
A New MDS Erasure Code for RAID-6
James S. Plank
plank@cs.utk.edu

Technical Report CS-07-602
Department of Electrical Engineering and Computer Science

University of Tennessee

September, 2007.

This paper has been submitted for publication.
See the web link below for current publication status.

http://www.cs.utk.edu/∼plank/plank/papers/CS-07-602.html

1

A New MDS Erasure Code for RAID-6

James S. Plank∗

Technical Report UT-CS-07-602
Department of Electrical Engineering and Computer Science

University of Tennessee

The online home for this paper is:
http://www.cs.utk.edu/∼plank/plank/papers/CS-07-602.html.

Please visit that link for up-to-date information about
the publication status of this and related papers.

It is anticipated that this paper will be published in 2008.

September 25, 2007

Abstract
The RAID-6 specification calls for a storage system
with multiple storage devices to tolerate the failure of
any two devices. Numerous erasure coding techniques
have been developed that can implement RAID-6; how-
ever, each has limitations. In this paper, we describe a
new class of RAID-6 codes called the Liberation Codes.
These codes encode, update and decode either optimally
or close to optimally. Their modification overhead is
lower than all other RAID-6 codes, and their encod-
ing performance is often better as well. We provide an
exact specification of the Liberation Codes and assess
their performance in relation to other RAID-6 coding
techniques. In the process, we describe an algorithm
called bit matrix scheduling, which improves the per-
formance of decoding drastically. Finally, we present a
freely available library which facilitates the use of Lib-
eration Codes in RAID-6 sytems.

1 Introduction
As storage systems have grown in size and complex-
ity, applications of RAID-6 fault-tolerance have become
more pervasive. RAID-6 is a specification for storage
systems composed of multiple storage devices to tol-
erate the failure of any two devices. In recent years,
RAID-6 has become important when a failure of one
disk drive occurs in tandem with the latent failure of

∗plank@cs.utk.edu, 865-974-4397, This material is based
upon work supported by the National Science Foundation under grant
CNS-0615221.

a block on a second drive [CEG+04]. On a standard
RAID-5 system, this combination of failures leads to
permanent data loss. Hence, storage system designers
have started turning to RAID-6.

Unlike RAID-1 through RAID-5, which detail exact
techniques for storing and encoding data to survive sin-
gle disk failures, RAID-6 is merely a specification. The
exact technique for storage and encoding is up to the im-
plementor. Various techniques for implementing RAID-
6 have been developed and are based on erasure codes
such as Reed-Solomon coding [RS60, Anv07], EVEN-
ODD coding [BBBM95] and RDP coding [CEG+04].
However, all of these techniques have limitations —
there is no one de facto standard for RAID-6 coding.

This paper offers an alternative coding technique for
implementing RAID-6. We term the technique The
RAID-6 Liberation Codes, as they give storage systems
builders a way to implement RAID-6 that frees them
from problems of other implementation techniques. We
give a complete description of how to encode, mod-
ify and decode RAID-6 systems using the Liberation
Codes. We also detail their performance characteristics
and compare them to existing codes.

The bottom line of the Liberation Codes is this: They
provide performance that is optimal, or nearly optimal in
all phases of coding. They outperform all other RAID-6
codes in terms of modification overhead, and in many
cases in encoding performance as well. We provide
a freely available library that implements the various
pieces of Liberation Coding. As such, we anticipate
that they will become very popular with implementors
of RAID-6 systems.

1

2 RAID-6 Specification and Cur-
rent Implementations

RAID-6 is a specification for storage systems with k+2
nodes to tolerate the failure of any two nodes. Log-
ically, a typical RAID-6 system appears as depicted
in Figure 1. There are k + 2 storage nodes, each of
which holds B bytes, partitioned into k data nodes,
D0, . . . Dk−1 and two coding nodes P and Q. The en-
tire system can store kB bytes of data, which are stored
in the data nodes. The remaining 2B bytes of the sys-
tem reside in nodes P and Q and are calculated from the
data bytes. The calculations are made so that if any two
of the k + 2 nodes fail, the data may be recovered from
the surviving nodes.

..."0 "1 "%&!1' P)

Figure 1: Logical overview of a RAID-6 system.

Actual implementations optimize this logical config-
uration by setting B to be smaller than each disk’s ca-
pacity, and then rotating the identity of the data and cod-
ing devices every B bytes. This helps remove hot spots
in the system in a manner similar to RAID-5 systems.
A pictoral example of this is in Figure 2. For simplicity,
in the remainder of this paper we assume that each stor-
age node contains exactly B bytes as in Figure 1 since
the extrapolation to systems as in Figure 2 is straightfor-
ward.

P

)

)

)

)

P{bytesB

P

P

...

Figure 2: In actual implementations, the identities of the
data and coding nodes rotate every B bytes. This helps
to alleviate hot spots on the various drives.

The P device in RAID-6 is calculated to be the par-
ity of the data devices. In this way, RAID-6 systems
extrapolate naturally from RAID-5 systems by simply
adding a Q drive. It also means that the sole challenge
in designing a RAID-6 coding methodology lies in the
definition of the Q drive. This definition must result in a
maximum distance separable (MDS) code, which means
that the Q drive cannot hold more than B bytes, and the

original data must be restored following the failure of
any two of the k + 2 devices.

There are several criteria that a storage system de-
signer must evaluate when selecting an erasure coding
technique for a RAID-6 system:

• Encoding performance is the speed of calculat-
ing P and Q from D0 . . . Dk−1.

• Modification performance is the speed of recom-
puting relevant parts of P and Q when one of the
Di’s is modified.

• Decoding performance is the speed of recalculat-
ing lost data or coding information following one
or two failures.

• Ease of Implementation is the complexity of the
technique.

