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Abstract

Invertible matrices in GF (2) are important for constructing MDS erasure codes. This paper proves that certain
classes of matrices in GF (2) are invertible, plus some additional properties about invertible matrices.

1 Introduction
We are concerned with the question of whether certain matrices in GF(2) are invertible. This question is important
when designing erasure codes for storage applications. If an erasure code is composed solely of exclusive-or operations
[1, 2, 3, 4, 5, 8, 9], then it may be represented as a matrix-vector product in GF(2). The act of decoding transforms
an original distribution matrix into a square decoding matrix that must be inverted. The process is described for
generalGF (2w) by Plank [7] and is first used in GF(2) by Blomer et al. [2].

As such, a fundamental part of defining MDS erasure codes is to construct distribution matrices that result in
invertible decoding matrices. This paper does not delve into erasures codes, but instead proves that certain classes of
matrices in GF(2) are invertible. It also proves some properties of invertible matrices.

2 Nomenclature
In GF(2), each element is either 0 or 1; addition is the binary exclusive-or operator (denoted⊕), and multiplication is
the binary and operator.

When we refer to a matrixM w, that means thatMw is a square matrix in GF(2) with w rows and columns. Other
information about the matrix is included in the subscripts. We refer to the element in row r and column c of M w

asMw[r, c]. These are zero-indexed, so the top-left element ofM w isMw[0, 0], and the bottom-right element ofM w

isMw[w − 1, w − 1].
We perform arithmetic of row and column indices inM w over the commutative ring Z/wZ. We denote the quantity

x modulo w by xw. In particular, because x + ww = xw, we have −1w = w − 1w. When context disambiguates, we
drop the extra notation; e.g.,−1w = w − 1.
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2.1 Invertibility
One way to test whether a square matrixM is invertible is to perform Gaussian Elimination on it until it is in upper
triangular form. Then M is invertible if and only if the result is unit upper triangular. (Basic facts about invertibility
of matrices under simple operations are available in many textbooks, e.g., Lancaster and Tismenetsky [6].)

We define steps of Gaussian Elimination as follows. Let c be the leftmost column with at least two 1’s in some
Mw; let r be the topmost row such that M w[r, c] = 1 andMw[r, c′] = 0 for 0 ≤ c′ < c. Then one step of Gaussian
Elimination or Elimination Step replaces every row r ′ $= r such thatMw[r′, c] = 1 with the sum of rows r and r′. An
example is in Figure 1. The first step of Gaussian Elimination for the matrix in Figure 1(a) replaces row 2 with the
sum of rows 0 and 2, and row 3 with the sum of rows 0 and 3. The resulting matrix is in Figure 1(b).

(a) (b) (c)

Figure 1: One step of Gaussian Elimination, and deleting rows and columns that are upper-triangular.

When the leftmost ! columns of a matrix M w have zeros below the main diagonal—i.e., M [i, j] = 0 for 0 ≤
i < ! and i < j < w—we say the leftmost ! columns are in upper triangular form or are upper triangular; if in
addition Mw[i, i] = 1 for 0 ≤ i < !, we say the leftmost ! columns are in unit upper triangular form or are unit
upper triangular. Assume the leftmost ! columns of M w are unit upper triangular, and construct matrixM w′ , where
w′ = w−!, by deleting the leftmost ! columns and top ! rows ofM w. ThenMw is invertible iffMw′ is invertible. For
example, since the leftmost two columns of the matrix in Figure 1(b) are in unit upper triangular form, we may delete
the leftmost two columns and the top two rows to produce the matrix in Figure 1(c). This matrix is not invertible;
therefore, the matrices in Figures 1(a) and 1(b) are also not invertible.

There are other simple operations that preserve invertibility. The first are what we call row shifting and column
shifting. There are four variants. Each takes an original matrixM w and constructs a new matrixM w

∗ as follows:

• Shifting up by r rows:M w
∗ [i, j] = Mw[i + rw, j], for 0 ≤ i, j < w.

