
Jerasure: A Library in C/C++ Facilitating Erasure Coding for
Storage Applications

James S. Plank∗

Technical Report CS-07-603
Department of Electrical Engineering and Computer Science

University of Tennessee
Knoxville, TN 37996

http://www.cs.utk.edu/∼plank/plank/papers/CS-07-603.html

This describes revision 1.0 of the code.

Abstract

This paper descibes jerasure, a library in C/C++ that supports erasure coding in storage applications. In this
paper, we describe both the techniques and algorithms, plus the interface to the code. Thus, this serves as a quasi-
tutorial and a programmer’s guide.

If You Use This Library or Document
Please send me an email to let me know how it goes. One of the ways in which I am evaluated both interally and
externally is by the impact of my work, and if you have found this library and/or this document useful, I would like to
be able to document it. Please send mail to plank@cs.utk.edu.
The library itself is protected by the GNU LGPL. It is free to use and modify within the bounds of the LGPL. None

of the techniques implemented in this library have been patented.

Finding the Code
Please see http://www.cs.utk.edu/∼plank/plank/papers/CS-07-603.html to get the TAR file for
this code.

∗plank@cs.utk.edu, 865-974-4397, This material is based upon work supported by the National Science Foundation under grant CNS-
0615221.

1

CONTENTS 2

Contents
1 Introduction 3

2 The Modules of the Library 4

3 Matrix-Based Coding In General 5

4 Bit-Matrix Coding In General 5
4.1 Using a schedule rather than a bit-matrix . 6

5 MDS Codes 7

6 Part 1 of the Library: Galois Field Arithmetic 7

7 Part 2 of the Library: Kernel Routines 8
7.1 Matrix/Bitmatrix/Schedule Creation Routines . 9
7.2 Encoding Routines . 10
7.3 Decoding Routines . 10
7.4 Dot Product Routines . 11
7.5 Basic Matrix Operations . 11
7.6 Statistics . 12
7.7 Example Programs to Demonstrate Use . 12

8 Part 3 of the Library: Classic Reed-Solomon Coding Routines 21
8.1 Vandermonde Distribution Matrices . 21
8.2 Procedures Related to Reed-Solomon Coding Optimized for RAID-6 22
8.3 Example Programs to Demonstrate Use . 22

9 Part 4 of the Library: Cauchy Reed-Solomon Coding Routines 25
9.1 The Procedures in cauchy.c . 26
9.2 Example Programs to Demonstrate Use . 26
9.3 Extending the Parameter Space for Optimal Cauchy RAID-6 Matrices 29

10 Part 5 of the Library: Liberation Coding 29
10.1 Example Program to Demonstrate Use . 29

1 INTRODUCTION 3

1 Introduction
Erasure coding for storage applications is growing in importance as storage systems grow in size and complexity. This
paper describes jerasure, a library in C/C++ that supports erasure coding applications. Jerasure has been designed
to be modular, fast and flexible. It is our hope that storage designers and programmers will find jerasure to be a
convenient tool to add fault tolerance to their storage systems.
Jerasure supports a horizontal mode of erasure codes. We assume that we have k devices that hold data. To that,

we will addm devices whose contents will be calculated from the original k devices. If the erasure code is aMaximum
Distance Separable (MDS) code, then the entire system will be able to tolerate the loss of anym devices.

(a) Encoding. (b) Decoding.

Figure 1: The act of encoding takes the contents of k data devices and encodes them on m coding devices. The act
of decoding takes some subset of the collection of (k + m) total devices and from them recalcalates the original k
devices of data.

As depcited in Figure 1, the act of encoding takes the original k data devices, and from them calculatesm coding
devices. The act of decoding takes the collection of (k + m) devices with erasures, and from the surviving devices
recalculates the contents of the original k data devices.
Most codes have a third parameter w, which is the word size. The description of a code views each device as

having w bits worth of data. The data devices are denoted D 0 through Dk−1 and the coding devices are denoted C0

through Cm−1. Each device Di or Cj holds w bits, denoted di,0, . . . di,w−1 and ci,0, . . . ci,w−1. In reality of course,
devices hold megabytes of data. To map the description of a code to its realization in a real system, we do one of two
things:

1. When w ∈ {8, 16, 32}, we can consider each collection of w bits to be a byte, short word or word respectively.
Consider the case when w = 8. We may view each device to holdB bytes. The first byte of each coding device
will be encoded with the first byte of each data device. The second byte of each coding device will be encoded
with the second byte of each data device. And so on. This is how Standard Reed-Solomon coding works, and it
should be clear how it works when w = 16 or w = 32.

2. Most other codes work by defining each coding bit c i,j to be the bitwise exclusive-or (XOR) of some subset of
the other bits. To implement these codes in a real system, we assume that the device is composed of w packets
of equal size. Now each packet is calculated to be the bitwise exclusive-or some subset of the other packets.
In this way, we can take advantage of the fact that we can perform XOR operations on whole computer words
rather than on bits.
The process is illustrated in Figure 2. In this figure, we assume that k = 4, m = 2 and w = 4. Suppose that a
code is defined such that coding bit c1,0 is goverened by the equation:

c1,0 = d0,0 ⊕ d1,1 ⊕ d2,2 ⊕ d3,3,

2 THE MODULES OF THE LIBRARY 4

where ⊕ is the XOR operation. Figure 2 shows how the coding packet corresponding to c 1,0 is calculated from
the data packets corresponding to d0,0, d1,1, d2,2 and d3,3. We call the size of each packet the packet size, and
the size of w packets to be the coding block size. Obviously, the coding block size must be a multiple of w and
the computer’s word size.

Figure 2: Although codes are described on systems of w bits, their implementation employs packets that are much
larger. Each packet in the implementation corresponds to a bit of the description. This figure is showing how the
equation c1,0 = d0,0 ⊕ d1,1 ⊕ d2,2 ⊕ d3,3 is realized in an implementation.

2 The Modules of the Library
This library is broken into five modules, each with its own header file and implementation in C. Typically, when using
a code, one only needs three of these modules: galois, jerasure and one of the others. The modules are:

1. galois.h/galois.c: These are procedures for Galois Field Arithmetic as described and implemented in [Pla07a].

2. jerasure.h/jerasure.c: These are kernel routines that are common to most erasure codes. They do not depend
on any module other than galois. They include support for matrix-based coding and decoding, bit-matrix-based
coding and decoding, conversion of bit-matrices to schedules, matrix and bit-matrix inversion.

3. reedsol.h/reedsol.c: These are procedures for creating distribution matrices for Reed-Solomon coding [RS60,
Pla97, PD05]. They also include the optimized version of Reed-Solomon encoding for RAID-6 as discussed
in [Anv07].

4. crs.h/crs.c: These are procedures for performing Cauchy Reed-Solomon coding [BKK +95, PX06], which em-
ploys a different matrix construction than classic Reed-Solomon coding. We include support for creating opti-
mal Cauchy distribution matrices for RAID-6, and for creating distribution matrices that are better than those
currently published.

5. liberation.h/liberation.c: These are procedures for performing RAID-6 coding and decoding with the RAID-6
Liberation codes [Pla07b]. These are bit-matrix codes that performmuch better than the Reed-Solomon variants
and better than EVENODD coding [BBBM95]. In some cases, they even outperform RDP [CEG+04], which is
the best currently known RAID-6 code.

Each module is described in its own section below. Additionally, there are example programs that show the usage
of each module.

3 MATRIX-BASED CODING IN GENERAL 5

3 Matrix-Based Coding In General
The mechanics of matrix-based coding is explained in great detail in [Pla97]. We give a high-level overview here.
Suppose we have k data words and m coding words, each composed of w bits. We can describe the state of a

matrix-based coding system by a matrix-vector product as depicted in Figure 3. The matrix is called a distribution
matrix and a is (k + m) × k matrix. The elements of the matrix are numbers in GF (2w) for some value of w.
This means that they are integers between 0 and 2w − 1, and arithmetic is performed using Galois Field arithmetic:
Addition is equal to XOR, and multiplication is implemented in a variety of ways. The Galois Field arithmetic library
in [Pla07a] has procedures which implement Galois Field arithmetic.

Figure 3: Using a matrix-vector product to describe a coding system.

The top k rows of the distribution matrix compsose a k × k identity matrix. The remaining m rows are called
the coding matrix, and are defined in a variety of ways [Rab89, Pre89, BKK+95, PD05]. The distribution matrix is
multiplied by a vector that contains the data words and yields a product vector containing both the data and the coding
words. Therefore, to encode, we need to performm dot products of the coding matrix with the data.
To decode, we note that each word in the system has a corresponding row of the distrubtion matrix. When devices

fail, we create a decoding matrix from k rows of the distribution that correspond to non-failed devices. Note that this
matrix multiplied by the original data equals the k survivors whose rows we selected. If we invert this matrix and
multiply it by both sides of the equation, then we are given a decoding equation – the inverted matrix multiplied by
the survivors equals the original data.