• Cost of Implementation pertains to licensing issues,
as many erasure coding techniques are patented.

Below, we detail current techniques for implement-
ing RAID-6.

Reed-Solomon Coding [RS60] is a very powerful
general-purpose coding technique. It involves break-
ing up the data on each device into w-bit words, and
then having the i-th word on the Q device be calcu-
lated from the i-th word on each data device using a
special kind of arithmetic called Galois Field arithmetic
(GF (2w)). Galois Field addition is equivalent to the
XOR operation; multiplication is much more difficult
and requires one of a variety of techniques for imple-
mentation. As such, Reed-Solomon Coding is expen-
sive compared to the other techniques. Reed-Solomon
Coding is described in every text on coding theory
(e.g. [PW72, MS77, vL82, Moo05]), and has tutorial in-
structions written explicitly for storage systems design-
ers [Pla97, PD05].

Reed-Solomon Coding for RAID-6: Recently,
Anvin has described a clever optimization to Reed-
Solomon encoding for RAID-6 [Anv07], based on the
observation that multiplication by two may be imple-
mented very quickly when w is a power of two. This op-
timization speeds up the performance of Reed-Solomon
encoding. It does not apply to modification or decoding.

Parity Array coding applies a different method-
ology which is based solely on XOR operations.
It works logically on groups of w bits from each
data and coding device. The data bits of de-
vice Di are labeled di,0, . . . , di,w−1, and the coding bits
are p0, . . . , pw−1 and q0, . . . , qw−1 for the P and Q de-
vices respectively. The p bits are calculated to be the
parity of their respective data bits:

pj = d0,j ⊕ d1,j ⊕ . . . ⊕ dk−1,j .

2

The q bits are defined to be the parity of some other
collection of the data bits and this definition is what dif-
ferentiates one parity array code from another. A parity
array system for k = 5 and w = 4 is depicted in Fig-
ure 3.

Figure 3: An example Parity Array code with k = 5
and w = 4. Logically, each element is a bit, but for
efficient implementations, each element is a fixed-size
group of words. Since there are w groups per device,
the block size B for the code must be a multiple of w.

Obviously, to be efficient from an implementation
standpoint, parity array codes do not work on single bits,
but instead on w groups of bytes per RAID-6 block. In
this way, we are not performing XORs on bits, but on
machine words, which is very efficient. As such, the
block size B defined above must be a multiple of w and
the machine’s word size.

Cauchy Reed-Solomon Coding is a technique that
converts a standard Reed-Solomon code in GF (2w)
to a parity array code which works on groups of w
bits [BKK+95]. This has been shown to reduce the over-
head of encoding and decoding, but not to the degree of
the following codes [PX06].

EVENODD coding departs from the realm of Reed-
Solomon coding by defining the q i bits from diagonal
partitions of the data bits [BBBM95]. We don’t pro-
vide an exact specification, but to give a flavor, we show
the EVENODD code for k = 5 and w = 4 in Fig-
ure 4 (since the P device is parity, we don’t picture it).
The value S is an intermediate value used to calculate
each qi.

The parameter w must be selected such that w + 1 ≥
k and w+1 is a prime number. Although this gives stor-
age designers a variety of w to choose from for a given
value of k, smaller w are more efficient than larger w.

EVENODD coding performs significantly better than
all variants of Reed-Solomon coding. Its encoding per-
formance is roughly k − 1

2 XOR operations per coding
word. Optimal encoding is equal to k − 1 XOR opera-
tions per coding word [XB99]. Its modification perfor-
mance is roughly three coding words per modified data
word. Optimal is two. Finally, its decoding performance
is roughly k XOR operations per failed word. As with

Figure 4: EVENODD coding with k = 5 and w = 4.
The P device is not shown, as it is the parity of the data
devices.

encoding, optimal decoding performance is k − 1 XOR
operations per failed word. Thus, EVENODD coding
achieves performance very close to optimal for both en-
coding and decoding. EVENODD coding was patented
by IBM in 1996 [BBBM96].

RDP Coding is a parity array coding technique that
is very similar to EVENODD coding, but improves upon
it in several ways [CEG+04]. As with EVENODD cod-
ing, the number of bits per device, w, must be such
that w + 1 is prime; however w + 1 must be strictly
greater than k rather than ≥ k. RDP calculates the bits
of the Q device from both the data and parity bits, and
in so doing achieves better performance. We show the
RDP code for k = 4 and w = 4 in Figure 5.

Figure 5: RDP coding with k = 4 and w = 4. As
always, the pj bits are the parity of the di,j bits.

When w = k or w = k + 1, RDP achieves optimal
performance in both encoding and decoding. When w ≥
k + 2, RDP still outperforms EVENODD coding and
decoding, but it is not optimal. Like EVENODD cod-
ing, RDP coding modifies roughly three coding bits per
modified data bit. RDP coding was patented by Network
Appliance in 2007 [CKE07].

There are other very powerful erasure coding tech-
niques that have been defined for storage systems. We

3

do not address them in detail because they do not apply
to RAID-6 systems as defined above. However, we men-
tion them briefly. The X-Code [XB99] is an extremely
elegant erasure code for two-disk systems that encodes,
decodes and updates optimally. However, it is a vertical
code that requires each device to hold two coding words
for every k data words. It does not fit the RAID-6 spec-
ification of having coding devices P and Q, where P is
a simple parity device.

The STAR code [HX05] and Feng’s
codes [FDBS05a, FDBS05b] define encoding method-
ologies for more than two failures. Both boil down to
EVENODD coding when applied to RAID-6 scenarios.
There are other codes [Haf05, Haf06, HCL07, WS07]
that tolerate multiple failures, but are not MDS, and
hence cannot be used for RAID-6.

