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Abstract

In this paper, we study the cluster editing problem which is fixed parameter tractable.
We present the first practical implementation of a FPT based method for cluster editing,
using the approach in [6, 7], and compare our implementation with the straightforward
greedy method and a solution based on linear programming [3]. Our experiments show
that the best results are obtained by using the refined branching method in [7] together
with interleaving (re-kernelization). We also observe an interesting lack of monotonicity
in the running times for “yes” instances with increasing values of k.

1 Introduction

The CLUSTER EDITING problem is defined as follows. Input: An undirected graph G = (V, E),
and a non-negative integer k. Question: Can we transform G, by inserting and deleting at most k
edges, into a graph that consists of a disjoint union of cliques? The CLUSTER EDIT DISTANCE
for a graph G is the smallest &k for which cluster editing is possible.

Our main target applications are centered around computational biology. We are in par-
ticular interested in the analysis of putative gene co-regulation (transcriptomics via microarray
analysis), putative gene product co-occurrence (proteomics via mass spec or MALDI), and path-
way/network elucidation in data from synthetic genetic arrays (double knockout arrays). In all
these applications, the underlying biological data is very expensive and, in some cases, requires
years to produce. For example, RI strains take more than 8 years to make isogenetically pure,
pathway/network elucidation for yeast requires 4,5000 synthetic genetic arrays, and Affy U133
arrays contain more than 30k probesets. Because of the high value of the underlying biological
data, saving computation time for the analysis by using approximation is often not acceptable.
Hence, we turn to FPT based approaches for solving such problems. The cluster editing problem
is an important such problem in the context outlined above.

In this paper, we present the first practical implementation of a FPT based method for cluster
editing, using the approach in [6,7]. In order to evaluate the effectiveness of the FPT approach,
we also implemented a well known previous method based on linear programming [3] as well
as a greedy approach for cluster editing. The total programming effort was approx. 120 person
hours, producing approx. 2500 lines of code.

* This research has been supported in part by the Natural Sciences and Engineering Research
Council of Canada and by the U.S. National Institutes of Health under grants 1-R01-MH-
074460-01, 1-P01-DA-015027-01 and UO1-AA13512.
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Our experiments show that the best results for cluster editing are obtained by using the
refined branching method in [7] together with interleaving (re-kernelization). Our experiments
show that the refined branching method in [7] is vastly superior to the basic branching method,
which is not obvious because the refined branching method is considerably more complicated and
incurs larger constant factors. We also demonstrate that, in practice, branching with interleaving
is indeed decidedly faster than branching without interleaving.

A surprising observation from our experiments comes with respect to the problem of de-
termining the optimum edit value, k. In practice, we do of course not know &k and the general
approach would be to determine & via binary search. Things turns out to be quite different with
cluster editing. If we happen to be advancing from below (that is, solving a “no” instance), then as
e.g. with vertex cover run times predictably increase with rising parameter values. On the other
hand, if we are advancing from above (facing a “yes” instance), then run times may decrease,
increase or even stay the same with sinking parameter values. This is very different from the
standard behavior e.g. for vertex cover. For cluster editing it is not the case that run times are
highest around the optimum value of k. We conclude that a binary search may not be the best
way to implement an FPT based approach for clustering editing, and that one may be better off
steering the parameter as much as possible from below.

The remainder of this paper is organized as follows. Section 2 outlines our experimental
setup used throughout the paper. Section 3 outlines our implementation of LP based and greedy
based methods for cluster editing which serve as a baseline for evaluating the FPT based ap-
proach. In Section 4 we present a first practical implementation of an FPT based approach for
cluster editing. Section 5 presents our experimental results for the FPT based approach and Sec-
tion 6 concludes the paper.

2 Experimental Setup

In the remainder of this paper, we compare the performance of various algorithms under various
criteria. Experiments were performed on a Dell OptiPlex GX280 using a 3.2GHz Pentium 4 dual
processor, with 1.0 gigabytes (GB) of SDRAM, and running a Linux 2.6.8-2-686-smp kernel.
Algorithms were implemented in C and compiled using gcc version 3.4.4. The various costs of
implementation are listed in Table 1.

Table 1. Implementation costs for the three cluster editing algorithms studied in this paper.