4 Bit-Matrix Coding In General
Bit-matrix coding is first described in the original Cauchy Reed-Solomon coding paper [BKK+95]. To encode and
decode with a bit-matrix, we expand a distribution matrix in GF (2w) by a factor of w in each direction to yield
a w(k + m)×wk matrix which we call a binary distribution matrix (BDM). We multiply that by a wk element vector,
which is composed of w bits from each data device. The product is a w(k + m) element vector composed of w bits
from each data and coding device. This is depicted in Figure 4. It is useful to visualize the matrix as being composed
of w × w sub-matrices.

4 BIT-MATRIX CODING IN GENERAL 6

Figure 4: Describing a coding system with a bit-matrix-vector product.

As with the matrix-vector product in GF (2w), each row of the product corresponds to a row of the BDM, and is
computed as the dot product of that row and the data bits. Since all elements are bits, we may perform the dot product
by taking the XOR of each data bit whose element in the matrix’s row is one. In other words, rather than performing
the dot product with additions and multiplications, we perform it only with XORs. Moreover, the performance of this
dot product is directly related to the number of ones in the row. Therefore, it behooves us to find matrices with few
ones.
Decoding with bit-matrices is the same as with matrices over GF (2w), except now each device corresponds to w

rows of the matrix, rather than one.
While the classic construction of bit-matrices starts with a standard distribution matrix in GF (2 w), it is possible

to construct bit-matrices that have no relation to Galois Field arithmetic yet still have desired coding and decoding
properties. The Liberation codes work in this fashion for RAID-6.

4.1 Using a schedule rather than a bit-matrix
Consider the act of encoding with a bit-matrix. We give an example in Figure 5, where k = 3, w = 5, and we are
calculating the contents of one coding device. The straightforward way to encode is to calculate the five dot products
for each of the five bits of the coding device, and we can do that by traversing each of the five rows, performing XORs
where there are ones in the matrix.
Since the matrix is sparse, it is more efficient to precompute the coding operations, rather than traversing the matrix

each time one encodes. The data structure that we use to represent encoding is a schedule, which is a list of 5-tuples:

< op, sd, sb, dd, db >,

where op is an operation code: 0 for copy and 1 for XOR, s d is the id of the source device and sb is the bit of the source

5 MDS CODES 7

Figure 5: An example super-row of a bit-matrix for k = 3, w = 5.

device. The last two elements, dd and db are the destination device and bit. By convention, we identify devices using
integers from zero to k + m− 1. An id i < k identifies data deviceD i, and an id i ≥ k identifies coding device Ci−k.
A schedule for encoding using the bit-matrix in Figure 5 is shown in Figure 6.

< 0, 0, 0, 3, 0 >, < 1, 1, 1, 3, 0 >, < 1, 2, 2, 3, 0 >, c0,0 = d0,0 ⊕ d1,1 ⊕ d2,2

< 0, 0, 1, 3, 1 >, < 1, 1, 2, 3, 1 >, < 1, 2, 3, 3, 1 >, c0,1 = d0,1 ⊕ d1,2 ⊕ d2,3

< 0, 0, 2, 3, 2 >, < 1, 1, 2, 3, 2 >, < 1, 1, 3, 3, 2 >, < 1, 2, 4, 3, 2 >, c0,2 = d0,2 ⊕ d1,2 ⊕ d1,3 ⊕ d2,4

< 0, 0, 3, 3, 3 >, < 1, 1, 4, 3, 3 >, < 1, 2, 0, 3, 3 >, c0,3 = d0,3 ⊕ d1,4 ⊕ d2,0

< 0, 0, 4, 3, 4 >, < 1, 1, 0, 3, 4 >, < 1, 2, 0, 3, 4 >, < 1, 2, 1, 3, 4 > . c4,1 = d0,4 ⊕ d1,0 ⊕ d2,0 ⊕ d2,1

(a) (b)

Figure 6: A schedule of bit-matrix operations for the bit-matrix in Figure 5. (a) shows the schedule, and (b) shows the
dot-product equations corresponding to each line of the schedule.

As noted in [Pla07b], one can derive schedules for bit-matrix encoding and decoding that make use of common
expressions in the dot products, and therefore can perform the bit-matrix-vector product with fewer XOR operations
than simply traversing the bit-matrix. This how RDP encoding works with optimal performance [CEG +04], even
though there are more than kw ones in the last w rows of its BDM. We term such scheduling smart scheduling, and
scheduling by simply traversing the matrix dumb scheduling.

5 MDS Codes
A code is MDS if it can recover the data following the failure of any m devices. If a matrix-vector product is used
to define the code, then it is MDS if every combination of k rows composes an invertible matrix. If a bit-matrix is
used, then we define a super-row to be a row’s worth of w × w submatrices. The code is MDS if every combination
of k super-rows composes an invertible matrix. Again, one may generate an MDS code using standard techniques
such as employing a Vandermonde matrix [PD05] or Cauchy matrix [Rab89, BKK+95]. However, there are other
constructions that also yield MDS matrices, such as EVENODD coding [BBBM95], RDP coding [CEG+04], the
STAR code [HX05], Feng’s codes [FDBS05a, FDBS05b] and Liberation codes [Pla07b].

6 Part 1 of the Library: Galois Field Arithmetic
The files galois.h and galois.c contain procedures for Galois Field arithmetic in GF (2 w) for 1 ≤ w ≤ 32. It contains
procedures for single arithmetic operations, for XOR-ing a region of bytes, and for performing multiplication of a

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 8

region of bytes by a constant in GF (28), GF (216) and GF (232). The procedures are defined in a separate technical
report which focuses solely on Galois Field arithmetic [Pla07a].
For the purposes of jerasure, the following procedures from galois.h and galois.c are used:

• galois single multiply(int a, int b, int w) and galois single divide(int a, int b, int w): These perform multi-
plication and division on single elements a and b of GF (2w).

• galois region xor(char *r1, char *r2, char *r3, int nbytes): This XORs two regions of bytes, r1 and r2 and
places the sum in r3. Note that r3 may be equal to r1 or r2 if we are replacing one of the regions by the sum.
Nbytes must be a multiple of the machine’s long word size.

• galois w08 region multiply(char *region, int multby, int nbytes, char *r2, int add): This multiplies an
entire region of bytes by the constantmultby inGF (28). If r2 is NULL then region is overwritten. Otherwise,
if add is zero, the products are placed in r2. If add is non-zero, then the products are XOR’d with the bytes
in r2.

• galois w16 region multiply() and galois w32 region multiply() are identical to galois w08 region multiply(),
except they are in GF (216) and GF (232) respectively.

7 Part 2 of the Library: Kernel Routines
The files jerasure.h and jerasure.c implement procedures that are common to many aspects of coding. We give
example programs that make use of them in Section 7.7 below.
Before describing the procedures that compose jerasure.c, we detail the arguments that are common to multiple

procedures:

• int k: The number of data devices.

• int m: The number of coding devices.

• int w: The word size of the code.

• int packetsize: The packet size as defined in section 1. This must be a multiple of w and sizeof(long).

• int size: The total number of bytes per device to encode/decode. This must be a multiple of sizeof(long). If a
bit-matrix is being employed, then it must be a multiple of packetsize. If one desired to encode data blocks that
do not conform to these restrictions, than one must pad the data blocks with zeroes so that the restrictions are
met.

• int *matrix: This is an array with k*m elements that represents the coding matrix — i.e. the last m rows of
the distribution matrix. Its elements must be between 0 and 2w − 1. The element in row i and column j is
inmatrix[i*k+j].

• int *bitmatrix: This is an array ofw*m*w*k elements that compose the lastwm rows of the BDM. The element
in row i and column j is in bitmatrix[i*k*w+j].

• char **data ptrs: This is an array of k pointers to size bytes worth of data. Each of these must be long word
aligned.

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 9

• char **coding ptrs: This is an array of m pointers to size bytes worth of coding data. Each of these must be
long word aligned.

• int *erasures: This is an array of id’s of erased devices. Id’s are numbers between 0 and k+m-1 as described
in Section 4.1. If there are e erasures, then elements 0 through e − 1 of erasures identify the erased devices,
and erasures[e]must equal -1.

• int *erased: This is an alternative way of specifying erasures. It is a k+m element array. Element i of the array
represents the device with id i. If erased[i] equals 0, then device i is working. If erased[i] equals 1, then it is
erased.

• int **schedule: This is an array of 5-element integer arrays. It represents a schedule as defined in Section 4.1.
If there are o operations in the schedule, then schedule must have at least o + 1 elements, and schedule[o][0]
should equal -1.

• int ***cache: When m equals 2, there are few enough combinations of failures that one can precompute all
possible decoding schedules. This is held in the cache variable. We will not describe its structure – just that it
is an (int ***).

• int row k ones: Whenm > 1 and the first row of the codingmatrix is composed of all ones, then there are times
when we can improve the performance of decoding by not following the methodology described in Section 3.
This is true when coding device zero is one of the survivors, and more than one data device has been erased. In
this case, it is better to decode all but one of the data devices as described in Section 3, but decode the last data
device using the other data devices and coding device zero. For this reason, some of the decoding procedures
take a paramater row k ones, which should be one if the first row ofmatrix is all ones. The same optimization
is available when the first w rows of bitmatrix compose k identity matrices – row k ones should be set to one
when this is true as well.