2.1 Why Do We Need Another Code?
Simply put, Reed-Solomon Coding is slow, and the par-
ity array coding techniques exhibit suboptimal modi-
fication performance and are patented. While patents
should not have relevance to academic research papers,
they do have a profound impact on those who implement
storage systems and are the main reason why RAID-6
systems are still being implemented with Reed-Solomon
coding. As such, alternative coding techniques that ex-
hibit near-optimal performance are quite important.

Regardless of the patent issue, the Liberation codes
have many properties that make them an attractive alter-
native to other RAID-6 techniques:

• They are parity array codes whose encoding perfor-
mance is close to optimal. For all values of k, they
outperform EVENODD encoding, and for some
values of k, they even outperform RDP encoding.
Thus, for many values of k, they represent the best
known RAID-6 codes.

• To build flexible RAID-6 systems, it is often ad-
vantageous to allow k to grow and shrink dynami-
cally within limits. For the parity array codes (in-
cluding Liberation codes), this means employing
a fixed value of w in all cases that can accomo-
date the largest possible value of k. EVENODD
and RDP coding systems will work in this way,
but their performance suffers when k shrinks, be-
cause they cannot compensate by decreasing w as
well. In contrast, Liberation codes improve as w
grows, and thus exhibit better performance in sys-
tems where k varies beneath a threshhold value.

• Their modification performance is very close to
the optimal value of two updated coding bits per
modified data bit. This is an improvement on the

other coding techniques, and it can be shown that it
achieves the lower bound for all RAID-6 codes.

• The decoding performance is within 15% of opti-
mal.

• Their implementation is freely available.

We describe the codes and analyze their performance
below.

3 Liberation Code Description
Liberation coding and decoding are based on a bit
matrix-vector product very similar to the those used
in Reed-Solomon coding [PW72, MS77] and Cauchy
Reed-Solomon coding [BKK+95]. This product pre-
cisely defines how encoding and modification are per-
formed. Decoding is more complex and to proceed ef-
ficiently, we must augment the bit matrix-vector prod-
uct with the notion of “bit matrix scheduling.” We first
describe the general methodology of bit matrix coding
and then define the Liberation Codes and discuss their
encoding/modification performance. We then describe
decoding, and how its performance may be improved
by bit matrix scheduling. We compare the Liberation
Codes to the other RAID-6 codes in Section 4.

3.1 Bit Matrix Coding Overview
Bit matrix coding is a parity array coding technique first
employed in Cauchy Reed-Solomon coding [BKK+95].
In general, there there are k data devices and m cod-
ing devices, each of which holds exactly w bits. The
system uses a w(k + m) × wk matrix over GF (2) to
perform encoding. This means that every element of the
matrix is either zero or one, and arithmetic is equivalent
to arithmetic modulo two. The matrix is called a binary
distribution matrix, or BDM. The state of a bit matrix
coding system is described by the matrix-vector product
depicted in Figure 6.

The BDM has a specific format. Its first wk rows
compose a wk × wk identity matrix, pictured in Fig-
ure 6 as a k × k matrix whose elements are each w × w
bit matrices. The next mw rows are composed of mk
matrices, each of which is a w × w matrix Xi,j .

We multiply the BDM by a vector composed of
the wk bits of data. We depict that in Figure 6 as k
bit vectors with w elements each. The product vector
contains the (k + m)w bits of the entire system. The
first wk elements are equal to the data vector, and the
last wm elements contain the coding bits, held in the m
coding devices.

Note that each device corresponds to a row of w ×w
matrices in the BDM, and that each bit of each device

4

Figure 6: An example bit matrix coding system.

corresponds to one of the w(k + m) rows of the BDM.
The act of encoding is to calculate each bit of each C i

as the dot product of that bit’s row in the BDM and the
data. Since each element of the system is a bit, this dot
product may be calculated as the XOR of each data bit
that has a one in the coding bit’s row. Therefore, the per-
formance of encoding is directly related to the number
of ones in the BDM.

To decode, suppose some of the devices fail. As long
as there are k surviving devices, we decode by creating
a new wk × wk matrix BDM’ from the wk rows corre-
sponding to k of the surviving devices. The product of
that matrix and the original data is equal to these k sur-
viving devices. To decode, we therefore invert BDM’
and multiply it by the survivors – that allows us to cal-
culate any lost data. Once we have the data, we may use
the original BDM to calculate any lost coding devices.

For a coding system to be MDS, it must tolerate the
loss of any m devices. Therefore, every possible BDM’
matrix must be invertible. This is done in Cauchy Reed-
Solomon coding by creating each X i,j from a Cauchy
matrix in GF (2w) [BKK+95]. However, it is an open
question how to create these bit matrices in general.

Since the first wk rows of the BDM compose an iden-
tity matrix, we may specify a BDM with a Coding Dis-
tribution Matrix (CDM) composed of the last wm rows
of the BDM. It is these rows that define how the coding
devices are calculated.

Figure 7: Bit matrix representation of RAID-6 coding
when k = 4 and w = 4.

3.2 RAID-6 Bit Matrix Encoding
When this methodology is applied to RAID-6, the BDM
is much more restricted. First, m = 2, and the two cod-
ing devices are named P = C0 and Q = C1. Since
the P device must be the parity of the data devices, each
matrix X0,i is equal to a w × w identity matrix. Thus,
the only degree of freedom in is the definition of the X i,j

matrices that encode the Q device. For simplicity of no-
tation, we remove the extra subscript and call these ma-
trices X0, . . . , Xk−1. A RAID-6 system is depicted in
Figure 7 for k = 4 and w = 4.

To calculate the contents of a coding bit, we sim-
ply look at the bit’s row of the CDM, and calculate the
XOR of each data bit that has a one in its correspond-
ing column. For example, in Figure 7, it is easy to see
that p0 = d0,0 ⊕ d1,0 ⊕ d2,0 ⊕ d3,0.