• Shifting down by r rows:M w
∗ [i, j] = Mw[i − rw, j], for 0 ≤ i, j < w.

• Shifting left by c columns:M w
∗ [i, j] = Mw[i, j + cw], for 0 ≤ i, j < w.

• Shifting right by c columns:M w
∗ [i, j] = Mw[i, j − cw], for 0 ≤ i, j < w.

Obviously, shifting M w up by r rows is equivalent to shifting it down by w − r rows, and shifting M w left by r
columns is equivalent to shifting it right by w − r columns. Swapping rows and columns preserves invertibility, and
substituting any row with the sum of it and another row also preserves invertibility. Examples are in Figure 2.

We denote by Iw (rsp., Iw
→c) the w × w identity matrix (rsp., shifted c columns to the right) and by 0 w the w × w

matrix of all zeros. Finally, we say a matrix classM is invertible iff all matrices inM are invertible.

3 The Matrix ClassesDw
d,s and Sw

d,s

We now define two classes of matrices: Dw
d,s and Sw

d,s. In both: w > 2, 0 < d < w, and 0 < s < w. The letters are
short for “different” and “same”. We defineDw

d,s,0 to be the base element ofDw
d,s. We constructDw

d,s,0 as follows:

• Start with Dw
d,s,0 = Iw + Iw

→d.
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(a) (b) (c) (d) (e)

Figure 2: Operations that preserve invertibility. (a) is the original matrix. (b) shifts (a) up by three rows, or down by
four rows. (c) shifts (a) left by four rows, or right by three rows. (d) swaps rows 3 and 6. (e) replaces row 6 with the
sum of rows 3 and 6.

• SetDw
d,s,0[0, w − 1] = Dw

d,s,0[0, w − 1] ⊕ 1.

• SetDw
d,s,0[s, d + s − 1w] = Dw

d,s,0[s, d + s − 1w] ⊕ 1.

There are w elements of Dw
d,s, denoted Dw

d,s,0, . . . , D
w
d,s,w−1. Dw

d,s,i is equal to Dw
d,s,0 shifted i rows down and i

columns to the right. Therefore, all elements ofDw
d,s have the same invertibility. Figure 3 gives various examples. The

intuition is that elements of Dw
d,s are composed of two diagonals that differ by d columns. There are two extra bits

flipped in the matrix, which are s rows apart and adjacent to different diagonals.

D7
3,2,0 D7

3,2,2 D7
3,2,6 D7

1,3,0 D7
1,3,3

Figure 3: Various examples of matrices in Dw
d,s.

The definition of Sw
d,s is similar, except the two extra bits that are flipped are adjacent to the same diagonal. As

withDw
d,s, we define a base element Sw

d,s,0 as follows:

• Start with Sw
d,s,0 = Iw + Iw

→d.

• Set Sw
d,s,0[0, w − 1] = Sw

d,s,0[0, w − 1] ⊕ 1.

• Set Sw
d,s,0[s, s − 1w] = Sw

d,s,0[s, s − 1w] ⊕ 1.

As withDw
d,s, there are w elements of Sw

d,s, denoted Sw
d,s,0, . . . , S

w
d,s,w−1. Sw

d,s,i is equal to Sw
d,s,0 shifted i rows down

and i columns to the right. Note that when w is even, there are only w/2 distinct elements of S w
d,s, because Sw

d,s,i is
equal to Sw

d,s,i+ w
2 w

. We give examples of Sw
d,s in Figure 4.

4 Simple Relationships on Dw
d,s and Sw

d,s that Preserve Invertibility
We use the following relationships onDw

d,s and Sw
d,s.

Lemma 1 Dw
d,s is invertible iff Dw

w−d,w−s is invertible.
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S7
3,2,0 S7

3,2,2 S7
1,3,0 S7

6,3,0 S6
2,3,0 = S6

2,3,3

Figure 4: Various examples of matrices in Sw
d,s.

