reflects  problematic  assumptions  about  the  nature  of  knowledge  and  cognition,  and 
which, therefore, can impede the progress of AI.

2 Background
Symbolic  AI is  the approach to  artificial  intelligence that  has  dominated the field 

throughout most of its history and which remains important. It is based on the Physical 
Symbol System Hypothesis, enunciated by Newell and Simon (1976), which asserts, “A 
physical symbol system has the necessary and sufficient means for general intelligent ac-
tion.” In effect, it implies that knowledge is represented in the brain by language-like 
structures or formulas, and that thinking is a computational process that rearranges these 
structures according to formal rules.  This view has also dominated cognitive science, 
which  applies  computational  concepts  to  understanding  human  cognition  (Gardner, 
1985). (Alternative views will be mentioned at the end of this article.)

3 The Roots of Formal Logic
It is surprising, perhaps, that the original inspiration for symbolic knowledge repre-

sentation can be found in ancient Greece, in particular in Pythagorean number theory 
(Burkert,  1972). In ancient Greece, as in many cultures, ancient and modern, pebbles 
were used for calculation by being moved in grooves in a similar way to the beads on an 
abacus. Indeed the Latin word for “pebble” is calculus and our word “calculate” comes 
from this manipulation of  calculi (pebbles). In logic and mathematics we use the word 
“calculus” for any system of notation in which we can accomplish some purpose by the 
manipulation of tokens according to formal, game-like, mechanical rules. (For example 
we have the  differential and  integral calculi in mathematics and the  propositional and 
predicate calculi in logic.) To the extent that the rules are purely mechanical, they can, in 
principle, be carried out by a machine, which is why calculi are important in AI; if a pro-
cess can be reduced to a calculus, it can be calculated by a machine.

The ancient Pythagoreans (Pythagoras: 572–497 BCE) investigated number theory by 
means of arrangements of pebbles (Burkert, 1972, ch. VI). For example, they observed 
that certain numbers (1, 4, 9, 16, …) could be arranged into a square shape, and we still 
call these numbers “squares” today. However, they also investigated triangular numbers, 
as well as rectangles, pentagons, cubes, pyramids, etc. The pebbles were called “terms” 
(Grk.,  horoi, Lat.,  termini) — words that refer to boundary stones — and their arrange-
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ments were called schemata (Lat., figurae), terminology that is still used in logic. (This is 
the reason numbers are sometimes called “figures” and that we “figure things out” with 
them.) Although they did not prove theorems in the modern sense, they were able to 
demonstrate the truth of theorems in number theory by means of these arrangements. For 
example, they were able to show that each square number is a sum of consecutive odd 
numbers (4 = 3 + 1, 9 = 5 + 3 + 1, 16 = 7 + 5 + 3 + 1, etc.). Thus they discovered calculi 
could be used for reasoning as well as computation.

According to tradition, Pythagoras was the first to explain consonant musical inter-
vals in terms of numerical ratios (Burkert, 1972, ch. V). For example, a string one-half 
the length of another string, sounds an octave higher; strings with the ratio 2:3 sound a 
fifth higher, and so forth. Thus, a subtle perceptual distinction (the consonance of pitches) 
could be rendered logical and rational by reducing it to numerical ratios (Grk., logoi, Lat., 
rationes,  terms  that  also  refer  to  the  articulation  of  thought  in  words  or  symbols) 
(Maziarz & Greenwood, 1968, p. 43). It is an example of the representation of expertise 
in terms of formal structures; judgments of consonance could be replaced by calculation.

The Pythagoreans believed that everything could be reduced to numbers, and thus 
made intelligible:  rational,  logical  (Burkert, 1972, ch. VI; Burnet, 1930, ch. II). There-
fore they were committed to the idea that all knowledge could be represented in terms of 
arrangements of otherwise meaningless tokens, that is, in  formal structures (and hence, 
we can conclude, in computer data structures).

Aristotle (384–322 BCE) is known, of course, as the originator of the science of log-
ic, but two of his contributions in this area are especially relevant to AI. First, he began 
the development of formal logic by showing that valid inference could be distinguished 
from invalid inference of the basis its  form rather than on the meaning of its particular 
terms (words). For example, the simple syllogism:

All M are P.
All S are M.
Therefore, all S are P.

is valid regardless of what terms are substituted for the variables  S,  M, and P. (Indeed, 
Aristotle was the first one to use letters as variables in order to express formal rules of in-
ference.) In other words, Aristotle showed that valid inference is a matter of syntax (the 
grammatical form of an argument) rather than semantics (its meaning). This is important 
because it shows how inference can be carried out by the manipulation of symbols inde-
pendently of their meaning, which means that, in principle, inference is a kind of compu-
tation. In other words, there is a calculus of logic.