When a data bit is modified, we observe that each
data bit di,j corresponds to column wi + j in the CDM.
Each coding bit whose row contains a one in that column
must be updated with the XOR of the data bit’s old and
new values.

Therefore, to employ bit matrices for RAID-6, we are
faced with a challenge to define the Xi matrices so that
they have a minimal number of ones, yet remain MDS.
A small number of ones is important for fast encoding
and updating. We shall see the impact on decoding later
in the paper.

It is an interesting aside that any RAID-6 code based
on XOR operations may be defined with a bit matrix.
To demonstrate, we include the Xi for EVENODD,
RDP and Cauchy Reed-Solomon coding when k = 6
and w = 6 in Figure 8. It is a simple matter to verify
that each of these defines an MDS BDM.

There are 61 ones in the EVENODD matrices, 60 in
the RDP matrices and 46 in the Cauchy Reed-Solomon
matrices. Thus, were one to encode with the bit matri-

5

(a) EVENODD.

(b) RDP.

(c) Cauchy Reed-Solomon coding.

Figure 8: The Xi matrices defining the BDM’s for vari-
ous RAID-6 coding techniques, k = 6 and w = 6.

ces, the Cauchy Reed-Solomon coding matrices would
be the fastest, which would seem to contradict the fact
that RDP encodes optimally. We explore this more fully
in Section 3.4 below, where we demonstrate how to im-
prove the performance of bit matrix encoding so that it
does not rely solely on the number of ones in the matrix.

The performance of updating, however, is directly re-
lated to the number of ones in each column, and there is
no way to optimize that further. The fact that EVEN-
ODD and RDP coding update must update an roughly
three coding bits per data bit is reflected in their CDM’s,
which have an average of 36+61

36 = 2.69 and 36+60
36 =

2.67 ones per column respectively (we add 36 ones for
the identity matrices that encode the P device). The
Cauchy Reed-Solomon CDM requires only 2.31 mod-
ifications per data bit.

3.3 Liberation Code Specification
We now define the Liberation codes. As with EVEN-
ODD and RDP coding, the value of w is restricted and
depends on k. In particular, w must be a prime num-
ber ≥ k and > 2. To specify the Xi matrices, we use
two pieces of notation:

• We define Iw
→d to be the w × w identity matrix

whose columns have been rotated to the right by d
columns. Note that Iw = Iw

→0

• We define Ow
i,j to be a w×w matrix where every el-

ement is zero, except for the element in row (i mod
w) and column (j mod w), which equals one.

The Liberation codes are defined as follows:

• X0 = Iw.

• For 0 < i < k, Xi = Iw
→i + Ow

y,y+i−1, where y =
i(w−1)

2 . An alternate and equivalent specification
is that y = w−i

2 when i is odd, and y = w − i
2

when i is even.

Figure 9 shows the Xi matrices for the Liberation
Code when k = 7 and w = 7. It may be proven that for
all prime w > 2, the Liberation Code for k ≤ w is an
MDS code [PB07].

Figure 9: The Xi matrices for the Liberation Code
when k = 7 and w = 7.

For any given values of k and w, the X i matrices have
a total of kw + k − 1 ones. Add this to the kw ones for
device P ’s matrices, and that makes 2kw + k − 1 ones
in the CDM. If a coding bit’s row of the CDM has o
ones, it takes (o − 1) XORs to encode that bit from the
data bits. Therefore, each coding bit requires an average
of 2kw+k−1−2w

2w = k−1+ k−1
2w XORs. Optimal is k−1.

The average ones per column of the CDM
is 2kw+k−1

kw = 2 + k−1
kw , which is roughly two. Optimal

is two. Thus, the Liberation codes achieve near optimal
performance for both encoding and modification. We
explore the notion of optimality in terms of the number
of ones in an MDS RAID-6 CDM in Section 6 below.
There we will show that the Liberation Codes achieve
the lower bound on number of ones in a matrix.

3.4 Bit Matrix Scheduling for Decoding
To motivate the need for bit matrix scheduling, consider
an example when k = 5 and w = 5. We encode using
the Liberation code, and devices D0 and D1 fail. To
decode, we create BDM’ by deleting the top 10 rows
of the BDM and inverting it. The first 10 rows of this
inverted matrix allow us to recalculate D0 and D1 from
the surviving devices. This is depicted in Figure 10.

Calculating the ten dot products in the straightfor-
ward way takes 124 XORs, since there are 134 ones
in the matrix. Optimal decoding would take 40 XORs.
Now, consider rows 0 and 5 of the matrix which are
used to calculate d0,0 and d1,0 respectively. Row 0 has
16 ones, and row 5 has 14 ones, which means that d0,0

and d1,0 may be calculated with 28 XORs in the straight-
forward manner. However, there are 13 columns in
which both rows have ones. Therefore, suppose we first

6

Figure 10: Decoding D0 and D1 from the Liberation
Codes when k = 5 and w = 5.

calculate d1,0, which takes 13 XORs, and then calcu-
late d0,0 using the equation:

d0,0 = d1,0 ⊕ d2,0 ⊕ d3,0 ⊕ d4,0 ⊕ p0.

This only takes four additional XOR operations, lower-
ing the total for the two bits from 28 XORs to 17.

This observation leads us to a simple algorithm
which we call bit matrix scheduling, for performing a
collection of dot products in a bit matrix-vector product
more efficiently than simply performing each dot prod-
uct independently. To describe the algorithm, we use the
following assumptions and notation:

• We are multiplying matrix M by vector V to cal-
culate the product vector U . All elements are bits
and arithmetic is in GF (2).