Algorithm Development Time|Lines of Code| Library Used
LP-based method 45 hours 250 Ip_solve version 5.5
Greedy method 15 hours 250 None
FPT approach 60 hours 2000 None

Unless otherwise stated, we used as input synthetic graphs for which we know the optimum
edit distances. For this, we built a graph generator which operates as follows. Our graph gener-
ator takes as input parameters the desired number of vertices (n), clusters (c) and the required
edit distance (d). First, a random size (number of vertices) in the range [0.5(n/c), 1.5(n/c)]
is assigned to each cluster. We produce a clique graph G’ containing ¢ fully connected cliques
(clusters) of the sizes determined above, with no edges between those cliques. Then, we execute
d random edits on G’ resulting in an output graph G. An edit consists of randomly inserting or
deleting an edge. More precisely, for each edit we randomly decide whether to insert or delete
an edge. For an insert operation, we randomly chose two vertices ¢ and j that are not connected
by an edge and then add an edge (4, 7). For a delete operation, we randomly select an edge in
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the graph and remove that edge. Once an edge is inserted in G it cannot be deleted by a future
edit. Similarly once an edge has been deleted from G it cannot be re-inserted by another edit. For
random number generation we used the Mitchell-Moore algorithm as described in [8]. Note that,
the above method creates in most cases, but not always, a graph G with edit distance d. In some
cases, as observed in our test runs, the edit distance of G is smaller than d because a different set
of clusters than those used by our generator can be created with fewer edits.

3 A Baseline for Comparisons

In order to evaluate the effectiveness of a fixed parameter tractability approach for cluster editing,
we need to establish a baseline to which we can compare our implementation. One well known
previous method [3] is based on linear programming. Another alternative is to use a greedy ap-
proach for cluster editing. Needless to say, both methods only provide an approximation of the
edit distance.

We implemented the LP based cluster editing method described in [3]. Given a graph, we
first build a LP model by setting the objective function and constraints for every pair of vertices
and every triple of vertices. For each pair of vertices ¢ and 7, a partitioning into clusters can be
represented with a binary variable z;;, where z;; = 0 if ¢ and j are in the same cluster, and
z;; = 1 if they are in different clusters. The integer constraints can be relaxed to allow rational
values for z;;, that is, 0 < x;; < 1. For each triple of vertices 4, j and k, the triangle inequality
ik < Tij + x;i holds because if x;; = 0 and zj, = 0 then z;x = 0. The objective is to
minimize the number of edge edits: the number of edges (¢, j) € E for which z;; = 1 and the
number of pairs of vertices that are not adjacent (%, j) ¢ E for which z;; = 0. After the LP model
is built, a linear programming C library Ip_solve version 5.5 is used to solve the LP model and
get the values for every variable z;;. Finally, the graph is partitioned into clusters based on the
variables x;; in the following way: two vertices ¢ and j are put into the same cluster if x;; < 0.5.
The edit distance is calculated as the summation of the number of edges that are needed to be
added, which do not exist but the two endpoints are in same cluster, and the number of edges that
are needed to be deleted, which exist but the two endpoints are in different clusters.

We also implemented the following greedy method for cluster editing. Consider a graph G.
For an edge insertion consider all possible edges, for an edge deletion consider only the edges
in G. Calculate a cost for each insertion/deletion as follows. For an edge ¢ = (4, 7) define the
common neighborhood as the set of common neighbors of ¢ and 7, and define the non-common
neighborhood as the set of non-common neighbors of ¢ and j. For an insertion of an edge e =
(%, j), define the cost as the number of edge insertions required to transform the common and non-
common neighborhood of e into a clique. For a deletion of an edge e = (i, j), define the cost
as the number of edge deletions required to disconnect the common neighborhood of e. Select
the edit operation with smallest cost and iterate until a graph of disjoint cliques is obtained. To
implement this greedy method, we initially mark every pair of vertices as unmarked. For each
unmarked pair of vertices ¢ and j, the smaller of the cost of having an edge between them and
the cost of not having an edge between them is chosen as the cost of ¢ and j. We select the pair
with least cost, perform the edits associated, and mark the pair. This is repeated until all pairs
are marked, which will give a set of connected components. The edit distance is calculated as the
number of edge editions to get the set of connected components plus the number of edge editions
to transform those connected components into cliques.

The results of our experimental evaluation of the LP and greedy methods are shown in Fig-
ures 1 and 2. Our experiments show that the LP based cluster editing method is consistently better
than the greedy method with respect to both, the computation time and the value for k obtained.
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Hence, for the remainder of this paper, we will compare our implementation of a fixed-parameter
tractability approach only to the LP based cluster editing method.
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Fig. 1. A comparison of edit distances computed by LP versus the greedy method.
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Fig. 2. A comparison of run times required by LP versus the greedy method.
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4 An FPT-Based Approach

In this section we present an outline of our adaptation of the algorithm in [7, 6] that we used to
obtain the first practical implementation for exact cluster edit distance computation.