Aristotle analyzed the 192 possible syllogisms that  can be constructed from three 
propositions, each being in one of four forms (‘All S are P’, ‘No S are P’, ‘Some S are P’, 
‘Some S are not P’) arranged in three possible “figures” (depending on the position of the 
“middle” term M, which appears in both premises but not the conclusion), and he deter-
mined which are valid and which are not.
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Aristotle also began the study of modal logic, that is, logic in which propositions are 
not simply true or false, but in which the propositions may be possible, impossible, nec-
essary, or contingent (Bocheński, 1970, Pts. II, III; Kneale & Kneale, 1962, chs. II, III). 
Modal logic and its derivatives (such as tense logic, which deals with propositions whose 
truth values may change in time) are important in AI (Sowa, 1984, pp. 173–187).

Another contribution of Aristotle was to advocate the organization of knowledge into 
formal deductive structures, in which all the facts of a science were either stated as ax-
ioms or were formally derivable from the axioms. The best-known example of this is Eu-
clidean geometry, which was the exemplar of a systematic body of knowledge for over 
two millennia (Maziarz & Greenwood, 1968, Pt. IV). Similar formal axiomatic structures 
are used in AI for representing a knowledge domain.

The investigation of logic continued over the following centuries. For example, dur-
ing the Hellenistic period (third – first centuries BCE) Greek logicians continued the in-
vestigation of modal logic and developed tense logics and a logic of “qualitative proba-
bility” (in which propositions may be neither true nor false, but “convincing,” etc.). They 
also invented propositional logic, for Aristotle’s was a class logic (see Terms and Defi-
nitions, below) (Bocheński, 1970, Pts. II, III; Kneale & Kneale, 1962, chs. II, III); both 
are used in AI. 

The Medieval Scholastics (roughly 6th-15th centuries) refined logic into a very pre-
cise instrument, although it was still  based on natural language (Latin), in contrast to 
modern symbolic logic. As a consequence they became conscious of the limitations of 
natural language for exact knowledge representation and strove to compensate for its de-
ficiencies. For example, they knew that the word ‘dog’ is used differently in the proposi-
tions ‘a dog is a mammal’ and ‘dog is a noun’. AI knowledge representation languages 
have to deal with similar issues (Sowa, 1984, p. 84). In the end, dissatisfaction with natu-
ral languages led to an interest in developing artificial languages that were intended to be 
more “rational” (logical and precise). Behind this was the assumption that there is a uni-
versal grammar underlying all natural languages, and that it corresponds to the “language 
of thought”; therefore an artificial language, as an ideal vehicle for thought, ought to re-
flect this “deep structure.”  Similar motivations underlie the development of AI “knowl-
edge representation languages” (see below).

4 Combinatorial Methods
The Middle Ages also saw the development of combinatorial approaches to solving 

problems (Bocheński, 1970, Pt. III). For example, the letters A, E, I, and O were used to 
stand  for  the  four  different  types  of  propositions  mentioned above.  Since  each  Aris-
totelian  syllogism comprises  three  propositions,  the  different  forms  of  the  syllogism 
could be represented by the 64 triples, AAA, AAE, AAI, …, OOI, OOO. Since there are 
three possible positions for the middle term, there are 192 possible Aristotelian syllo-
gisms. The Medieval Scholastics used a combinatorial procedure to generate them all, 
and then they crossed out the invalid ones. This is an example of a generate-and-test pro-
cedure, an approach still widely used in AI. For example, a game-playing program might 
generate all possible moves and then eliminate those that are illegal, lose the game, or are 

4



weak.  The problem with generate-and-test  procedures  is  combinatorial  explosion:  the 
number of combinations to be tested increases exponentially with their size.