• Matrix M has r rows and c columns. The element
in row i, column j is denoted M [i, j]. Vector V
has c elements denoted V [0], . . . , V [c−1], and vec-
tor p has r elements denoted U [0], . . . , U [r − 1].

• We denote row i of M as Mi.

• From[] is a vector of r integers, each initialized to
-1.

• Ones[] is a vector of r integers, initialized so that
Ones[i] equals the number of ones in row i of the
matrix.

• Sum(i, j) is a c-element bit vector that equals the
sum (in GF (2)) of Mi and Mj .

• Notdone is a set of integers initialized to contain
all values in [0..r − 1].

The algorithm proceeds in r steps. Each step performs
the following operations:

1. Select i such that i ∈ Notdone and Ones[i] is min-
imized. Break ties arbitrarily.

2. If From[i] equals -1, then U [i] is calculated to
be the XOR of all V [j] such that M [i, j] = 1.
If From[j] does not equal -1, then U [i] is calcu-
lated as the XOR of U [From[i]] and all V [j] such
that M [i, j] + M [From[i], j] = 1.

3. Remove i from Notdone.

4. For all j ∈ Notdone, calculate x to be one plus
the number of ones in Sum(i, j). If x < Ones[j],
then set Ones[j] to x, and From[j] to i.

Thus, if it is more efficient to calculate the a product el-
ement from another product element than from the orig-
inal vector, this algorithm makes that happen. When the
algorithm operates on the example in Figure 10, it ends
up with the following schedule:

• Calculate d1,3: 7 XORs.
• Calculate d0,3 from d1,3: 4 XORs.
• Calculate d1,4 from d0,3: 5 XORs.
• Calculate d0,4 from d1,4: 4 XORs.
• Calculate d1,0 from d0,4: 5 XORs.
• Calculate d0,0 from d1,1: 4 XORs.
• Calculate d1,1 from d0,0: 4 XORs.
• Calculate d0,1 from d1,1: 4 XORs.
• Calculate d1,2 from d0,1: 5 XORs.
• Calculate d0,2 from d1,2: 4 XORs.

This is a total of 46 XORs, as opposed to 124 without
scheduling. An optimal algorithm would decode with 40
XORs.

We note that this algorithm does not always yield
an optimal schedule of operations. For example, one
can encode using the matrix in Figure 8(a) (EVENODD
coding with k = 6, w = 6) with exactly 41 XOR op-
erations by first calculating S = d1,5 ⊕ d2,4 ⊕ d3,3 ⊕
d4,2 ⊕ d5,1 and using S in each dot product. When the
bit scheduling algorithm is applied to that matrix, how-
ever, it is unable to discover this optimization, and in
fact yields no improvements in encoding: the dot prod-
ucts take 55 XORs.

However, for decoding with the Liberation Codes,
this algorithm improves performance greatly. As an in-
teresting aside, the algorithm derives the optimal sched-
ule for both encoding and decoding using the bit ma-
trix versions of RDP codes, and it improves the per-
formance of both encoding and decoding with Cauchy
Reed-Solomon coding. It is an open question to come up
with an efficient algorithm that produces optimal sched-
ules for all bit matrix-vector products.

7

3.5 Caching Schedules
The algorithm for bit matrix scheduling, like the inver-
sion of the BDM’ matrix, is O(w3). Since w is likely
to be relatively small in a RAID-6 system, and since en-
coding and decoding both involve XORs of O(w 2) dis-
tinct elements, the inversion and bit scheduling should
not add much time to performance of either operation.
However, since the total possible number of schedules is
bounded by

(
k+2
2

)
, it is completely plausible to precal-

culate each of the
(k+2

2

)
schedules and cache them for

faster encoding/decoding.

4 Performance
We have implemented encoding, modification and de-
coding using all the techniques described in this paper.
In all the graphs below, the numbers were generated
by instrumenting the implementation and counting the
XOR operations. When there was a closed-form expres-
sion for a metric (e.g. Encoding with RDP, EVENODD,
or Liberation codes), we corroborated our numbers with
the expression to make sure that they matched.

4.1 Performance of Encoding
We measure the performance of encoding as the average
number of XOR operations required per coding word.
This includes encoding both the P and Q devices. Since
optimal encoding is k − 1 XORs per coding word, we
can normalize by dividing the number of XORs per cod-
ing word by k−1 to achieve the factor of encoding over
optimal. These values are presented in Figure 11.

5 10 15 20 25 30
k

1.00

1.05

1.10

1.15

1.20

Fa
ct

or
 o

ve
r

op
tim

al

RDP
EVENODD

Liberation w=7
Liberation w=17
Liberation w=31
Liberation w=101

Cauchy w=10
Cauchy w=18
Cauchy w=31

Figure 11: Encoding performance of various XOR-
based RAID-6 techniques. Optimal encoding is k − 1
XORs per coding word.

RDP encoding achieves optimality when k + 1
and k + 2 are prime numbers. Otherwise, the code is
shortened by assuming that there are data devices that

hold nothing but zeros [CEG+04]. As the code is asym-
metric, the best performance is achieved by assuming
that the first w − k devices are zero devices. This is
as opposed to EVENODD coding, which performs best
when the last w − k devices are zero devices. With both
RDP and EVENODD coding, w is a function of k, as
smaller w perform better than larger w.

With Liberation codes, this is not the case – larger w
perform better than smaller w. For that reason, we plot
four values of w in Figure 11. The lines are flat, because
the number of XORs per coding word (from Section 3.3)
is equal to k − 1 + k−1

2w , and therefore their factor over
optimal is 1 + 1

2w . As such, the codes are asymptoti-
cally optimal. As a practical matter though, smaller w
require the coding engine to store fewer blocks of data
in memory, and may perform better than larger w due to
memory/caching effects. The selection of a good w in
Liberation Coding thus involves a tradeoff between the
fewer XORs required by large w and the reduced mem-
ory consumption of small w.