• int *decoding matrix: This is a k × k matrix or wk × wk bit-matrix that is used to decode. It is the matrix
constructed by employing relevant rows of the distribution matrix and inverting it.

• int *dm ids: As described in Section 3, we create the decoding matrix by selecting k rows of the distribution
matrix that correspond to surviving devices, and then inverting that matrix. This yields decoding matrix. The
product of decoding matrix and these survivors is the original data. dm ids is a vector with k elements that
contains the id’s of the devices corresponding to the rows of the decoding matrix. In otherwise, this contains the
id’s of the survivors. When decoding with a bit-matrix dm ids still has k elements — these are the id’s of the
survivors that correspond to the k super-rows of the decoding matrix.

7.1 Matrix/Bitmatrix/Schedule Creation Routines
When we use an argument from the list above, we omit its type for brevity.

• int *jerasure matrix to bitmatrix(k, m, w, matrix): This converts am× k matrix in GF (2 w) to a wm×wk
bit-matrix, using the technique described in [BKK+95]. If matrix is a coding matrix for an MDS code, then
the returned bit-matrix will also describe an MDS code.

• int **jerasure dumb bitmatrix to schedule(k, m, w, bitmatrix): This converts the given bit-matrix into a
schedule of coding operations using the straightforward technique of simply traversing each row of the matrix
and scheduling XOR operations whenever a one is encountered.

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 10

• int **jerasure smart bitmatrix to schedule(k, m, w, bitmatrix): This converts the given bit-matrix into a
schedule of coding operations using the optimization described in [Pla07b]. Basically, it tries to use encoded
bits (or decoded bits) rather than simply the data (or surviving) bits to reduce the number of XORs. Note, that
when a smart schedule is employed for decoding, we don’t need to specify row k ones, because the schedule
construction technique automatically finds this optimization.

• int ***jerasure generate schedule cache(k, m, w, bitmatrix, int smart): This only works when m = 2. In
this case, it generates schedules for every combination of single and double-disk erasure decoding. It returns a
cache of these schedules. If smart is one, then jerasure smart bitmatrix to schedule() is used to create the
schedule. Otherwise, jerasure dumb bitmatrix to schedule() is used.

• void jerasure free schedule(schedule): This frees all allocated memeory for a schedule that is created by either
jerasure dumb bitmatrix to schedule() or jerasure smart bitmatrix to schedule().

• void jerasure free schedule cache(k, m, cache): This frees all allocated data for a schedule cache created by
jerasure generate schedule cache().

7.2 Encoding Routines
• void jerasure do parity(k, data ptrs, char *parity ptr, size): This calculates the parity of size bytes of data
from each of k regions of memory accessed by data ptrs. It puts the result into the size bytes pointed to by
parity ptr. Like each of data ptrs, parity ptr must be long word aligned, and size must be a multiple of
sizeof(long).

• void jerasure matrix encode(k, m, w, matrix, data ptrs, coding ptrs, size): This encodes with a matrix
in GF (2w) as described in Section 3 above. w must be ∈ {8, 16, 32}.

• void jerasure bitmatrix encode(k, m, w, bitmatrix, data ptrs, coding ptrs, size, packetsize): This encodes
with a bit-matrix. Now w may be any number between 1 and 32..

• void jerasure schedule encode(k, m, w, schedule, data ptrs, coding ptrs, size, packetsize): This encodes
with a schedule created from either jerasure dumb bitmatrix to schedule() or jerasure smart bitmatrix to-
schedule().

7.3 Decoding Routines
Each of these returns in integer which is zero on success or -1 if unsuccessful. Decoding can be unsuccessful if there
are too many erasures.

• int jerasure matrix decode(k, m, w matrix, row k ones, erasures, data ptrs, coding ptrs, size): This de-
codes using a matrix in GF (2w), w ∈ {8, 16, 32}. This works by creating a decoding matrix and performing
the matrix/vector product, then re-encoding any erased coding devices. When it is done, the decoding matrix
is discarded. If you want access to the decoding matrix, you should use jerasure make decoding matrix()
below.

• int jerasure bitmatrix decode(k, m, w bitmatrix, row k ones, erasures, data ptrs, coding ptrs, size, pack-
etsize): This decodes with a bit-matrix rather than a matrix. Note, it does not do any scheduling – it simply
creates the decoding bit-matrix and uses that directly to decode. Again, it discards the decoding bit-matrix when
it is done.

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 11

• int jerasure schedule decode lazy(k, m, w bitmatrix, erasures, data ptrs, coding ptrs, size, packetsize, int
smart): This decodes by creating a schedule from the decoding matrix and using that to decode. If smart is
one, then jerasure smart bitmatrix to schedule() is used to create the schedule. Otherwise, jerasure dumb-
bitmatrix to schedule() is used. Note, there is no row k ones, because if smart is one, the schedule created
will find that optimization anyway. This procedure is a bit subtle, because it does a little more than simply create
the decoding matrix – it creates it and then adds rows that decode failed coding devices from the survivors. It
derives its schedule from that matrix. This technique is also employed when creating a schedule cache using
jerasure generate schedule cache(). The schedule and all data structures that were allocated for decoding are
freed when this procedure finishes.

• int jerasure schedule decode cache(k, m, w cache, erasures, data ptrs, coding ptrs, size, packetsize): This
uses the schedule cache to decode whenm = 2.

• int jerasure make decoding matrix(k, m, w matrix, erased, decoding matrix, dm ids): This does not de-
code, but instead creates the decoding matrix. Note that both decoding matrix and dm ids should be allocated
and passed to this procedure, which will fill them in. Decoding matrix should have k 2 integers, and dm ids
should have k integers.

• int jerasure make decoding bitmatrix(k, m, w matrix, erased, decoding matrix, dm ids): This does not
decode, but instead creates the decoding bit-matrix. Again, both decoding matrix and dm ids should be al-
located and passed to this procedure, which will fill them in. This time decoding matrix should have k 2w2

integers, while dm ids still has k integers.

• int *jerasure erasures to erased(k, m, erasures): This converts the specification of erasures defined above
into the specification of erased also defined above.

7.4 Dot Product Routines
• void jerasure matrix dotprod(k, w, int *matrix row, int *src ids, int dest id, data ptrs, coding ptrs, size):
This performs the multiplication of one row of an encoding/decoding matrix times data/survivors. The id’s of
the source devices (corresponding to the id’s of the vector elements) are in src ids. The id of the destination
device is in dest id. w must be ∈ {8, 16, 32}. When a one is encountered in the matrix, the proper XOR/copy
operation is performed. Otherwise, the operation is multiplication by the matrix element in GF (2 w) and an
XOR into the destination.

• void jerasure bitmatrix dotprod(k, w, int *bitmatrix row, int *src ids, int dest id, data ptrs, coding ptrs,
size, packetsize): This is the analogous procedure for bit-matrices. It performs w dot products according to
the w rows of the matrix specified by bitmatrix row.

• void jerasure do scheduled operations(char **ptrs, schedule, packetsize): This performs a schedule on the
pointers specified by ptrs. Although w is not specified, it performs the schedule on w(packetsize) bytes. It is
assumed that ptrs is the right size to match schedule. Typically, this is k + m.

7.5 Basic Matrix Operations
• int jerasure invert matrix(int *mat, int *inv, int rows, int w): This inverts a (rows× rows) matrix inGF (2 w).
It puts the result in inv, which must be allocated to contain rows2 integers. The matrix mat is destroyed after
the inversion. It returns 0 on success, or -1 if the matrix was not invertible.

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 12

• int jerasure invert bitmatrix(int *mat, int *inv, int rows): This is the analogous procedure for bit-matrices.
Obviously, one can call jerasure invert matrix() with w = 1, but this procedure is faster.

• int jerasure invertible matrix(int *mat, int rows, int w): This does not perform the inversion, but simply
returns 1 or 0, depending on whethermat is invertible. It destroysmat.

• int jerasure invertible bitmatrix(int *mat, int rows): This is the analogous procedure for bit-matrices.

• void jerasure print matrix(int *matrix, int rows, int cols, int w): This prints a matrix composed of elements
in GF (2w) on standard output. It uses w to determine spacing.

• void jerasure print bitmatrix(int *matrix, int rows, int cols, int w): This prints a bit-matrix on standard
output. It inserts a space between every w characters, and a blank line after every w lines. Thus super-rows and
super-columns are easy to identify.

• int *jerasure matrix multiply(int *m1, int *m2, int r1, int c1, int r2, int c2, int w): This performs matrix
multiplication in GF (2w). The matrixm1 should be a (r1 × c1) matrix, and m2 should be a (r2 × c2) matrix.
Obviously, c1 should equal r2. It will return a (r1 × c2) matrix equal to the product.