These combinatorial procedures acquired an increased significance, which contribut-
ed to the eventual development of AI, from the kabbalah, a Jewish mystical tradition with 
Pythagorean affinities, which became popular in the Middle Ages (Eco, 1997, ch. 1; Sc-
holem, 1960, p. 167). According to this tradition, the  Torah reflects the  logos (rational 
structure) of the universe. Therefore, since the Torah is written in the letters of the He-
brew alphabet, these letters correspond to the elementary categories and archetypal forms 
underlying the universe. As a consequence the letters of the Hebrew words for things re-
veal their logical structure to one who knows how to interpret them. Combinatory pro-
cesses figure prominently in kabbalah, and significant words, especially the “names of 
God,” were permuted in order to reveal hidden wisdom and discover new truths. For this 
purpose the kabbalists used rotatable wheels and other devices to ensure that they did not 
miss any combinations of letters, an example of a mechanized generate-and-test proce-
dure.

Similar in spirit to the kabbalah, and perhaps in part inspired by it, was the “Great 
Art” (Ars Magna) of Raymond Lull (also spelled “Llull,” 1232–1315) (Johnston, 1987; 
Llull, 1985; Yates, 1966). He intended it to be a “universal science of all sciences,” a sys-
tematic method by which knowledge could be discovered and proved. There were several 
versions of his system, but the most common one made use of nine “divine dignities,” or 
attributes of God, which took different forms in each domain of knowledge, but provided 
the fundamental categories in each domain. These abstract qualities (Goodness, Magni-
tude, Duration, etc.) correspond closely to certain kabbalistic names of God. In Lull’s Art, 
as in kabbalah, we see an attempt to isolate the most basic categories that constitute all 
knowledge and to discover, therefore, an “alphabet of thought.” This remains an impor-
tant goal in contemporary symbolic AI.

A distinctive characteristic of Lull’s Art was the extensive use of rotatable wheels to 
generate combinations of these elementary categories in order to discover and to demon-
strate philosophical truths (primarily theological assertions, by which he hoped to convert 
non-believers to Christianity). Thus the Great Art combines an alphabet of elementary 
concepts with mechanical procedures for generating their combinations into an automated 
method of knowledge discovery and proof.

Such, at least, was its goal. In fact, it didn’t work, and for the most part it could be 
used only for “proving” the theological propositions that the operator already believed. 
Nevertheless, as we’ll explain, it inspired many later thinkers to attempt to correct its de-
ficiencies and to construct machines for knowledge discovery and inference, but first it 
had to be recast into a more logical form.

A step in a more logical direction was made as a part of the educational reforms of 
Peter Ramus (1515–72), which stressed the organization of knowledge into class hierar-
chies (an idea rooted in ancient  philosophy and stemming ultimately from Aristotle). 
Ramean trees became very popular, along with other techniques for organizing knowl-
edge into geometrical structures (e.g., ladders, towers, circles). Hierarchical class organi-
zation has been important in AI knowledge representation and in object-oriented pro-
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gramming systems, but it has been found to be too restrictive, and so newer systems per-
mit nonhierarchical classification.

Further, Ramean trees were required to be dichotomies, that is, hierarchies in which 
each class was divided into two disjoint, mutually-exclusive subclasses, a binary classifi-
cation (e.g., Fig. 1). These trees, when they resulted from a valid logical analysis, were 
supposed to reflect the actual structure of reality. Therefore, correct definitions could be 
read from the binary trees. For example, according to the tree, a man is a rational animal, 
and an animal is a sensible living being, a plant is an insensible living being, etc. A partic-
ular class (man, plant, etc.) corresponds to the binary string that described the path from 
the root (the summum genus, or highest class) to the class in question. This provided a 
means for using a binary string to represent a class or concept in terms of a logical analy-
sis of its meaning (its intension; see below); in modern terminology, the concept is repre-
sented by a binary feature vector.

Fig. 1: Fragment of Typical Ramean Tree.

5 Knowledge Representation and Mechanized 
Inference

As knowledge and inference became more systematized, the idea developed that rea-
soning, when carefully and methodically executed, was a kind of calculation. One clear 
exponent of this view was Thomas Hobbes (1588–1679), who said, “By ratiocination I 
mean  computation” (Elem. Phil., 1.1.1.2). He made clear, however, that the “addition” 
and “subtraction” of concepts was not the same as addition and subtraction of numbers, 
for the former is a logical process, the latter, quantitative.
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Hobbes also distinguished reasoning from causes to their effects (“forward chaining,” 
in modern AI terminology) and reasoning from effects to their causes (“backward chain-
ing”). In both cases thought is a kind of mental discourse, which corresponds to a defin-
ing assumption of symbolic AI: that there is a  language of thought (sometimes called 
“Mentalese”). Words, whether external or in the mind, are tokens, manipulated according 
to mechanical rules, and correct reasoning is analogized to balancing account books. That 
is, there is a calculus of thought. Furthermore, since Hobbes was a complete materialist, 
he understood thought as a kind of matter in motion, a strictly mechanical process.