D11
3,4,0 D11

8,7,0

Figure 5: D11
8,7,0 is constructed fromD11

3,4,0 by shifting it four rows up and (4 + 3) rows to the left.

Proof: Dw
w−d,w−s,0 can be derived by shiftingDw

d,s,0 s rows up and s + d columns left. !

Figure 5 demonstrates Lemma 1.

Lemma 2 Sw
d,s is invertible iff Sw

d,w−s is invertible.

Proof: Sw
d,s,w−s is identical to Sw

d,w−s,0. !

Lemma 3 For s > 1, Dw
d,s is invertible iff Sw

d,s is invertible.

Proof: Sw
d,s,0 can be constructed fromDw

d,s,0 by substituting row s with row s plus row (s − 1). !

Figure 6 demonstrates Lemma 3.

D11
3,4,0 S11

3,4,0

Figure 6: S11
3,4,0 is constructed fromD11

3,4,0 by substituting row 4 with row 4 plus row 3.

Lemma 4 For 0 < s < w − 1, Sw
d,s is invertible iff Sw

w−d,s is invertible.

Proof: Sw
w−d,s,0 can be constructed from Sw

d,s,0 by first substituting row s with row s plus row (s− 1) and row 0 with
row 0 plus row w − 1, and then shifting the result d columns to the left. !
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(a) (b) (c) (d)
S11

3,4,0 S11
8,4,0

Figure 7: (b) is created by substituting row 4 with row 4 plus row 3. (c) is created by substituting row 0 with row 0
plus row 10. (d) is created by shifting left three columns.

Lemma 4 is demonstrated by Figure 7, where each step of converting S 11
3,4,0 to S11

8,4,0 is shown.
The constraints on s in Lemmas 3 and 4 are due to the following. When s = 1, adding rows 0 and 1 does not have

the desired effect of moving row s’s one from one diagonal to the other, because row 0 has three ones. When s = w−1,
adding rows 0 and w − 1 has the same problem.

For convenience in the sequel, we consider invertibility to be an equivalence relation, so two matrices or matrix
classes are equivalent iff they are both invertible or both not invertible.

5 Our Target Class of Matrices, L, and the Grand Liberation Theorem
We define the class L to be the union of all Dw

d,s such that:

• w > 1 is odd.

• GCD(d, w) = 1.

• If d is even, s = w − d
2 .

• If d is odd, s = w−d
2 .

Theorem 5 (The Grand Liberation Theorem) All matrices in L are invertible.

The rest of this paper proves the theorem. After demonstrating a few special cases, which include D 3
1,1, the proof

proceeds as follows:

1. We prove by induction that Dw
2,w−1 is invertible for all odd w.

2. For d > 2, we first show that for any odd d there exists some even d ′ such thatDw
d, w−d

2
is equivalent toDw

d′,w−d′
2
.

Hence we restrict our attention to even d > 2.

3. We show that for any even d > 2,Dw
d,w−d

2
is equivalent to Sw

d, d
2
.

4. We show that the derived Sw
d, d

2
is equivalent to some Sw′

d′, w′
2
with 2 < w′ < w, w′ even, and GCD(w′, d′) = 1.

5. We show that any Sw
d, w

2
with even w > 2 and GCD(w, d) = 1 is equivalent to some Dw′

d′,s′ ∈ L such that
w′ < w.

6. A second inductive argument completes the proof, as we can iterate Steps 2–5 until w ′ = 3 or d′ = 2 in Step 5.
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5.1 Step 1: Base Cases for the Global Induction
First, there are only two D3

d,s ∈ L: D3
1,1 and D3

2,2. Their base elements are shown in Figure 8(a) and (b). It is easy
to verify that they are invertible. Additionally, Figure 8(c) shows D 5

2,4,4, which will be used below. It is also easy to
verify that it is invertible.

(a) (b) (c) (d) (e)
D3

1,1,0 D3
2,2,0 D5

2,4,4 D11
2,10,10 D11

2,10,10 after two steps
of Gaussian Elimination.