The performance of EVENODD encoding is
roughly k− 1

2 , which is worse than both RDP and Liber-
ation encoding except when k = w in Liberation Coding
and the two perform equally.

The Cauchy Reed-Solomon codes for various w
are also included in the graph. Like Liberation
Codes, Cauchy Reed-Solomon codes perform better
with larger w than with smaller w. However, unlike
the other codes, their performance relative to optimal
worsens as k grows. It is interesting to note that they
outperform EVENODD coding for small k. Since their
performance is so much worse than the others, we omit
them in subsequent graphs.

5 10 15 20 25 30
k

1.00

1.05

1.10

1.15

1.20

Fa
ct

or
 o

ve
r

op
tim

al RDP, w=16
RDP, w=30

EVENODD w=16
EVNEODD w=30

Liberation w=17
Liberation w=31

Figure 12: Encoding performance of RDP, EVENODD
and Liberation codes when w is fixed.

One of the attractive features of these XOR codes is
that if w is chosen to be large enough, then the same
code can support any k ≤ w devices. Adding or sub-
tracting devices only involves modification to coding de-

8

vices P and Q, and does not require re-encoding the en-
tire system as, for example, the X-Code would [XB99].
For that reason, Figure 12 shows the performance of
RDP, EVENODD and Liberation encoding when w is
fixed. Although RDP outperforms the Liberation codes
for larger k, for smaller k, the Liberation codes per-
form better. Moreover, their performance relative to op-
timal is fixed for all k, which may make ease the act
of scheduling coding operations in a distributed storage
system.

4.2 Performance of Modification
Figure 13 shows the average number of coding bits that
must be modified when a data bit is updated. With both
EVENODD and RDP coding, this number increases
with w, reaching a limit of three as w grows. With
Liberation codes, the opposite is true, as the number of
modified coding bits is roughly two. Clearly, the Lib-
eration codes outperform the other two in modification
performance.

5 10 15 20 25 30
k

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

M
od

ifi
ed

 C
od

in
g

Bi
ts

Pe
r

M
od

ifi
ed

 D
at

a
Bi

t

RDP
RDP w=16
RDP w=30

EVENODD

Liberation w=17
Liberation w=31

Figure 13: Modification performance of RDP, EVEN-
ODD and Liberation codes.

4.3 Performance of Decoding
For single failures, all RAID-6 systems decode identi-
cally. If the failure is in a data device, then it may be
decoded optimally from the P device. Otherwise, de-
coding is identical to encoding. Thus, we only concern
ourselves with two-device failures. To test decoding,
we measured the performance of decoding for each of
the

(k+2
2

)
possible combinations of failures. As with

encoding, we measure number of XORs per failed word
and present the average value. In Figure 14 we plot
the measurements, again as a factor over optimal, which
is k − 1 XORs per failed word.

In general, RDP coding exhibits the best decoding
performance, followed by EVENODD coding and then
Liberation coding, which decodes at a rate between ten

5 10 15 20 25 30
k

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Fa
ct

or
 O

ve
r

O
pt

im
al RDP

RDP w=16
RDP w=30

EVENODD

Liberation w=17
Liberation w=31
Liberation w=101

Figure 14: Decoding performance of RDP, EVENODD
and Liberation codes.

and fifteen percent over optimal. The effectiveness of
bit matrix scheduling is displayed in Figure 15, which
shows the performance of Liberation decoding without
scheduling for w = 17 and w = 31.

5 10 15 20 25 30
k

1
2
3
4
5
6
7
8
9

10
11
12

Fa
ct

or
 O

ve
r

O
pt

im
al

w=17, No Scheduling
w=31, No Scheduling

w=17, With Scheduling
w=31, With Scheduling

Figure 15: The effectiveness of bit matrix scheduling on
Liberation decoding.

Figure 15 clearly shows that with without bit
scheduling, Liberation codes would be unusable as a
RAID-6 technique. It remains a topic of future work
to see if the scheduling algorithm of Section 3.4 may be
improved further.

4.4 Comparison to Reed-Solomon Coding
We do not include a detailed comparison of Liberation
Coding to standard Reed-Solomon coding. Instead, in
Figure 16 we present measurements of the basic oper-
ations of Reed-Solomon coding on three different ma-
chines. The first machine is a MacBook Pro with a
2.16 GHz Intel Core 2 Duo processor. The second is
a Dell Precision with a 1.5 GHz Intel Pentium proces-
sor. The third is a Toshiba Tecra with a 1.73 GHz In-

9

tel Pentium processor. On each, we measure the band-
width of three operations: XOR, multiplication by an
arbitrary constant in GF (28) and multiplication by two
using Anvin’s optimization [Anv07]. Multiplication by
an arbitrary constant is implemented using a 256 × 256
multiplication table.

MacBook Dell Toshiba

0.5 GB/s
1.0 GB/s
1.5 GB/s
2.0 GB/s
2.5 GB/s
3.0 GB/s

Ba
nd

w
id

th

XOR
Multiplication by two in GF(2^8)
Multiplication by any number in GF(2^8)

Figure 16: The bandwidth of basic operations for Reed-
Solomon Coding.

We may project the performance of standard and op-
timized Reed-Solomon coding as follows. Let B⊕ be
the bandwidth of XOR (in GB/s), B⊗ be the band-
width of arbitrary multiplication, and B⊗2 be the band-
width of multiplication by two. Then the time to encode
one gigabyte of data on k devices using standard Reed-
Solomon coding is:

2 ∗ k − 1
B⊕

+
k − 1
B⊗

.