7.6 Statistics
Finally, jerasure.c keeps track of three quantities:

• The number of bytes that have been XOR’d using galois region xor().

• The number of bytes that have been copied usingmemcpy().

• The number of bytes that have been multiplied by a constant in GF (2 w), using galois w08 region multiply(),
galois w16 region multiply() or galois w32 region multiply().

There is one procedure that allows access to those values:

• void jerasure get stats(double *fill in): The argument fill in should be an array of three doubles. The proce-
dure will fill in the array with the three values above in that order. The unit is bytes. After calling jerasure get-
stats(), the counters that keep track of the quantities are reset to zero.

The procedure galois w08 region multiply() and its kin have a parameter that causes it to XOR the product with
another region with the same overhead as simply performing themultiplication. For that reason, when these procedures
are called with this funcationality enabled, the resulting XORs are not counted with the XOR’s performed with galois-
region xor().

7.7 Example Programs to Demonstrate Use
In the Examples directory, there are eight programs that demonstrate nearly every procedure call in jerasure.c. They
are as follows:

• jerasure 01.c: This takes three parameters: r, c and w. It creates an r× cmatrix inGF (2w), where the element
in row i, column j is equal to 2ci+j in GF (2w). Rows and columns are zero-indexed. Example:

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 13

UNIX> jerasure_01 3 15 8
1 2 4 8 16 32 64 128 29 58 116 232 205 135 19

38 76 152 45 90 180 117 234 201 143 3 6 12 24 48
96 192 157 39 78 156 37 74 148 53 106 212 181 119 238
UNIX>

This demonstrates usage of jerasure print matrix() and galois single multiply()..

• jerasure 02.c: This takes three parameters: r, c and w. It creates the same matrix as in jerasure 01, and then
converts it to a rw × cw bit-matrix and prints it out. Example:

UNIX> jerasure_01 3 10 4
1 2 4 8 3 6 12 11 5 10
7 14 15 13 9 1 2 4 8 3
6 12 11 5 10 7 14 15 13 9
UNIX> jerasure_02 3 10 4
1000 0001 0010 0100 1001 0011 0110 1101 1010 0101
0100 1001 0011 0110 1101 1010 0101 1011 0111 1111
0010 0100 1001 0011 0110 1101 1010 0101 1011 0111
0001 0010 0100 1001 0011 0110 1101 1010 0101 1011

1011 0111 1111 1110 1100 1000 0001 0010 0100 1001
1110 1100 1000 0001 0010 0100 1001 0011 0110 1101
1111 1110 1100 1000 0001 0010 0100 1001 0011 0110
0111 1111 1110 1100 1000 0001 0010 0100 1001 0011

0011 0110 1101 1010 0101 1011 0111 1111 1110 1100
1010 0101 1011 0111 1111 1110 1100 1000 0001 0010
1101 1010 0101 1011 0111 1111 1110 1100 1000 0001
0110 1101 1010 0101 1011 0111 1111 1110 1100 1000
UNIX>

This demonstrates usage of jerasure print bitmatrix() and jerasure matrix to bitmatrix().

• jerasure 03.c: This takes three parameters: k and w. It creates a k × k Cauchy matrix in GF (2 w), and tests
invertibility.
The parameter k must be less than 2w. The element in row i, column j is set to:

1
i ⊕ (2w − j − 1)

where division is in GF (2w), ⊕ is XOR and subtraction is regular integer subtraction. When k > 2w−1, there
will be i and j such that i ⊕ (2w − j − 1) = 0. When that happens, we set that matrix element to zero.
After creating the matrix and printing it, we test whether it is invertible. If k ≤ 2 w−1, then it will be invertible.
Otherwise it will not. Then, if it is invertible, it prints the inverse, then multplies the inverse by the original
matrix and prints the product which is the identity matrix. Examples:

UNIX> jerasure_03 4 3
The Cauchy Matrix:
4 3 2 7
3 4 7 2
2 7 4 3
7 2 3 4

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 14

Invertible: Yes

Inverse:
1 2 5 3
2 1 3 5
5 3 1 2
3 5 2 1

Inverse times matrix (should be identity):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
UNIX> jerasure_03 5 3
The Cauchy Matrix:
4 3 2 7 6
3 4 7 2 5
2 7 4 3 1
7 2 3 4 0
6 5 1 0 4

Invertible: No
UNIX>

This demonstrates usage of jerasure print matrix(), jerasure invertible matrix(), jerasure invert matrix()
and jerasure matrix multiply().

• jerasure 04.c: This does the exact same thing as jerasure 03, except it uses jerasure matrix to bitmatrix()
to convert the Cauchy matrix to a bit-matrix, and then uses the bit-matrix operations to test invertibility and to
invert the matrix. Examples:

UNIX> jerasure_04 4 3
The Cauchy Bit-Matrix:
010 101 001 111
011 111 101 100
101 011 010 110

101 010 111 001
111 011 100 101
011 101 110 010

001 111 010 101
101 100 011 111
010 110 101 011

111 001 101 010
100 101 111 011
110 010 011 101

Invertible: Yes

Inverse:
100 001 110 101
010 101 001 111
001 010 100 011

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 15

001 100 101 110
101 010 111 001
010 001 011 100

110 101 100 001
001 111 010 101
100 011 001 010

101 110 001 100
111 001 101 010
011 100 010 001

Inverse times matrix (should be identity):
100 000 000 000
010 000 000 000
001 000 000 000

000 100 000 000
000 010 000 000
000 001 000 000

000 000 100 000
000 000 010 000
000 000 001 000

000 000 000 100
000 000 000 010
000 000 000 001
UNIX> jerasure_04 5 3
The Cauchy Bit-Matrix:
010 101 001 111 011
011 111 101 100 110
101 011 010 110 111

101 010 111 001 110
111 011 100 101 001
011 101 110 010 100

001 111 010 101 100
101 100 011 111 010
010 110 101 011 001

111 001 101 010 000
100 101 111 011 000
110 010 011 101 000

011 110 100 000 010
110 001 010 000 011
111 100 001 000 101

Invertible: No
UNIX>

This demonstrates usage of jerasure print bitmatrix(), jerasure matrix to bitmatrix(), jerasure invertible -
bitmatrix(), jerasure invert bitmatrix() and jerasure matrix multiply().

• jerasure 05.c: This takes two parameters: k and m, and performs a simple Reed-Solomon coding example

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 16

inGF (28). The sum k + w must be less than or equal to 256. It sets up anm× k Cauchy coding matrix, where
element i, j is:

1
i ⊕ (m + j)

,

where division is in GF (28), ⊕ is XOR, and addition is standard integer addition. It prints out these m rows.
The program then creates k random words of size sizeof(long) and encodes them into m coding words using
jerasure matrix encode(). It prints out the data and coding word in hexadecimal. Next, it erases m random
words from the collection of k + m words, and prints the words out again. Then it decodes the erased words
using jerasure matrix decode() and reprints the words. Next, it shows what the decoding matrix looks like
when the first m words are erased. And finally, it uses jerasure matrix dotprod() to show how to explicitly
calculate the first data word from the others when the firstm words are erased.
Example:

UNIX> jerasure_05 3 4
Last m rows of the Distribution Matrix:

71 167 122
167 71 186
122 186 71
186 122 167

Encoding Complete:

Data: 32bf5b92 6b95064b 2d3a1e03
Coding: 4f372f33 74825780 a59753ce b818a33f

Erased 4 random pieces of data/coding:

Data: 00000000 00000000 00000000
Coding: 4f372f33 74825780 00000000 b818a33f

State of the system after decoding:

Data: 32bf5b92 6b95064b 2d3a1e03
Coding: 4f372f33 74825780 a59753ce b818a33f

Suppose we erase the first 4 pieces of data. Here is the decoding matrix:

130 25 182
252 221 25
108 252 130

And dm_ids:

4 5 6

The value of device #0 is: 32bf5b92
After calling jerasure_matrix_dotprod, we calculate the value of device #0 to be 32bf5b92

This demonstrates usage of jerasure matrix encode(), jerasure matrix decode(), jerasure print matrix(),
jerasure make decoding matrix() and jerasure matrix dotprod().