Figure 8: Base cases for the inductive proof.

We now prove that Dw
2,w−1 is invertible for all odd w. We have already shown in Figure 8 that this is true

for w = 3 and w = 5. Let w > 5 be odd, and assume by induction that D w′

2,w′−1 is invertible for odd 1 < w′ < w.
Consider Dw

2,w−1,w−1. An example is D11
2,10,10, depicted in Figure 8(d). This matrix has a very specific format: All

elements of I and I→2 are set to one, as are Dw
2,w−1,w−1[w − 1][w − 2] andDw

2,w−1,w−1[w − 2][w − 1].
Now, perform two steps of Gaussian Elimination. This will set Dw

2,w−1,w−1[w − 2, 0] and Dw
2,w−1,w−1[w − 1, 1]

to zero, and Dw
2,w−1,w−1[w − 2, 2] and Dw

2,w−1,w−1[w − 1, 3] to one. Figure 8(e) demonstrates for w = 11. The
resulting matrix’s first two columns are unit upper triangular, so the first two rows and columns may be deleted. This
yields Dw−2

2,w−3,w−3, which is of the form Dw′

2,w′−1,w′−1 for some odd 1 < w′ < w. By induction, Dw′

2,w′−1,w′−1 is
invertible. Therefore,Dw

2,w−1 is invertible for all odd w > 1.

5.2 Steps 2–4: Reducing the Problem to Sw
d, w

2
for w Even, GCD(w, d) = 1

Now consider any Dw
d,w−d

2
∈ L such that d is odd. By Lemma 1, this is equivalent to Dw

w−d,w−w−d
2
. Since w − d

is an even number, Dw
w−d,w−w−d

2
∈ L. Therefore, every element Dw

d,s ∈ L for which d is odd has a corresponding
element Dw

d′,s′ ∈ L for which d′ is even. Thus we need only prove that the elements Dw
d,w−d

2
∈ L with even d are

invertible. We proved above thatDw
2,w−1 is invertible, so we now prove thatDw

d,w−d
2
is invertible for even d > 2.

Therefore, considerDw
d,w−d

2
such that d > 2 is even, w > 3 is odd, and GCD(w, d) = 1. Since d > 2, it follows

that w − w−1
2 = w−1

2 ≤ w − d
2 ≤ w − 2. Since w > 3, the smallest value that w − d

2 may be is
5−1
2 = 2. Therefore,

by Lemma 3,Dw
d,w−d

2
is equivalent to Sw

d,w−d
2
, which by Lemma 2 is equivalent to Sw

d,w−(w−d
2 )

= Sw
d, d

2
.

So now consider Sw
d, d

2 ,w−d
2−1

. An example is S17
6,3,13, depicted in Figure 9(a). Suppose w > 2d. (w will not

equal 2d, because GCD(w, d) = 1.) Perform d steps of Gaussian Elimination on S w
d, d

2 ,w−d
2−1

. This moves the ones
in rows w − d through w − 1 from columns 0 through d − 1 to columns d through 2d − 1. In our example of S 17

6,3,13,
six steps of Gaussian Elimination are shown in Figure 9(b). Therefore, when we delete the first d rows and columns
of the resulting matrix, we are left with Sw−d

d, d
2 ,w−d−d

2−1
. Note: w − d is odd; w − d > d; and since GCD(w, d) = 1,

GCD(w − d, d) = 1. Our example continues in Figure 9(c), where we delete the first six rows and columns of
Figure 9(b) to get S11

6,3,7.
Iterate this process until it yields Sw

d, d
2 ,w−d

2−1
for d < w < 2d. We now perform (w − d) steps of Gaussian

Elimination. This moves the leftmost ones in rows (w− d) through (2(w− d)− 1) over d columns to the right. When
we delete the first w−d rows and columns, we are left with S d

d−(w−d),d
2 , d

2−1
= Sd

2d−w, d
2 , d

2−1
. SinceGCD(w, d) = 1,

GCD(d, 2d − w) = 1 as well.
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(a) (b) (c) (d) (e)
S17

6,3,13 Six Elimination Steps S11
6,3,7 Five Elimination Steps S6

1,3,2

Figure 9: An example of converting S wd, d
2 to Sd

x, d
2
for w = 17 and d = 6.