Over the centuries there have been many attempts to design “ideal languages,” that is, 
artificial languages without the perceived deficiencies of natural languages (Eco, 1997; 
Large, 1985). As modern science emerged in the seventeenth century, the goal was often 
to develop a “philosophical language,” that is, a language suitable for philosophical anal-
ysis and scientific discourse. One of the most famous of these projects was the Real Char-
acter of John Wilkins (1614–72) (Large, 1985; Rossi, 2000; Vickers, 1987, ch. 9). He be-
gan by isolating a “universal grammar” that he believed to underlie the particular gram-
mars of all natural languages, and so it is in effect the grammar of “Mentalese” and hence 
reflects the laws of thought. Inspired by Chinese writing, Wilkins also concluded that the 
forms of words should reflect their logical analysis (based on a class hierarchy), and he 
designed a vocabulary and symbolic writing system based on a comprehensive conceptu-
al taxonomy. His language had little direct impact, beyond inspiring the conceptual tax-
onomy used by Roget’s Thesaurus, but symbolic logic and AI knowledge representation 
languages have similar goals and approaches (and, arguably, similar failings).

Gottfried Wilhelm von Leibniz (1646–1716) made many contributions to philosophy 
and mathematics, but here we are concerned only with his experiments in knowledge rep-
resentation  and  mechanized  reasoning  (Coudert,  1995;  Kneale  &  Kneale,  1962; 
Styazhkin, 1969). His work in this area was influenced by kabbalah, Lull, Wilkins’s lan-
guage, Hobbes, and Chinese writing and philosophy. For example, although he had al-
ready invented the binary number system, he later found the binary system in the Chinese 
I Ching (Book of Changes) and saw how it reduced all change in the universe to two op-
posites (yin and yang). This accorded with the kabbalistic and Lullian idea that the world 
was organized in terms of an alphabet of fundamental ideas (the “divine emanations”) 
and with his own rationalistic philosophy, which sought the true essences of concepts in a 
small number of atomic (indivisible) categories.

Leibniz was very impressed by Lull’s Great Art and by Wilkins’ Real Character, but 
concluded that they would not work, and so he constructed a number of knowledge repre-
sentation schemes on a more logical plan. In the process he discovered an important rela-
tionship  between  numbers  and  concepts.  According  to  the  Fundamental  Theorem of 
Arithmetic, any positive integer can be decomposed into a unique product of prime num-
bers (e.g., 12 is the product of 2, 2, and 3), which corresponded to the rationalist idea that 
any concept could be reduced to a unique conjunction of atomic (elementary) concepts. 
Therefore, if a prime number were assigned to each atomic concept, then every possible 
concept would have a unique numerical value. Conversely, if we looked up in a “philo-
sophical dictionary” the number corresponding to any concept, then we could discover its 
essence, or true definition, by reducing the number into its prime factors. For the sake of 
an example, suppose that ‘animal’ and ‘rational’ are elementary concepts (Leibniz would 

7



not have considered them such) and that ‘man is the rational animal’ is a correct defini-
tion. Further suppose that 2 and 3 are the prime numbers assigned to ‘animal’ and ‘ratio-
nal’ respectively; then 6 would be the number for the concept ‘man’. If we did not know 
the definition of ‘man’, then we could discover it from its number, for 6 = 2×3, and there-
fore man is the rational animal.

There are two ways that classes are treated in mathematics and logic,  extensionally 
and  intensionally. The extensional approach, which is the most familiar, is to define a 
class in terms of its members, its extension. Thus the extension of the class ‘man’ (mean-
ing human) includes Leibniz, Aristotle, Hypatia, and all the rest of us. The other way to 
define a class is in terms of its intension, that is, its essential attributes (although there are 
various notions of intension). For example, the intension of ‘man’ could be the attributes 
‘rational’ and ‘animal’. Although modern logic and mathematics tend to treat classes ex-
tensionally, AI treats them intensionally (i.e.,  a concept is represented by a “property 
list”) for the simple reason that most concepts have small intensions (e.g., ‘rational ani-
mal’) but infinite extensions, so it is easier to compute with intensions. For the same rea-
sons, Leibniz settled on an intensional representation.