• jerasure 06.c: This takes three parameters: k, m and w. It performs the same example as jerasure 05, except

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 17

it uses Cauchy Reed-Solomon coding in GF (2w), converting the coding matrix to a bit-matrix. Instead of
encoding one word per data drive, it encodes w words of size sizeof(long). Example:

UNIX> jerasure_06 3 4 3
Last m rows of the Binary Distribution Matrix:

111 001 101
100 101 111
110 010 011

001 111 010
101 100 011
010 110 101

101 010 111
111 011 100
011 101 110

010 101 001
011 111 101
101 011 010

Encoding Complete:

Data Word 0: 32bf5b92 3929a55f 01fe9e6a
Coding Word 0: 10fe91fa 076c5ca1 6814704c 37acef5e

Data Word 1: 6b95064b 28caecbd 4ac377e5
Coding Word 1: 25bb5b08 7809a7c4 2c524da8 33a2838a

Data Word 2: 2d3a1e03 71767ca5 146630ef
Coding Word 2: 2f45f66e 6feee12c 45cd283d 0cfaa26c

Erased 4 random pieces of data/coding:

Data Word 0: 00000000 00000000 00000000
Coding Word 0: 10fe91fa 076c5ca1 6814704c 00000000

Data Word 1: 00000000 00000000 00000000
Coding Word 1: 25bb5b08 7809a7c4 2c524da8 00000000

Data Word 2: 00000000 00000000 00000000
Coding Word 2: 2f45f66e 6feee12c 45cd283d 00000000

State of the system after decoding:

Data Word 0: 32bf5b92 3929a55f 01fe9e6a
Coding Word 0: 10fe91fa 076c5ca1 6814704c 37acef5e

Data Word 1: 6b95064b 28caecbd 4ac377e5
Coding Word 1: 25bb5b08 7809a7c4 2c524da8 33a2838a

Data Word 2: 2d3a1e03 71767ca5 146630ef
Coding Word 2: 2f45f66e 6feee12c 45cd283d 0cfaa26c

Suppose we erase the first 4 pieces of data. Here is the decoding matrix:

101 011 010

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 18

111 110 011
011 111 101

001 011 011
101 110 110
010 111 111

110 001 101
001 101 111
100 010 011

And dm_ids:

4 5 6

The value of device #0, word 0 is: 32bf5b92
After calling jerasure_matrix_dotprod, we calculate the value of device #0, word 0 to be 32bf5b92
UNIX>

This demonstrates usage of jerasure bitmatrix encode(), jerasure bitmatrix decode(), jerasure print bitmatrix(),
jerasure make decoding bitmatrix() and jerasure bitmatrix dotprod().

• jerasure 07.c: This takes three parameters: k, m and w. It performs the same coding/decoding as in jera-
sure 06, except it uses bit-matrix scheduling instead of bit-matrix operations. It creates a “dumb” and “smart”
schedule for encoding, encodes with them and prints out how many XORs each took. The smart schedule will
outperform the dumb one.
Next, it erases m random drives and decodes using jerasure schedule decode lazy(). Finally, it shows how to
use jerasure do scheduled operations() in case you need to do so explicitly.
Example:

UNIX> jerasure_07 3 4 3
Last m rows of the Binary Distribution Matrix:

111 001 101
100 101 111
110 010 011

001 111 010
101 100 011
010 110 101

101 010 111
111 011 100
011 101 110

010 101 001
011 111 101
101 011 010

Dumb Encoding Complete: - 216 XOR’d bytes

Data Word 0: 32bf5b92 3929a55f 01fe9e6a
Coding Word 0: 10fe91fa 076c5ca1 6814704c 37acef5e

Data Word 1: 6b95064b 28caecbd 4ac377e5

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 19

Coding Word 1: 25bb5b08 7809a7c4 2c524da8 33a2838a

Data Word 2: 2d3a1e03 71767ca5 146630ef
Coding Word 2: 2f45f66e 6feee12c 45cd283d 0cfaa26c

Smart Encoding Complete: - 132 XOR’d bytes

Data Word 0: 32bf5b92 3929a55f 01fe9e6a
Coding Word 0: 10fe91fa 076c5ca1 6814704c 37acef5e

Data Word 1: 6b95064b 28caecbd 4ac377e5
Coding Word 1: 25bb5b08 7809a7c4 2c524da8 33a2838a

Data Word 2: 2d3a1e03 71767ca5 146630ef
Coding Word 2: 2f45f66e 6feee12c 45cd283d 0cfaa26c

Erased 4 random pieces of data/coding:

Data Word 0: 00000000 00000000 00000000
Coding Word 0: 10fe91fa 076c5ca1 6814704c 00000000

Data Word 1: 00000000 00000000 00000000
Coding Word 1: 25bb5b08 7809a7c4 2c524da8 00000000

Data Word 2: 00000000 00000000 00000000
Coding Word 2: 2f45f66e 6feee12c 45cd283d 00000000

State of the system after decoding: 132 XOR’d bytes

Data Word 0: 32bf5b92 3929a55f 01fe9e6a
Coding Word 0: 10fe91fa 076c5ca1 6814704c 37acef5e

Data Word 1: 6b95064b 28caecbd 4ac377e5
Coding Word 1: 25bb5b08 7809a7c4 2c524da8 33a2838a

Data Word 2: 2d3a1e03 71767ca5 146630ef
Coding Word 2: 2f45f66e 6feee12c 45cd283d 0cfaa26c

State of the system after deleting the coding drives and
using jerasure_do_scheduled_operations(): 132 XOR’d bytes

Data Word 0: 32bf5b92 3929a55f 01fe9e6a
Coding Word 0: 10fe91fa 076c5ca1 6814704c 37acef5e

Data Word 1: 6b95064b 28caecbd 4ac377e5
Coding Word 1: 25bb5b08 7809a7c4 2c524da8 33a2838a

Data Word 2: 2d3a1e03 71767ca5 146630ef
Coding Word 2: 2f45f66e 6feee12c 45cd283d 0cfaa26c

UNIX>

This demonstrates usage of jerasure dumb bitmatrix to schedule(), jerasure smart bitmatrix to schedule(),
jerasure schedule encode(), jerasure schedule decode lazy(), jerasure do scheduled operations() and jera-
sure get stats().

• jerasure 08.c: This takes two parameters: k and w, and performs a simple RAID-6 example using a schedule

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 20

cache. It sets up a RAID-6 coding matrix whose first row is composed of ones, and where the element in
column j of the second row is equal to 2j in GF (2w). It converts this to a bit-matrix and creates a smart
encoding schedule and a schedule cache for decoding.
It then encodes twice – first with the smart schedule, and then with the schedule cache, by setting the two coding
drives as the erased drives. Next it deletes two random drives and uses the schedule cache to decode them. Next,
it deletes the first coding drive and recalculates it using jerasure do parity() to demonstrate that procedure.
Finally, it frees the smart schedule and the schedule cache.
Example:

UNIX> jerasure_08 5 3
Encoding Complete: - 124 XOR’d bytes

Data Word 0: 32bf5b92 3929a55f 01fe9e6a 311d9a0e 732e6d08
Coding Word 0: 485b97a1 3f2c1c22

Data Word 1: 6b95064b 28caecbd 4ac377e5 5872d4d0 14ef12de
Coding Word 1: 45015b1d 744919e9

Data Word 2: 2d3a1e03 71767ca5 146630ef 0788b05a 145c747a
Coding Word 2: 5bfe9669 3c0f331d

Encoding Using the Schedule Cache: - 124 XOR’d bytes

Data Word 0: 32bf5b92 3929a55f 01fe9e6a 311d9a0e 732e6d08
Coding Word 0: 485b97a1 3f2c1c22

Data Word 1: 6b95064b 28caecbd 4ac377e5 5872d4d0 14ef12de
Coding Word 1: 45015b1d 744919e9

Data Word 2: 2d3a1e03 71767ca5 146630ef 0788b05a 145c747a
Coding Word 2: 5bfe9669 3c0f331d

Erased 2 random pieces of data/coding:

Data Word 0: 32bf5b92 3929a55f 01fe9e6a 00000000 732e6d08
Coding Word 0: 00000000 3f2c1c22

Data Word 1: 6b95064b 28caecbd 4ac377e5 00000000 14ef12de
Coding Word 1: 00000000 744919e9

Data Word 2: 2d3a1e03 71767ca5 146630ef 00000000 145c747a
Coding Word 2: 00000000 3c0f331d

State of the system after decoding: 124 XOR’d bytes

Data Word 0: 32bf5b92 3929a55f 01fe9e6a 311d9a0e 732e6d08
Coding Word 0: 485b97a1 3f2c1c22

Data Word 1: 6b95064b 28caecbd 4ac377e5 5872d4d0 14ef12de
Coding Word 1: 45015b1d 744919e9

Data Word 2: 2d3a1e03 71767ca5 146630ef 0788b05a 145c747a
Coding Word 2: 5bfe9669 3c0f331d

State of the system after deleting coding drive 0 and using

8 PART 3 OF THE LIBRARY: CLASSIC REED-SOLOMON CODING ROUTINES 21

jerasure_do_parity to re-encode it:

Data Word 0: 32bf5b92 3929a55f 01fe9e6a 311d9a0e 732e6d08
Coding Word 0: 485b97a1 3f2c1c22

Data Word 1: 6b95064b 28caecbd 4ac377e5 5872d4d0 14ef12de
Coding Word 1: 45015b1d 744919e9

Data Word 2: 2d3a1e03 71767ca5 146630ef 0788b05a 145c747a
Coding Word 2: 5bfe9669 3c0f331d

Smart schedule and cache freed

UNIX>

This demonstrates usage of jerasure generate schedule cache(), jerasure smart bitmatrix to schedule(),
jerasure schedule encode(), jerasure schedule decode cache(), jerasure free schedule(), jerasure free -
schedule cache(), jerasure get stats() and jerasure do parity().