Figure 9(d) shows 11 − 6 = 5 steps of Gaussian Elimination of S 11
6,3,7, and Figure 9(e) shows that S 6

1,3,2 results
when we delete the first five rows and columns from Figure 9(d).

We have thus reduced the original problem to the following: Given S w′

d′, w′
2
with evenw′ > 2 andGCD(w′, d′) = 1,

determine whether Sw′

d′, w′
2
invertible. We address this in the next section.

5.3 Steps 5–6: Proving that Sw
d, w

2
is Invertible for w Even, GCD(w, d) = 1

Since w > 2, it follows that 1 < w
2 < w − 1. Therefore, by Lemma 4, Sw

d, w
2
is equivalent to Sw

w−d,w
2
, so we may

assume that d > w
2 . We’re going to break this proof into two cases. The first is when d > w

2 + 1. Consider Sw
d, w

2 , w
2 −1.

An example of this is S16
11,8,7 displayed in Figure 10(a). We performw−d steps of Gaussian Elimination on S w

d, w
2 , w

2 −1.
Since d > w

2 +1, we know that w− d < w
2 − 1, so the w− d steps of Gaussian Elimination simply move the leftmost

ones in rows (w − d) through (2(w − d) − 1) over d columns to the right. Deleting the first w − d rows and columns
from the matrix, we are left with S d

2d−w, w
2 ,d−w

2 −1. These steps are shown in Figures 10(b) and (c), as S 16
11,8,7 is

converted into into S11
6,8,2.

(a) (b) (c)
S16

11,8,7 5 Elimination Steps S11
6,8,2

Figure 10: An example of converting S wd, w
2 to Sd

2d−w, w
2
for w = 16 and d = 11.

As before, since GCD(w, d) = 1, we know that GCD(2d − w, d) = 1. That w is even implies that 2d − w is
also even. Moreover, since d > w

2 + 1, we know that 2d − w > 1. Therefore, by Lemma 3, S d
2d−w, w

2
is equivalent

toDd
2d−w, w

2
. Finally:

d − 2d − w

2
=

2d − 2d + w

2
=

w

2
.
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Therefore,Dd
2d−w, w

2
= Dd

2d−w,d−2d−w
2
, which is an element of L. By induction,Dd

2d−w,d−2d−w
2

is invertible, imply-
ing that Sw

d, w
2
is invertible.

The second case is for Sw
d, w

2
when d = w

2 + 1 and GCD(w, w
2 + 1) = 1. An example is S16

9,8,7 shown in
Figure 11(a). Again, we will perform w − d elimination steps. We will do this in two parts, however. In the first
part, we perform w − d − 1 elimination steps. This moves the leftmost ones in rows (w − d) through (2(w − d) − 2)
over d columns to the right. This is pictured in Figure 11(b). The last elimination step replaces two rows of the matrix,
because row (w − d) has an extra one adjacent to the diagonal. Therefore, both rows (w − d) and (2(w − d) − 1)
move their leftmost ones into the column (w − 1). This is pictured in Figure 11(c).

(a) (b) (c) (d)
S16

9,8,7 6 Elimination Steps 1 More S9
2,8,0

Figure 11: An example of converting S wd, w
2 to Sd2, d − 1 when d = w

2 + 1 for w = 16.

When the first w− d rows and columns are deleted from the matrix, we are left with S d
2d−w, w

2 ,0. Since d = w
2 +1,

this is equal to Sd
2,d−1,0 (shown as S9

2,8,0 in Figure 11(d)). That w > 2 is even implies that d = w
2 + 1 > 2 is

odd, so d − 1 > 1; thus by Lemma 3, S d
2,d−1 is equivalent to Dd

2,d−1, which we proved invertible in Section 5.1.
Therefore Sw

d, w
2
is invertible. Q.E.D.