This is because the P device is still encoded with par-
ity, and the Q device requires (k − 1) multiplications
by a constant. The time to encode one megabyte with
Anvin’s optimization simply substitutes B⊗ with B⊗2.
Finally, optimal encoding time is 2∗ k−1

B⊕
, reflecting k−1

XORs per coding word.
In Figure 17, we plot the performance of encoding

using the bandwidth numbers from Figure 16. For stan-
dard Reed-Solomon coding, the performance of decod-
ing is roughly equal to encoding performance. An-
vin’s optimization improves the performance of encod-
ing roughly by a factor of three. However, it is much
worse than the XOR-based codes. Moreover, the op-
timization does not apply to decoding, which will per-
form at the same rate as standard Reed-Solomon cod-
ing. Thus, we conclude that even with the optimization,
Reed-Solomon coding is an unattractive alternative for
RAID-6 applications.

MacBook Dell Toshiba
1

2

3

4

5

6

Fa
ct

or
 o

ve
r

op
tim

al

Standard
Optimized

Figure 17: The projected performance of standard and
optimized Reed-Solomon coding using the bandwidth
measurements from Figure 16.

5 Liberation Coding Library
We have implemented a library in C/C++ to facilitate all
Liberation coding operations. It is part of the jerasure
library [Pla07], which implements all manners of matrix
and bit-matrix coding, including regular Reed-Solomon
coding, Cauchy Reed-Solomon coding and Liberation
coding. The library is freely available under the GNU
LPL.

6 Minimal Number of Ones
We state the following properties of RAID-6 codes
and w × w bit matrices [PB07]:

• Property #1: Given a RAID-6 code that uses
only XORs, this code may be represented by a
CDM, which in turn may be specified by the ma-
trices X0, . . . , Xk−1. If the code is MDS, then
each Xi must be an invertible w × w matrix.

• Property #2: Given a MDS RAID-6 code as
above, for every i, j such that i (= j, the ma-
trix (Xi + Xj) must be invertible.

• Property #4: If a w × w matrix is invertible, then
it must have at least w ones.

• Property #5: A permutation matrix, I w
π is a w×w

matrix that has w ones such that there is exactly one
one in every row and column of the matrix. Permu-
tation matrices are the only matrices with exactly w
ones that are invertible.

• Property #6: Let Iw
π and Iw

π′ be two permutation
matrices. Their sum (Iw

π + Iw
π′) is not invertible.

Now consider a RAID-6 code represented
by X0, . . . , Xk−1 such that for some i (= j, Xi

and Xj have exactly w ones each. This code cannot
be MDS, because Xi and Xj must be permutation
matrices, or they are not invertible. Since they are
permutation matrices, their sum is not invertible.

10

Therefore, a RAID-6 code may only have one X i that
has exactly w ones. The other Xj must have more
than w ones.

Since the Liberation Codes have one matrix with ex-
actly w ones, and k−1 matrices with w+1 ones, they are
minimal RAID-6 matrices. It is an interesting by prod-
uct of this argument that no MDS RAID-6 code can have
optimal modification overhead. The Liberation Codes
thereby achieve the lower bound on modification over-
head. As an aside, the X-Code [XB99] does have op-
timal modification overhead; however the X-Code does
not fit the RAID-6 paradigm.

7 Conclusions/Future Work
In this paper, we have defined a new class of erasure
codes, called Liberation Codes, for RAID-6 applica-
tions with k data devices. They are parity array codes
represented by w × w bit matrices where w is a prime
number ≥ k. Their encoding performance is excellent,
achieving a factor of 1 + 2

w over optimal. This is an im-
provement in all cases over EVENODD encoding, and
in some cases over RDP encoding. Their decoding per-
formance does not outperform the other two codes, but
has been measured to be within 15% of optimal. Their
modification overhead is roughly two coding words per
modified data word, which is not only an improvement
over both EVENODD and RDP coding, but is fact opti-
mal for a RAID-6 code.

In order to make decoding work quickly, we have
presented an algorithm for scheduling the XOR oper-
ations of a bit matrix-vector product. The algorithm is
simple, and not effective for all bit matrices, but is very
effective for Liberation Decoding, reducing the over-
head of decoding by a factor of six when w = 17, and
over eleven when w = 31.

Besides comparing Liberation Codes to RDP and
EVENODD coding, we assess their performance in
comparison to Reed-Solomon coding. In all cases, they
outperform Reed-Solomon coding greatly. We have
written a library to facilitate the use of Liberation Codes
in RAID-6 applications. This library will be available
on the Internet following the review process for this pa-
per.

In sum, Liberation Codes are extremely attractive al-
ternatives to other RAID-6 implementations. We antic-
ipate that their simple structure, excellent performance
and availability in library form will make them popular
with RAID-6 implementors.

Our future work in this project is proceeding along
three lines. First, the Liberation Codes are only de-
fined for prime w. We are currently working to discover
optimal RAID-6 codes for non-prime w. In particular,

values of w which are powers of two are quite attrac-
tive. Our search has been based on Monte-Carlo tech-
niques, attempting to build good matrices from smaller
matrices and to improve on the best current matrices
by modifying them slightly. Currently, the search has
yielded optimal matrices for nearly every value of k ≤ 8
and w ≤ 32. We will continue to explore these construc-
tions.

Second, we are looking to construct better bit matrix
scheduling algorithms. Although the Liberation decod-
ing cannot be improved much further, it is clear from
our current algorithm’s inability to schedule EVEN-
ODD coding effectively that further refinements are
available. In its simplest case, bit scheduling is equiva-
lent to common subexpression removal in compiler sys-
tems [Coc70, ASU86, BCS97]. We are exploring those
methodologies to further probe into the problem.

Finally, we have yet to explore how Liberation Codes
may extrapolate systems that need to tolerate more fail-
ures. We plan to probe into minimal conditions for gen-
eral MDS codes based on bit matrices such as those pre-
sented in Section 6, to see if the Liberation Code con-
struction has application for larger classes of failures.