8 Part 3 of the Library: Classic Reed-Solomon Coding Routines
The files reed sol.h and reed sol.c implement procedures that are specific to classic Vandermondematrix-based Reed-
Solomon coding, and for Reed-Solomon coding optimized for RAID-6. Refer to [Pla97, PD05] for a description of
classic Reed-Solomon coding and to [Anv07] for Reed-Solomon coding optimized for RAID-6. Where not specified,
the parameters are as described in Section 7.

8.1 Vandermonde Distribution Matrices
There are three procedures for generating distributionmatrices based on an extended Vandermondematrix inGF (2 w).
It is anticipated that only the first of these will be needed for coding applications, but we include the other two in case
a user wants to look at or modify these matrices.

• int *reed sol vandermonde coding matrix(k, m, w): This returns the last m rows of the distribution matrix
in GF (2w), based on an extended Vandermonde matrix. This is a m × k matrix that can be used with the
matrix routines in jerasure.c. The first row of this matrix is guaranteed to be all ones. The first column is also
guaranteed to be all ones.

• int *reed sol extended vandermonde matrix(int rows, int cols, w): This creates an extended Vandermonde
matrix with rows rows and cols columns in GF (2w).

• int *reed sol big vandermonde distribution matrix(int rows, int cols, w): This converts the extendedmatrix
above into a distribution matrix so that the top cols rows compose an identity matrix, and the remaining rows
are in the format returned by reed sol vandermonde coding matrix().

8 PART 3 OF THE LIBRARY: CLASSIC REED-SOLOMON CODING ROUTINES 22

8.2 Procedures Related to Reed-Solomon Coding Optimized for RAID-6
In RAID-6, m is equal to two. The first coding device, P is calculated from the others using parity, and the second
coding device,Q is calculated from the data devicesD i using:

Q =
k−1∑

i=0

2iDi

where all arithmetic is in GF (2w). The reason that this is an optimization is that one may implement multiplication
by two in an optimized fashion. The following procedures facilitate this optimization.

• int reed sol r6 encode(k, w, data ptrs, coding ptrs, size): This encodes using the optimization. w must be
8, 16 or 32. Note, m is not needed because it is assumed to equal two, and no matrix is needed because it is
implicit.

• int *reed sol r6 coding matrix(k, w): Again, w must be 8, 16 or 32. There is no optimization for decoding.
Therefore, this procedure returns the last two rows of the distribution matrix for RAID-6 for decoding purposes.
The first of these rows will be all ones. The second of these rows will have 2 j in column j.

• reed sol galois w08 region multby 2(char *region, int nbytes): This performs the fast multiplication by two
in GF (28) using Anvin’s optimization [Anv07]. region must be long-word aligned, and nbytes must be a
multiple of the word size.

• reed sol galois w16 region multby 2(char *region, int nbytes): This performs the fast multiplication by two
in GF (216).

• reed sol galois w32 region multby 2(char *region, int nbytes): This performs the fast multiplication by two
in GF (232).

8.3 Example Programs to Demonstrate Use
There are four example programs to demonstrate the use of the procedures in reed sol.

• reed sol 01.c: This takes three parameters: k, m and w. It performs a classic Reed-Solomon coding of k
words onto m words, using a Vandermonde-based distribution matrix in GF (2 w). W must be 8, 16 or 32.
It uses reed sol vandermonde coding matrix() to generate the distribution matrix, and then procedures from
jerasure.c to perform the coding and decoding.
Example:

UNIX> reed_sol_01 7 7 8
Last m rows of the Distribution Matrix:

1 1 1 1 1 1 1
1 199 210 240 105 121 248
1 70 91 245 56 142 167
1 170 114 42 87 78 231
1 38 236 53 233 175 65
1 64 174 232 52 237 39
1 187 104 210 211 105 186

8 PART 3 OF THE LIBRARY: CLASSIC REED-SOLOMON CODING ROUTINES 23

Encoding Complete:

Data: 32bf5b92 6b95064b 2d3a1e03 3929a55f 28caecbd 71767ca5 01fe9e6a
Coding: 157be8f7 b1b423cf 5c5a3010 29dda8d3 5e862a12 cb9e3d65 d7adb84e

Erased 7 random pieces of data/coding:

Data: 00000000 6b95064b 00000000 3929a55f 28caecbd 71767ca5 00000000
Coding: 00000000 00000000 5c5a3010 29dda8d3 00000000 00000000 d7adb84e

State of the system after decoding:

Data: 32bf5b92 6b95064b 2d3a1e03 3929a55f 28caecbd 71767ca5 01fe9e6a
Coding: 157be8f7 b1b423cf 5c5a3010 29dda8d3 5e862a12 cb9e3d65 d7adb84e

UNIX>

This demonstrates usage of jerasure matrix encode(), jerasure matrix decode(), jerasure print matrix()
and reed sol vandermonde coding matrix().

• reed sol 02.c: This takes three parameters: k,m and w. It creates and prints three matrices in GF (2 w):

1. A (k + m) × k extended Vandermonde matrix.
2. The (k + m) × k distribution matrix created by converting the extended Vandermonde matrix into one
where the first k rows are an identity matrix. Then row k is converted so that it is all ones, and the first
column is also converted so that it is all ones.

3. The m × k coding matrix, which is last m rows of the above matrix. This is the matrix which is passed
to the encoding/decoding procedures of jerasure.c. Note that since the first row of this matrix is all ones,
you may set int row k ones of the decoding procedures to one.

Note also that w may have any value from 1 to 32.
Example:

UNIX> reed_sol_02 6 4 11
Extended Vandermonde Matrix:

1 0 0 0 0 0
1 1 1 1 1 1
1 2 4 8 16 32
1 3 5 15 17 51
1 4 16 64 256 1024
1 5 17 85 257 1285
1 6 20 120 272 1632
1 7 21 107 273 1911
1 8 64 512 10 80
0 0 0 0 0 1

Vandermonde Distribution Matrix:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

8 PART 3 OF THE LIBRARY: CLASSIC REED-SOLOMON CODING ROUTINES 24

0 0 0 0 0 1
1 1 1 1 1 1
1 1879 1231 1283 682 1538
1 1366 1636 1480 683 934
1 1023 2045 1027 2044 1026

Vandermonde Coding Matrix:

1 1 1 1 1 1
1 1879 1231 1283 682 1538
1 1366 1636 1480 683 934
1 1023 2045 1027 2044 1026

UNIX>

This demonstrates usage of reed sol extended vandermonde matrix(), reed sol big vandermonde coding -
matrix(), reed sol vandermonde coding matrix() and jerasure print matrix().

• reed sol 03.c: This takes two parameters: k and w. It performs RAID-6 coding using Anvin’s optimiza-
tion [Anv07] in GF (2w), where w must be 8, 16 or 32. It then decodes using jerasure matrix decode().
Example:

UNIX> reed_sol_03 9 8
Last 2 rows of the Distribution Matrix:

1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 29

Encoding Complete:

Data: 32bf5b92 6b95064b 2d3a1e03 3929a55f 28caecbd 71767ca5 01fe9e6a 4ac377e5 146630ef
Coding: 4bdeaffd aecd28b9

Erased 2 random pieces of data/coding:

Data: 00000000 6b95064b 2d3a1e03 00000000 28caecbd 71767ca5 01fe9e6a 4ac377e5 146630ef
Coding: 4bdeaffd aecd28b9

State of the system after decoding:

Data: 32bf5b92 6b95064b 2d3a1e03 3929a55f 28caecbd 71767ca5 01fe9e6a 4ac377e5 146630ef
Coding: 4bdeaffd aecd28b9

UNIX>

This demonstrates usage of reed sol r6 encode(), reed sol r6 coding matrix(), jerasure matrix decode()
and jerasure print matrix().

• reed sol 04.c: This simply demonstrates doing fast multiplication by two in GF (2w) for w ∈ {8, 16, 32}. It
has one parameter: w.

UNIX> reed_sol_04 16
Short 0: 8562 *2 = 17124
Short 1: 11250 *2 = 22500
Short 2: 16429 *2 = 32858

9 PART 4 OF THE LIBRARY: CAUCHY REED-SOLOMON CODING ROUTINES 25

Short 3: 37513 *2 = 13593
Short 4: 57579 *2 = 53725
Short 5: 24136 *2 = 48272
Short 6: 59268 *2 = 57091
Short 7: 41368 *2 = 21307
UNIX>

This demonstrates usage of reed sol galois w08 region multby 2(), reed sol galois w16 region multby 2()
and reed sol galois w32 region multby 2().

9 Part 4 of the Library: Cauchy Reed-Solomon Coding Routines
The files cauchy.h and cauchy.c implement procedures that are specific to CauchyReed-Solomon coding. See [BKK +95,
PX06] for detailed descriptions of this kind of coding. The procedures in jerasure.h/jerasure.c do the coding and
decoding. The procedures here simply create coding matrices. We don’t use the Cauchy matrices described in [PX06],
because there is a simple heuristic that creates better matrices:

• Construct the usual Cauchy matrixM such thatM [i, j] = 1
i⊕(m+j) , where division is overGF (2w), ⊕ is XOR

and the addition is regular integer addition.