Algorithm 1 Solving the Cluster Edit Problem Via a Fixed-Parameter Tractability Approach
(1) Extract highly connected (e.g., 2- and 3-connected) components. Our motivation is to elim-
inate sparse parts of the input. (Note: level of connectivity depends on the application.)
(2) Bound the search space for k:
(a) Let k p be the edit distance determined by the linear programming method [3].
(b) The search interval for the true edit distance k is [kzp /4, kLp].
(3) For increasing k, starting with kr,p /4:
(a) Execute the kernelization method described in [7], Section 7.2 (see also [6]).
(b) Execute either the basic or the refined bounded tree search method described in [7],
Section 10.1 or Section 10.2, respectively (see also [6]).
(c) Use “interleaving”: at each branch node in the bounded tree search, execute again
the kernelization method from Step 3a.
— End of Algorithm —

Two kernelization rules for the cluster editing problem have been described. The first rule
is based on the neighborhood of every pair of vertices u,v € V. (1) If w and v have more than
k common neighbors, then (u, v) has to belong to E; if (u,v) ¢ E, we additto E. (2) If u
and v have more than k non-common neighbors, then (u,v) cannot belong to E; if (u,v) €
E, we delete it. (3) If w and v have both more than & common and more than k non-common
neighbors, then the given instance has no size k solution. The other kernelization rule is to delete
the connected components that are cliques from the graph.

The bounded search tree method for cluster editing is based on the observation that an in-
duced path Ps, a path with three vertices and two edges, is forbidden for a graph consisting of
disjoint cliques. Given a graph, considering any induced Ps = {u, v, w} with edges (u,v) and
(u, w), we can branch with three cases: delete edge (u, v), delete edge (u, w), or add edge (v, w).
For either case, the parameter k is decreased by one. For basic branching, this leads the search
tree size of 0(31") where a resulting graph with disjoint cliques is found for k edits. At each
branch node, if the parameter k£ goes down to be non-positive, no solution of size < k exists on
that branch. If no solution can be found on all branches, then we conclude that no solution of size
k exists for the given graph.

The bounded tree search method can be improved by making a case distinction of P3; with
three cases and giving each case a branching rule. Consider a P3 = {u, v, w} with edges (u,v)
and (u, w). There are three cases based on the neighborhood of u, v and w: (1) v and w do not
share a common neighbor other than u; (2) v and w have a common neighbor z other than u, and
x is adjacent to u; (3) v and w have a common neighbor x other than u, but x is not adjacent to
u. For each pair of vertices, an annotation mapping is employed to facilitate the branching rules.
Each vertex pair u and v is assigned one of the following annotations: “permanent” meaning
(u,v) € E and (u,v) cannot be deleted, “forbidden” meaning (u,v) ¢ E and (u,v) cannot
be inserted, or “none” meaning no information available and it can be edited. For every three
vertices u,v,w € V, if (u,v) and (u,w) are permanent, (v, w) has to be permanent, and if
(u, v) is permanent and (u, w) is forbidden, (v, w) has to be forbidden.

Algorithm 2 Given a graph G = (V, E) and parameter k, consider a Ps = {u, v, w} with edges
(u,v) and (u,w). The refined branching strategy using the above annotation mapping works as
follows.
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(1) If v and w do not share a common neighbor other than u, then branch with
(@ (G\ {(u,v)}, k—1),and
®) (G\ {(u,w)}, k= 1).
(2) If v and w have a common neighbor z # u and (u,x) € E, then branch with five sub-
cases:
© (GU {(v,w)}, k—1);
(d) Set (v, w) to forbidden, and branch with (G \ {(u,v), (v, z)}, k — 2);
(e) Set (v, w) to forbidden, (v, z) to permanent, and branch with (G \ {(u,v), (u, z),
(w,x)}, k—3);
(f) Set (v, w) to forbidden, and branch with (G \ {(u, w), (w,z)}, k — 2);
(2) Set (v, w) to forbidden, (w, x) to permanent, and branch with (G \ {(u,w), (u,z),
(v,2)}, k —3).
(3) If v and w have a common neighbor z # w and (u,z) ¢ FE, then branch with five sub-
cases:
() (G\ {(u,v)} k—1);
(i) Set (u,v) to permanent, (v, w) to forbidden, and branch with (G \ {(u, w), (v,z)},
k—2);
() Set (u,v) to permanent, (v, w) to forbidden, (v,x) to permanent, and branch with
(GU{(w,2)} \ {(u, w), (w, )}, k = 3);
(k) Set (u,v) and (u,w) to permanent, and branch with (G U {(v,w)} \ {(w,z),
(va)}’ k— 3)’
(1) Set (u,v) and (u, w) to permanent, and branch with (G U {(v,w), (u,z)}, k — 2).
— End of Algorithm —