Leibniz agreed with Hobbes’ assertion that thought is computation, and worked on a 
calculus for logical inference. For example, he discovered that propositions of the form 
‘all S are P’ can be decided computationally if we know the numbers corresponding to S 
and  P. For if all  S are  P, then the essential attributes of  P are among the essential at-
tributes of S; numerically, the prime factors of P are among the prime factors of S. There-
fore, to decide if a proposition ‘all  S are  P’ is true, all we need to do is to look up the 
numbers for P and S and see if the number for P evenly divides the number for S. Leibniz 
investigated  similar  computational  approaches  to  deciding  propositions  of  the  other 
forms.

In summary, we can see that Leibniz had all the components of a system of knowl-
edge representation and mechanical inference. In principle, all concepts could be ana-
lyzed into a relatively small number of elementary atomic concepts, and each concept 
could be assigned a unique number on the basis of this analysis. All philosophical ques-
tions, then, could be answered rationally and logically by calculation, literally by ratios 
(rationes,  logoi). Indeed, Leibniz constructed one of the earliest digital calculating ma-
chines (1671), the first capable of multiplication and division, and so he had in principle 
(but not capacity) the means for actual mechanized reasoning.

George Boole (1815–64) is well known, of course, to computer scientists and infor-
mation technologists as the inventor of Boolean algebra, which is applied to digital circuit 
design and in many other ways in computer technology. However, his goals were much 
more far-reaching, and in his Investigation of the Laws of Thought he says his goal is “to 
investigate the fundamental laws of those operations of the mind by which reasoning is 
performed” and to express them in a calculus (Boole, 1854, p. 1). In common with con-
temporary logicians, such as Augustus De Morgan (1806–71), he expressed logical opera-
tions in an algebraic notation, as opposed to a natural language, thus contributing to the 
development of symbolic logic. He developed an extensional class logic, in which opera-
tions on classes correspond to operations on their extensions, that is, on the sets of their 
members, and so he invented the algebra of sets. In this way he influenced the primarily 
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extensional approach of modern set theory and predicate logic. However, he also showed 
how the same algebraic operations could be interpreted as a propositional logic, which 
laid  the  foundation  for  Boolean  circuit  design,  later  developed  by  Claude  Shannon 
(1938), the inventor of information theory. Boole stressed the formality of his logic, that 
is, that its rules of inference depended only on the algebraic properties of the operators 
(commutativity, associativity, etc.) and not on any interpretation of the terms. Therefore, 
these operation were not restricted to human thought, but could be implemented by ma-
chines, which was accomplished about a decade later by W.S. Jevons.

William  Stanley  Jevons  (1835–82)  was  a  prolific  mathematician,  scientist,  and 
philosopher, who contributed to statistics, economics, meteorology, and the philosophy of 
science (Mays & Henry, 1953). However, he was also the first to construct fully function-
al logic machines, capable of automated reasoning (Jevons, 1870; Jevons, 1894, pp. 196–
201; Jevons, 1958, pp. 91–96, 104–114), and thus predecessors of AI technology. His sys-
tem is based, first, on the idea of a logical alphabet, which lists all the possible conjunc-
tions of a given set of terms and their complements. For example, a 3-term logical alpha-
bet lists the eight possibilities generated by A and non-A, B and non-B, and C and non-C; 
in modern terms is corresponds to the eight possible 3-bit strings. (He connects this idea 
to the Ramean Tree.) Second, he uses an “indirect method” of deduction, which is simply 
to eliminate from the logical alphabet those combinations that are inconsistent with the 
premises. Obviously, this is a generate-and-test procedure: list all the possible combina-
tions and remove the impossible conclusions; the result is the broadest conclusion com-
patible with the premises, which he called the “complete solution.”

Jevons’ indirect method, like most generate-and-test procedures, is tedious and error-
prone to perform manually. Therefore he invented a succession of devices that increasing-
ly automated the process. One of these, called the logical abacus, made use of a set of 
wooden cards, one for each combination in a 2-, 3- or 4-term alphabet. Pins in different 
positions on a card represented whether a term (e.g.,  A) or its complement (e.g., non-A) 
appeared in the card’s combination. The abacus itself was an inclined surface with four 
ledges capable of holding the cards. The operator used a metal straight-edge to lift all the 
cards containing a particular term (e.g., non-B) from one ledge and to move them to an-
other. By a series of complicated but mechanical procedures, involving removing sets of 
cards from the evolving solution, or reintroducing them, the operator was able to calcu-
late the complete solution of the problem. (In modern terminology, he was manipulating 
propositions in disjunctive normal form.)