• For each column j, divide each element (inGF (2w)) byM [0, j]. This has the effect of turning each element in
row 0 to one.

• Next, for each row i > 0 of the matrix, do the following:

– Count the number of ones in the bit representation of the row.
– Count the number of ones in the bit representation of the row divided by elementM [i, j] for each j.
– Whichever value of j gives the minimal number of ones, if it improves the number of ones in the oroginal
row, divide row i byM [i, j].

While this does not guarantee an optimal number of ones, it typically generates a good matrix. For example,
suppose k = m = w = 3. The matrixM is as follows:

6 7 2
5 2 7
1 3 4

First, we divide column 0 by 6, column 1 by 7 and column 2 by 2, to yield:

1 1 1
4 3 6
3 7 2

Now, we concentrate on row 1. Its bitmatrix representation has 5+7+7 = 19 ones. If we divide it by 4, the bitmatrix
has 3+4+5 = 12 ones. If we divide it by 3, the bitmatrix has 4+3+4 = 11 ones. If we divide it by 6, the bitmatrix has
6+7+3 = 16 ones. So, we replace row 1 with row 1 divided by 3.
We do the same with row 2 and find that it will have the minimal number of ones when it is divided by three. The

final matrix is:

9 PART 4 OF THE LIBRARY: CAUCHY REED-SOLOMON CODING ROUTINES 26

1 1 1
5 1 2
1 4 7

This matrix has 34 ones, a distinct improvement over the original matrix that has 46 ones. The best matrix in [PX06]
has 39 ones. This is because the authors simply find the best X and Y , and do not modify the matrix after creating it.

9.1 The Procedures in cauchy.c
The procedures are:

• int *cauchy original coding matrix(k, m, w): This allocates and returns the originally defined Cauchy matrix
from [BKK+95]. This is the same matrix as defined above: M [i, j] = 1

i⊕(m+j) .

• int *cauchy xy coding matrix(k, m, w, int *X, int *Y): This allows the user to specify setsX and Y to define
the matrix. Set X has m elements of GF (2w) and set Y has k elements. Neither set may have duplicate
elements and X ∩ Y = ∅. The procedure does not double-check X and Y - it assumes that they conform to
these restrictions.

• void cauchy improve coding matrix(k, m, w, matrix): This improves a matrix using the heuristic above, first
dividing each column by its element in row 0, then improving the rest of the rows.

• int *cauchy good general coding matrix(): This allocates and returns a good matrix. Whenm = 2, w ≤ 11
and k ≤ 1023, it will return the optimal RAID-6 matrix. Otherwise, it generates a good matrix by calling
cauchy original coding matrix() and then cauchy improve coding matrix(). If you need to generate RAID-
6 matrices that are beyond the above parameters, see Section 9.3 below.

• int cauchy n ones(int n, w): This returns the number of ones in the bit-matrix representation of the number n
in GF (2w). It is much more efficient than generating the bit-matrix and counting ones.

9.2 Example Programs to Demonstrate Use
There are four example programs to demonstrate the use of the procedures in cauchy.h/cauchy.c.

• cauchy 01.c: This takes two parameters: n and w. It calls cauchy n ones() to determine the number of ones
int the bit-matrix representation of n in GF (2w). Then it converts n to a bit-matrix, prints it and confirms the
number of ones:

UNIX> cauchy_01 01 5
Ones: 5

Bitmatrix has 5 ones

10000
01000
00100
00010
00001
UNIX> cauchy_01 31 5
Ones: 16

Bitmatrix has 16 ones

9 PART 4 OF THE LIBRARY: CAUCHY REED-SOLOMON CODING ROUTINES 27

11110
11111
10001
11000
11100
UNIX>

This demonstrates usage of cauchy n ones(), jerasure matrix to bitmatrix() and jerasure print bitmatrix().

• cauchy 02.c: This takes three parameters: k, m and w. It calls cauchy original coding matrix() to create an
Cauchy matrix, converts it to a bit-matrix then encodes and decodes with it. Smart scheduling is employed.
Lastly, it uses cauchy xy coding matrix() to create the same Cauchy matrix. It verifies that the two matrices
are indeed identical.
Example:

UNIX> cauchy_02 3 3 3
Matrix has 46 ones

6 7 2
5 2 7
1 3 4

Smart Encoding Complete: - 112 XOR’d bytes

Data Word 0: 32bf5b92 3929a55f 01fe9e6a
Coding Word 0: 325c1de0 7707f81c 3023f58d

Data Word 1: 6b95064b 28caecbd 4ac377e5
Coding Word 1: 759b5603 649b5993 55a57406

Data Word 2: 2d3a1e03 71767ca5 146630ef
Coding Word 2: 2f307ddd 51485ea0 611e209e

Erased 3 random pieces of data/coding:

Data Word 0: 00000000 3929a55f 00000000
Coding Word 0: 325c1de0 00000000 3023f58d

Data Word 1: 00000000 28caecbd 00000000
Coding Word 1: 759b5603 00000000 55a57406

Data Word 2: 00000000 71767ca5 00000000
Coding Word 2: 2f307ddd 00000000 611e209e

State of the system after decoding: 92 XOR’d bytes

Data Word 0: 32bf5b92 3929a55f 01fe9e6a
Coding Word 0: 325c1de0 7707f81c 3023f58d

Data Word 1: 6b95064b 28caecbd 4ac377e5
Coding Word 1: 759b5603 649b5993 55a57406

Data Word 2: 2d3a1e03 71767ca5 146630ef
Coding Word 2: 2f307ddd 51485ea0 611e209e

9 PART 4 OF THE LIBRARY: CAUCHY REED-SOLOMON CODING ROUTINES 28

Generated the identical matrix using cauchy_xy_coding_matrix()
UNIX>

This demonstrates usage of cauchy original coding matrix(), cauchy xy coding matrix(), cauchy n ones(),
jerasure smart bitmatrix to schedule(), jerasure schedule encode(), jerasure schedule decode lazy(), jerasure-
print matrix() and jerasure get stats().

• cauchy 03.c: This is identical to cauchy 02.c, except that it improves the matrix with cauchy improve coding-
matrix().
Example:

UNIX> cauchy_03 3 3 3 | head -n 8
The Original Matrix has 46 ones
The Improved Matrix has 34 ones

1 1 1
5 1 2
1 4 7

Smart Encoding Complete: - 96 XOR’d bytes
UNIX>

This demonstrates usage of cauchy original coding matrix(), cauchy improve coding matrix(), cauchy n-
ones(), jerasure smart bitmatrix to schedule(), jerasure schedule encode(), jerasure schedule decode-
lazy(), jerasure print matrix() and jerasure get stats().

• cauchy 04.c: Finally, this is identical to the previous two, except it calls int *cauchy good general coding-
matrix(). Note, when m = 2, w ≤ 11 and k ≤ 1023, these are optimal Cauchy encoding matrices. That’s
not to say that they are optimal RAID-6 matrices (RDP encoding [CEG+04], and Liberation encoding [Pla07b]
achieve this), but they are the best Cauchy matrices.

UNIX> cauchy_04 10 2 8 | head -n 6
Matrix has 229 ones

1 1 1 1 1 1 1 1 1 1
1 2 142 4 71 8 70 173 3 35

Smart Encoding Complete: - 836 XOR’d bytes
UNIX> cauchy_03 10 2 8 | head -n 6
The Original Matrix has 608 ones
The Improved Matrix has 354 ones

1 1 1 1 1 1 1 1 1 1
82 200 151 172 1 225 166 158 44 13

UNIX> cauchy_02 10 2 8 | head -n 6
Matrix has 608 ones

142 244 71 167 122 186 173 157 221 152
244 142 167 71 186 122 157 173 152 221

Smart Encoding Complete: - 1876 XOR’d bytes
UNIX>

10 PART 5 OF THE LIBRARY: LIBERATION CODING 29

This demonstrates usage of cauchy original coding matrix(), cauchy n ones(), jerasure smart bitmatrix-
to schedule(), jerasure schedule encode(), jerasure schedule decode lazy(), jerasure print matrix() and
jerasure get stats().

9.3 Extending the Parameter Space for Optimal Cauchy RAID-6 Matrices
It is easy to prove that as long as k < 2w, then any matrix with all ones in row 0 and distinct non-zero elements in row
1 is a valid MDS RAID-6 matrix. Therefore, the best RAID-6 matrix for a given value of w is one whose k elements
in row 1 are the k elements with the smallest number of ones in their bit-matrices. Cauchy.c stores these elements in
global variables for k ≤ 1023 and w ≤ 11. The file cauchy best r6.c is identical to cauchy.c except that it includes
these values for w ≤ 32. You will likely get compilation warnings when you use this file, but in my tests, all runs fine.
The reason that these values are not in cauchy.c is simply to keep the object files small.