6 The Class O and the Little Liberation Theorem
We now define a third class of matrices, Ow

d such that w > d ≥ 1. We define Ow
d,0 to be the base element of Ow

d and
constructOw

d,0 as follows:

• Start with Ow
d = Iw + Iw

→d.

• Set Ow
d,0[0, w − 1] = Ow

d,0[0, w − 1] ⊕ 1.

Thus, Ow
d,0 is similar to Dw

d,s,0 and Sw
d,s,0, except it only has one extra one in it, in the top-right corner. There are w

elements of Ow
d , denoted Ow

d,0, . . . , O
w
d,w−1. Ow

d,i is equal to Ow
d,0 shifted i rows down and i columns to the right.

Therefore, all elements of Ow
d are equivalent. We show some examples of matrices in Ow

d in Figure 12.

(a) (b) (c) (d)
O7

3,0 O7
3,6 O7

4,6 O2
1,1

Figure 12: Examples of matrices in Ow
d .

We start with a simple lemma:
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Lemma 6 Ow
d is invertible iff Ow

w−d is invertible.

Proof: Ow
w−d,w−1 can be derived by replacing roww−1 ofOw

d,w−1 with the sum of rowsw−1 andw−2, and shifting
the resulting matrix d columns to the left. An example is in Figure 12, whereO 7

4,6 may be obtained by replacing row 6
of O7

3,6 with the sum of rows 5 and 6, and shifting the result three columns to the left. !

Define O to be the union of all Ow
d such that GCD(w, d) = 1.

Theorem 7 (The Little Liberation Theorem) All matrices in O are invertible.

Proof: This proof is far simpler than that of the Grand Liberation Theorem. It, too, is inductive. We start with the base
case O2

1 , an element of which is pictured in Figure 12(d). This matrix is already in unit upper triangular form and is
therefore invertible.

Now, consider Ow
d ∈ O and suppose by induction that Ow′

d′ ∈ O is invertible for all 1 ≤ d′ < w′ < w. By
Lemma 6 and the hypothesis that GCD(w, d) = 1, we may assume that d < w

2 , or else we consider Ow
w−d in lieu of

Ow
d . Performing d elimination steps onOw

d,w−1 moves the leftmost ones in rows w − d throughw − 1 over d columns
to the right. Since d < w

2 , these ones will not be moved to the diagonal, nor will the one at O
w
d,w−1[w − 1, w − 2]

be affected. Therefore deleting the leftmost d columns, which are now unit upper triangular, and top d rows leaves
Ow−d

d,w−d−1. Since GCD(w, d) = 1, GCD(w − d, d) = 1, and therefore Ow−d
d,w−d−1 ∈ O. By induction, Ow−d

d is
invertible; thereforeOw

d is invertible. !

An example is depicted in Figure 13 where O12
5,11 is converted to O7

5,6 by five elimination steps.

(a) (b) (c)
O12

5,11 Five elimination steps O7
5,6

Figure 13: An example of convertingOw
d,w−1 to Ow−d

d,w−d−1.

7 Some Trivial Properties of Matrices in GF(2)
The following two lemmas are likely folklore, but we include them for completeness.

Lemma 8 If some matrix Mw has precisely w ones, then M w is invertible iff it is a permutation matrix.

Proof: Any permutation matrix is invertible. Conversely, ifM w has precisely w ones but is not a permutation matrix,
then some row or column contains all zeros, in which caseM w is not invertible. !

Lemma 9 Let Mw
1 andMw

2 be permutation matrices. The sum M w
1 + Mw

2 is not invertible.

Proof: Let M w = Mw
1 + Mw

2 . Suppose there exist r and c such that M w
1 [r, c] = Mw

2 [r, c] = 1. Then row r of M w

contains all zeros, so M w is not invertible. Thus, we assume there are no such r and c; in this case, M has precisely
two ones in each row and column. We prove by induction that such matrices are not invertible.