Jevons’ most sophisticated logic machine was a completely mechanical device, which 
he called the logical piano. It had a keyboard marked with the terms (A, B, C, D and their 
complements)  and  with  various  logical  symbols  (e.g.,  equality,  inclusive-or,  “finis”), 
which was used for entering a series of logical equations representing the premises of a 
deduction. Above the keyboard was a (mechanical) display, a kind of spreadsheet, which 
represented all of the logical combinations consistent with the premises that had been en-
tered so far. Thus the operator could watch the developing mathematical analysis, and 
even try out hypothetical premises to see how they might affect the conclusion. In 1869 
Jevons constructed and demonstrated a 4-term machine and planned the development of a 
10-term reasoning engine, which would have required an entire wall to display the 1024 
combinations of its logical alphabet. Although the machine performs relatively simple op-

9



erations on bit strings, Jevons enthused that “After the Finis key has been used the ma-
chine represents a mind endowed with powers of thought,” and that as each proposition is 
entered “the machine analyses and digests the meaning of it and becomes charged with 
the knowledge embodied in that proposition” (Jevons, 1958, pp. 110–111). Thus Jevons 
invented “AI hype”!

6 Future Trends
In the light of this history, symbolic AI, which has dominated AI research, can be seen 

as the continuation of a centuries-old tradition concerning the nature of knowledge and 
inference. This, of course, does not imply that it is the best approach to AI, or conversely 
that it is not. Although some prominent researchers have declared that the symbolic ap-
proach to cognition is “the only game in town,” there are alternatives, most notably con-
nectionism (or  parallel distributed processing), which is based on simplified models of 
neural networks in the brain. This new approach promises to compensate for many of the 
limitations of the symbolic approach, and also to shed light on cognitive processes in the 
brains of humans and other animals. Connectionism, however, is beyond the scope of this 
article.

This article has focused on a few of the principle thinkers who contributed to AI be-
fore the era of the computer, but there are many others. A more extensive treatment would 
discuss some of these other contributors, but other thinkers have not been considered in 
their relation to AI research. Therefore, much work remains to be done in exploring and 
explaining the intellectual background of artificial intelligence.

7 Conclusions
We may draw several conclusions from this historical survey. First, symbolic AI is 

built upon a foundation of philosophical and psychological premises that have been part 
of  Western  intellectual  history  since  ancient  Greece.  Since  these  assumptions  are  so 
deeply embedded in our intellectual background, they easily may be taken for granted 
and escape adequate scrutiny. However, alternatives, such as connectionism, are being 
explored. Second, although earlier philosophers discussed the idea that thought is a kind 
of computation, it was only with the advent of modern computers that there was sufficient 
computing power to test these theories empirically. As a consequence, experimental AI 
research in the late twentieth century revealed both the capabilities and limitations of 
symbolic AI and motivated the search for alternatives. Finally, perhaps the most impor-
tant conclusion that we can draw is that AI is not an isolated technological discipline, nor 
simply the applied side of cognitive science, but that it is intimately related to intellectual 
issues about the mind that have occupied civilization for millennia.
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9 Terms and Definitions
Calculus: A system of physical symbols and mechanical rules for their manipulation in-

tended to accomplish some purpose, such as calculation, differentiation, integration, 
or formal inference. In principle, any process that can be accomplished by a calculus 
can be programmed on a digital computer.

Class Logic: A logic in which the terms refer to classes (sets, concepts, categories) and in 
which  the  logical  operations  and  relations  deal  with  classes  (union,  intersection, 
equality,  inclusion,  mutual  exclusion,  etc.).  Contrasted  with  a  propositional  logic 
(q.v.). Mathematically, class logic is similar to the algebra of sets.

Disjunctive Normal Form: A special form into which any formula of propositional logic 
may be put. The form is a disjunction (inclusive-or-ings) of conjunctions (and-ings) 
of “literals,” each of which is a letter (a primitive proposition) or its negation. Putting 
propositions  into disjunctive normal  form (DNF) facilitates  their  manipulation by 
computer. Conjunctive normal form is defined analogously.