10 Part 5 of the Library: Liberation Coding
Liberation coding is a RAID-6 code based on a bit-matrix that has the minimal number of ones for an MDS bit-
matrix. There are two restrictions: w must be a prime number greater than two, and k must be less than or equal to w.
Liberation codes are described in [Pla07b].
Unlike Cauchy coding, the bit-matrix elements do not correspond to elements in GF (2 w). Instead, the bit-matrix

itself has the proper MDS property.
The files liberation.h and liberation.c implement the following procedure:

• int *liberation coding bitmatrix(k, w): This allocates and returns the bit-matrix for liberation coding. Al-
though w must be a prime number greater than 2, this is not enforced by the procedure. If you give it a
non-primew, you will get a non-MDS coding matrix.

10.1 Example Program to Demonstrate Use
liberation 01.c: This takes two parameters: k and w, where w should be a prime number greater than two and k must
be less than or equal to w. It encodes and decodes with this bit-matrix. It encodes by converting the bit-matrix to
a dumb schedule. The dumb schedule is used because that schedule cannot be improved upon. For decoding, smart
scheduling is used as it gives a big savings over dumb scheduling.

UNIX> liberation_01 7 7
Coding Bit-Matrix:

1000000 1000000 1000000 1000000 1000000 1000000 1000000
0100000 0100000 0100000 0100000 0100000 0100000 0100000
0010000 0010000 0010000 0010000 0010000 0010000 0010000
0001000 0001000 0001000 0001000 0001000 0001000 0001000
0000100 0000100 0000100 0000100 0000100 0000100 0000100
0000010 0000010 0000010 0000010 0000010 0000010 0000010
0000001 0000001 0000001 0000001 0000001 0000001 0000001

1000000 0100000 0010000 0001000 0000100 0000010 0000001
0100000 0010000 0001000 0000100 0000010 0000011 1000000
0010000 0001000 0000100 0000110 0000001 1000000 0100000
0001000 0001100 0000010 0000001 1000000 0100000 0010000
0000100 0000010 0000001 1000000 0100000 0010000 0011000

10 PART 5 OF THE LIBRARY: LIBERATION CODING 30

0000010 0000001 1000000 0100000 0110000 0001000 0000100
0000001 1000000 1100000 0010000 0001000 0000100 0000010

Smart Encoding Complete: - 360 XOR’d bytes

Data Word 0: 32bf5b92 4ac377e5 145c747a 5f06390c 6c59517f 2744bc33 2b388156
Coding Word 0: 53030d1b 20b1ff85

Data Word 1: 6b95064b 146630ef 443b76ec 2636164a 005a474c 4ce8d234 3198d840
Coding Word 1: 60d41b3a 42ebc2f5

Data Word 2: 2d3a1e03 311d9a0e 4d5498c8 09ab3b54 3b2f3e3b 4dea64ff 5261ce8f
Coding Word 2: 7c7cb3da 29fcf045

Data Word 3: 3929a55f 5872d4d0 4a95e1ab 33d6788f 442c1b45 1b3131cd 60746f09
Coding Word 3: 2771ad2a 712f1e01

Data Word 4: 28caecbd 0788b05a 228e69e1 6dbe8f78 64d92420 716502fa 4d434ad5
Coding Word 4: 388dd671 5ec91cd2

Data Word 5: 71767ca5 732e6d08 31fb3083 78926b03 21ff94eb 26ff0100 440c6501
Coding Word 5: 083dbac7 3af40e24

Data Word 6: 01fe9e6a 14ef12de 258e265e 54d7a293 7dcad37f 137024de 3acc519f
Coding Word 6: 303eae47 63b4acf3

Erased 2 random pieces of data/coding:

Data Word 0: 32bf5b92 4ac377e5 145c747a 5f06390c 6c59517f 00000000 2b388156
Coding Word 0: 00000000 20b1ff85

Data Word 1: 6b95064b 146630ef 443b76ec 2636164a 005a474c 00000000 3198d840
Coding Word 1: 00000000 42ebc2f5

Data Word 2: 2d3a1e03 311d9a0e 4d5498c8 09ab3b54 3b2f3e3b 00000000 5261ce8f
Coding Word 2: 00000000 29fcf045

Data Word 3: 3929a55f 5872d4d0 4a95e1ab 33d6788f 442c1b45 00000000 60746f09
Coding Word 3: 00000000 712f1e01

Data Word 4: 28caecbd 0788b05a 228e69e1 6dbe8f78 64d92420 00000000 4d434ad5
Coding Word 4: 00000000 5ec91cd2

Data Word 5: 71767ca5 732e6d08 31fb3083 78926b03 21ff94eb 00000000 440c6501
Coding Word 5: 00000000 3af40e24

Data Word 6: 01fe9e6a 14ef12de 258e265e 54d7a293 7dcad37f 00000000 3acc519f
Coding Word 6: 00000000 63b4acf3

State of the system after decoding: 360 XOR’d bytes

Data Word 0: 32bf5b92 4ac377e5 145c747a 5f06390c 6c59517f 2744bc33 2b388156
Coding Word 0: 53030d1b 20b1ff85

Data Word 1: 6b95064b 146630ef 443b76ec 2636164a 005a474c 4ce8d234 3198d840
Coding Word 1: 60d41b3a 42ebc2f5

10 PART 5 OF THE LIBRARY: LIBERATION CODING 31

Data Word 2: 2d3a1e03 311d9a0e 4d5498c8 09ab3b54 3b2f3e3b 4dea64ff 5261ce8f
Coding Word 2: 7c7cb3da 29fcf045

Data Word 3: 3929a55f 5872d4d0 4a95e1ab 33d6788f 442c1b45 1b3131cd 60746f09
Coding Word 3: 2771ad2a 712f1e01

Data Word 4: 28caecbd 0788b05a 228e69e1 6dbe8f78 64d92420 716502fa 4d434ad5
Coding Word 4: 388dd671 5ec91cd2

Data Word 5: 71767ca5 732e6d08 31fb3083 78926b03 21ff94eb 26ff0100 440c6501
Coding Word 5: 083dbac7 3af40e24

Data Word 6: 01fe9e6a 14ef12de 258e265e 54d7a293 7dcad37f 137024de 3acc519f
Coding Word 6: 303eae47 63b4acf3

UNIX>

This demonstrates usage of liberation coding bitmatrix(), jerasure dumb bitmatrix to schedule(), jerasure-
schedule encode(), jerasure schedule decode lazy(), jerasure print bitmatrix() and jerasure get stats().

REFERENCES 32

References
[Anv07] H. P. Anvin. The mathematics of RAID-6. http://kernel.org/pub/linux/kernel/people/hpa/

raid6.pdf, 2007.

[BBBM95] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An efficient scheme for tolerating double disk
failures in RAID architectures. IEEE Transactions on Computing, 44(2):192– 202, February 1995.

[BKK+95] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D. Zuckerman. An XOR-based erasure-
resilient coding scheme. Technical Report TR-95-048, International Computer Science Institute, August
1995.

[CEG+04] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar. Row diagonal parity
for double disk failure correction. In 4th Usenix Conference on File and Storage Technologies, San
Francisco, CA, March 2004.

[FDBS05a] G. Feng, R. Deng, F. Bao, and J. Shen. New efficient MDS array codes for RAID Part I: Reed-Solomon-
like codes for tolerating three disk failures. IEEE Transactions on Computers, 54(9):1071–1080, Septem-
ber 2005.

[FDBS05b] G. Feng, R. Deng, F. Bao, and J. Shen. New efficient MDS array codes for RAID Part II: Rabin-like
codes for tolerating multiple (≥ 4) disk failures. IEEE Transactions on Computers, 54(12):1473–1483,
Decemeber 2005.

[HX05] C. Huang and L. Xu. STAR: An efficient coding scheme for correcting triple storage node failures. In
FAST-2005: 4th Usenix Conference on File and Storage Technologies, pages 197–210, San Francisco,
December 2005.

[PD05] J. S. Plank and Y. Ding. Note: Correction to the 1997 tutorial on Reed-Solomon coding. Software –
Practice & Experience, 35(2):189–194, February 2005.

[Pla97] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Software –
Practice & Experience, 27(9):995–1012, September 1997.

[Pla07a] J. S. Plank. Fast Galois Field arithmetic library in C/C++. Technical Report CS-07-593, University of
Tennessee, April 2007.

[Pla07b] J. S. Plank. A newMDS erasure code for RAID-6. Technical Report CS-07-602, University of Tennessee,
September 2007.

[Pre89] F. P. Preparata. Holographic dispersal and recovery of information. IEEE Transactions on Information
Theory, 35(5):1123–1124, September 1989.

[PX06] J. S. Plank and L. Xu. Optimizing Cauchy Reed-Solomon codes for fault-tolerant network storage ap-
plications. In NCA-06: 5th IEEE International Symposium on Network Computing Applications, Cam-
bridge, MA, July 2006.

[Rab89] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. Journal
of the Association for Computing Machinery, 36(2):335–348, April 1989.

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society for
Industrial and Applied Mathematics, 8:300–304, 1960.