The base case is shown in Figure 14(a), which depicts the onlyM 2 with two ones in each row and column. This
matrix is clearly not invertible.
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Now, let matrixMw for somew > 2 have exactly two ones in each row and column. Let rows r 1 and r2 be the two
rows that have ones in column zero, and let c1, c2 > 0 be such thatMw[r1, c1] = Mw[r2, c2] = 1. Swap row r1 with
row 0, and perform one elimination step. This will setM w[r2, 0] = 0 andMw[r2, c1] = Mw[r2, c1] ⊕ 1. If c1 = c2,
then all of row r2’s elements become zero, soM w is not invertible. If c1 $= c2, then deleting the first row and column
leaves a matrixMw−1 with exactly two ones in each row and column. By induction, this new matrix in not invertible;
thereforeM w is also not invertible. !

(a) (b) (c) (d) (e) (f)
M2. M7, After one elimination M 7, After one M 6.

c1 = c2 = 3. step, Row 4 is all zeros. c1 = 3, c2 = 2. elimination step.

Figure 14: Matrices with two ones in each row and column.

We show examples of the elimination step in Figure 14(b)-(f). In Figure 14(b), the elimination step, depicted in
Figure 14(c) turns row 4 into all zeros. In Figure 14(d), the elimination step of the matrixM 7 results in Figure 14(e),
which is equivalent to a matrixM 6 (Figure 14(f)).

8 A Final Theorem on the Invertibility of a Type of (k + 2)w × kw Matrix
Let row r of some matrix M w contain precisely one one—we call such a row an identity row—and let the one be in
column c. By cofactor expansion, deleting row r and column c yields an equivalent matrixM w−1.

The remaining theorem concerns a (k + 2) × k block matrixA, structured as follows and pictured in Figure 15:

• Each block is w × w.

• Block A[i, i] = Iw for 0 ≤ i < k.

• Blocks A[i, j] = A[j, i] = 0w for 0 ≤ i < j < k.

• Block A[k, j] = Iw for 0 ≤ j < k.

• Block A[k + 1, j] = Xj for 0 ≤ j < k and some givenXj .

Consider the class A∗ of
(k+2

2

)
block matrices induced by deleting any two rows of blocks fromA.

Theorem 10 All matrices in A∗ are invertible iff (1) every Xi is invertible, and (2) for 0 ≤ i < j < k, Xi + Xj is
invertible.

Proof: Let A ∈ A∗. There are four cases.
Case 1: A is composed of the first k rows of blocks ofA, which form I kw.
Case 2: A is composed of row k and any k − 1 of the first k rows of blocks of A. Now, A has (k − 1)w identity

rows. Deleting these rows and their associated columns yields I w.
Case 3: A is composed of row k + 1 and any k − 1 of the first k rows of blocks of A; let i be the omitted row of

blocks from the first k. Again, A has (k − 1)w identity rows, which we can delete with their associated columns to
yieldXi, so A is equivalent toXi.
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Figure 15: The (k + 2) × k block matrixA of w × w matrices over GF(2).

Figure 16: The 2w × 2w matrix that results when w(k − 2) identity rows are deleted from A in Case 4.

Case 4: A is composed of rows k, k +1, and any k−2 of the first k rows of blocks ofA; let i and j be the omitted
rows of blocks from the first k. Now A has (k− 2)w identity rows, which we can delete with their associated columns
to yield the matrix pictured in Figure 16.

Now, perform w elimination steps on this matrix. For each r and c such that X i[r, c] = 1, the elimination step for
column cwill replace roww+r with the sum of rowsw+r and c. This will setX i[r, c] = 0 andXj [r, c] = Xj[r, c]⊕1.
After the elimination steps, the leftmost w columns will be upper triangular, and deleting them leaves X i + Xj .
Therefore,A is equivalent to Xi + Xj . !
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