Epistemology: The philosophical discipline devoted to the study of knowledge, includ-
ing its nature and the means by which it may be acquired and validated.

Extension: The set of all individuals to which a general term applies, or that is included 
in a concept or class. For example, the extension of ‘person’ is the infinite set of all 
particular people. Contrasted with intension (q.v.).

Formal Logic: A system of logic in which the validity of arguments can be determined 
from their form and independently of the meaning of the terms in the propositions. 
That is, validity is a matter of syntax (q.v.) rather than semantics (q.v.).

Generate-and-Test Procedure: A common method of search, used in AI and other appli-
cations, in which possible solutions are generated systematically, and evaluated until 
a suitable solution is found. For example, a game-playing program might generate 
possible moves, which are evaluated in terms of their likelihood of leading to a win. 
The greatest  weakness of generate-and-test  procedures is  combinatorial explosion, 
which refers to the exponential increase of the number of possible solutions of in-
creasing complexity (e.g.,  the number of moves that a game-playing program looks 
forward).

Intension:  The set of all properties necessarily inhering in a concept, class, or general 
term. For example, the intension of ‘person’ includes such properties as ‘rational’, 
‘bipedal’, and ‘featherless’. Sometimes the intension of a term is restricted to just its 
essential properties (those that are part of its definition), a finite set. Contrasted with 
extension (q.v.). (Note that “intension” is spelled with an “s” and is a different word 
from “intention.”)

Knowledge Representation Language:  A formal language, implementable in the data 
structures of a digital computer, intended to be capable of representing all knowledge, 
or at least all knowledge in some AI application domain. It is intended as a medium 
for storing knowledge and for mechanized inference in its domain. A knowledge rep-
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resentation language is the analogue in AI of the “language of thought” (q.v.) in cog-
nitive science.

Language of Thought (“Mentalese”): A hypothesized language-like system in terms of 
which all human cognition is supposed to take place. Advocates of this hypothesis ac-
knowledge that not all our thinking is  discursive (by means of an inner dialog), but 
they argue that the systematic structure of ideas and thinking imply that there must be 
a language of thought, albeit below the level of conscious access. The language of 
thought hypothesis partly justifies symbolic AI (q.v.) as a sufficient basis for AI.

Logical Atomism:  The view, especially advocated by Bertrand Russell  and the early 
Ludwig Wittgenstein, that meaning can be analyzed into certain atomic (indivisible) 
units of meaning (atomic facts); and conversely that any intelligible meaning can be 
expressed in terms of elementary ideas.

Predicate Logic: An extension of propositional logic (q.v.) that includes variables refer-
ring to the individuals of some domain, quantifiers (“for all” and “for some”) over 
these variables, and predicates (classes, sets) defined over these individuals.

Propositional Logic: A logic in which the terms refer to propositions (statements that are 
true or false) and in which the logical operations and relations deal with propositions 
(conjunction, disjunction, implication, equivalence, etc.). Contrasted with class logic 
and predicate logic (q.vv.).

Semantics: Refers to the meanings of expressions in a natural or artificial language and 
to the study of these meanings and their relation to the expressions. Often contrasted 
with syntax (q.v.). Since formal systems, calculi, and symbolic AI systems deal only 
with the forms of expressions, they can be sensitive to semantics only to the extent 
that the semantics is explicit in the system’s syntax.

Symbolic AI: An approach to AI based on the manipulation of knowledge represented in 
language-like (“symbolic”) structures in which all relevant semantics (meaning) is ex-
plicit in the syntax (formal structure). The language of thought hypothesis (q.v.) pro-
vides part of the justification of the sufficiency of the symbolic approach to AI.

Symbolic Logic: A formal logic with a mathematical notation and algebraic rules of ma-
nipulation and inference.

Syntax: Refers primarily to the grammar rules of a language (natural or artificial), that is, 
to the allowable forms of expressions without reference to their meaning (semantics, 
q.v.). In the context of AI, syntax refers to the rules of knowledge representation in 
terms of  data  structures and to  the computational  processes  that  operate  on these 
structures.

14


	1Introduction
	2Background
	3The Roots of Formal Logic
	4Combinatorial Methods
	5Knowledge Representation and Mechanized Inference
	6Future Trends
	7Conclusions
	8References
	9Terms and Definitions