Initially, all vertex pairs are set to “none”. When an edge is added it is set to “permanent”,
and when an edge is deleted it is set to “forbidden”. The algorithm also stops when the parameter
k reaches 0 or below or when the graph G contains no induced Ps. The search tree size for the
refined branching strategy is O(2.27%).

For both basic and refined bounded tree search methods, we applied the kernelization method
at each branch node. Both methods are implemented as recursive functions. For future improve-
ment, we plan to implement them as iterative functions to achieve better performance.

5 Experimental Results

To gauge the practical merit of an approach based on fixed-parameter tractability, we tested the
methods just described against each other and against our LP implementation on a variety of
both synthetic and real graphs. We have already described the process by which we generate
synthetic graphs. By “real” graphs, we mean those that naturally arise in application domains, in
the present case, from protein domain sequence similarity. In all cases we report branching times
only because the time needed for initial preprocessing and kernelization is insignificant compared
to that required during branching.

It seems that refined branching is vastly superior to basic branching. The run times reported
in Figure 3, where the edit distance is set to 20, are typical of those we observe. This was not ob-
vious in advance. It is simply not always the case that asymptotically faster methods in the worst
case translate into better algorithms in the average case. Unless the data is contrived, additional
overhead and complexities incurred by ever more sophisticated branching strategies can ofttimes
negate any real gains in efficiency.

It also seems that branching with interleaving is decidedly faster than branching without
interleaving. The run times reported on larger instances in Figure 4, where the edit distance is
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set to 40, are typical. Again, this makes sense, but is neither obvious nor necessarily the case in
general.

Of course we do not know the optimum edit value in advance, and so generally determine it
by performing a binary search. One might expect run times to be rather predictable. With vertex
cover, for example, we have long observed [1, 2] that the most difficult computations are centered
around the point at which a “no” instance becomes a “yes” instance, with the “no” the harder
of the two (with “no,” our algorithms cannot find a solution and halt early). Because we are
interested in clique, the situation is reversed but still monotonic above and below the optimum
value. A standard example is illustrated in Figure 5.

Things turn out to be quite different with cluster editing. If we happen to be advancing from
below (that is, solving a “no” instance), then as with vertex cover run times predictably increase
with rising parameter values. On the other hand, if we are advancing from above (facing a “yes”
instance), then run times may decrease, increase or even stay the same with sinking parameter
values. See Figures 6 and 7.

In retrospect, we find the answer to this conundrum lies in the way solutions are distributed
and the way branching works with parameter values above the optimum. With vertex cover, for
example, a cover of size ¢ ensures a cover of size ¢ + 1 (as long as 7 < |V'|). With cluster editing,
however, it is conceivable that there is a solution with edit distance ¢ yet no solution with distance
2+ 1 (or 7 + 2 and so forth). Thus a higher parameter value may mean only that a cluster editing
algorithm has to do more work. See Figure 8, which depicts search tree traversals on the graph
used to report run times in Figure 7. From this we conclude that a binary search may not be the
best way to implement an FPT-based approach for clustering editing, and that one may be better
off steering the parameter as much as possible from below.
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6 Concluding Remarks

The issue of scalability deserves scrutiny, especially if we are to scale to genome-sized problem
instances. Even for covers and cliques, supercomputers and monolithic memory may be heavily
taxed [9]. In this respect, it is noteworthy that well-known problems such as vertex cover require
searching a parameter space of size |V'|, while cluster editing possesses a search space of size
|E|. At some problem size, of course, approximation should better optimization. The exact size
probably depends on many factors, including graph density, relative efficiency of implementa-
tions, and even machine architecture. Initial experiments have produced interesting comparisons.
See Figure 9.

Related questions abound. For example, we are interested in the difficulty of enumerating
solutions within some fixed number of edge additions and deletions [4]. Such an enumeration
may prove useful in making decisions between multiple and possibly ambiguous solutions. We
are also interested in relaxing the requirement that cluster editing cliques be disjoint [5]. Such a
relaxation makes particular sense in applications for which vertices represent genes or gene prod-
ucts, because these are often pleiotropic and thus may rightfully belong in overlapping cliques.
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