11

References
[Anv07] H. P. Anvin. The mathematics of RAID-6.

http://kernel.org/pub/linux/
kernel/people/hpa/raid6.pdf,
2007.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA,
1986.

[BBBM95] M. Blaum, J. Brady, J. Bruck, and
J. Menon. EVENODD: An efficient
scheme for tolerating double disk failures
in RAID architectures. IEEE Transactions
on Computing, 44(2):192– 202, February
1995.

[BBBM96] M. M. Blaum, J. T. Brady, J. Bruck, and
J. M. Menon. Method and means for en-
coding and rebuilding the data contents of
up to two unavailable DASDS in a DASD
array using simple non-recursive diagonal
and row parity. U.S. Patent #5579475,
1996.

[BCS97] P. Briggs, K. D. Cooper, and L. T. Simp-
son. Value numbering. Software: Practice
& Experience, 27(6):701–724, 1997.

[BKK+95] J. Blomer, M. Kalfane, M. Karpinski,
R. Karp, M. Luby, and D. Zuckerman.
An XOR-based erasure-resilient coding
scheme. Technical Report TR-95-048,
International Computer Science Institute,
August 1995.

[CEG+04] P. Corbett, B. English, A. Goel, T. Grcanac,
S. Kleiman, J. Leong, and S. Sankar. Row
diagonal parity for double disk failure cor-
rection. In 4th Usenix Conference on File
and Storage Technologies, San Francisco,
CA, March 2004.

[CKE07] P. F. Corbett, S. R. Kleiman, and R. M.
English. Row-diagonal parity technique
for enabling efficient recovery from dou-
ble failures in a storage array. U.S. Patent
#7203892, 2007.

[Coc70] J. Cocke. Global common subexpres-
sion elimination. ACM SIGPLAN Notices,
5(7):20–24, July 1970.

[FDBS05a] G. Feng, R. Deng, F. Bao, and J. Shen.
New efficient MDS array codes for RAID

Part I: Reed-Solomon-like codes for tol-
erating three disk failures. IEEE Trans-
actions on Computers, 54(9):1071–1080,
September 2005.

[FDBS05b] G. Feng, R. Deng, F. Bao, and J. Shen.
New efficient MDS array codes for RAID
Part II: Rabin-like codes for tolerating mul-
tiple (≥ 4) disk failures. IEEE Trans-
actions on Computers, 54(12):1473–1483,
Decemeber 2005.

[Haf05] J. L. Hafner. WEAVER Codes: Highly
fault tolerant erasure codes for storage sys-
tems. In FAST-2005: 4th Usenix Con-
ference on File and Storage Technologies,
pages 211–224, San Francisco, December
2005.

[Haf06] J. L. Hafner. HoVer erasure codes for disk
arrays. In DSN-2006: The International
Conference on Dependable Systems and
Networks, Philadelphia, June 2006. IEEE.

[HCL07] C. Huang, M. Chen, and J. Li. Pyramid
codes: Flexible schemes to trade space for
access efficienty in reliable data storage
systems. In NCA-07: 6th IEEE Interna-
tional Symposium on Network Computing
Applications, Cambridge, MA, July 2007.

[HX05] C. Huang and L. Xu. STAR: An efficient
coding scheme for correcting triple storage
node failures. In FAST-2005: 4th Usenix
Conference on File and Storage Technolo-
gies, pages 197–210, San Francisco, De-
cember 2005.

[Moo05] T. K. Moon. Error Correction Coding:
Mathematical Methods and Algorithms.
John Wiley & Sons, New York, 2005.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The
Theory of Error-Correcting Codes, Part I.
North-Holland Publishing Company, Ams-
terdam, New York, Oxford, 1977.

[PB07] J. S. Plank and A. L. Buchsbaum. Some
classes of invertible matrices in GF (2).
Technical Report CS-07-599, University of
Tennessee, August 2007.

[PD05] J. S. Plank and Y. Ding. Note: Correc-
tion to the 1997 tutorial on Reed-Solomon
coding. Software – Practice & Experience,
35(2):189–194, February 2005.

12

[Pla97] J. S. Plank. A tutorial on Reed-Solomon
coding for fault-tolerance in RAID-like
systems. Software – Practice & Experi-
ence, 27(9):995–1012, September 1997.

[Pla07] J. S. Plank. Jerasure: A library in C/C++
facilitating erasure coding for storage ap-
plications. Technical Report CS-07-603,
University of Tennessee, September 2007.

[PW72] W. W. Peterson and E. J. Weldon, Jr. Error-
Correcting Codes, Second Edition. The
MIT Press, Cambridge, Massachusetts,
1972.

[PX06] J. S. Plank and L. Xu. Optimizing Cauchy
Reed-Solomon codes for fault-tolerant net-
work storage applications. In NCA-06:
5th IEEE International Symposium on Net-
work Computing Applications, Cambridge,
MA, July 2006.

[RS60] I. S. Reed and G. Solomon. Polynomial
codes over certain finite fields. Journal
of the Society for Industrial and Applied
Mathematics, 8:300–304, 1960.

[vL82] J. H. van Lint. Introduction to Coding The-
ory. Springer-Verlag, New York, 1982.

[WS07] J. J. Wylie and R. Swaminathan. Determin-
ing fault tolerance of XOR-based erasure
codes efficiently. In DSN-2007: The Inter-
national Conference on Dependable Sys-
tems and Networks, Edinburgh, Scotland,
June 2007. IEEE.

[XB99] L. Xu and J. Bruck. X-Code: MDS array
codes with optimal encoding. IEEE Trans-
actions on Information Theory, 45(1):272–
276, January 1999.

13

