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Abstract

The EM-ML (expectation-maximization, maximum-likelihood) algorithm for PET reconstruction is
an iterative method. Sequence convergence to a fixed point that satisfiesthe Karush-Kuhn-Tucker
conditions for optimality has previously been established [1, 2, 3]. This correspondence first gives
an alternative proof of sequence convergence and optimality based on direct expansion of certain
Kullback discrimination functions and a standard result in optimization theory. Using results in series
convergence, we then show that several sequences converge to 0 faster thank → ∞, i.e., the sequences
areo(k−1).

Keywords: positron emission tomography expectation-maximization
iterative image reconstruction computed imaging

1



2

I. EM-ML Iteration Scheme

The EM-ML algorithm for PET reconstruction [1, 2, 3] maximizes the Poissonlikelihood P (n∗|λ)
where vectorsn∗ = (n1, . . . , nD) andλ = (λ1, . . . , λB), respectively, denote the externally recorded
emission counts and the internal emission rates that are to be estimated. The log-likelihood can be
expressed as

ℓ(λ) = log P (n∗|λ) (1)

=
∑

d

n∗

d log λ∗

d −
∑

d

log n∗

d! −
∑

d

λ∗

d (2)

whereλ∗

d =
∑

b λbpbd is the expected number of recorded emission counts, collectively referred to
by vectorλ∗ = (λ∗

1, . . . , λ
∗

D), andpbd is the conditional probability that emission activity at pixelb is
detected by tubed. Without loss of generality, normalizations

∑
d pbd = 1 for all b and

∑
d n∗

d = 1
are assumed [2].ℓ(λ), and thusP (n∗|λ), is maximized iffλ∗ = n

∗.
The EM-ML algorithm re-estimates the emission rate at pixelb using the multiplicative update

scheme

λk+1

b = λk
b (1 + ∇bℓ(λ

k)) (3)

= λk
b

∑

d

n∗

d

λ∗k
d

pbd (4)

whereλ0
b = 1 for eachb is a viable choice for the initial estimate (because uniform values inλ

0 cancel
out when computingλ1). Important features of the algorithm are thatλ

k is always nonnegative and
that the normalizations

∑
b λk

b =
∑

d λ∗k
d =

∑
d n∗

d are maintained fork = 1, 2, . . .
Now rewrite the log-likelihood as

ℓ(λ) = f(n∗, λ∗) −D(n∗, λ∗) (5)

where

f(n∗, λ∗) =
∑

d

n∗

d log n∗

d −
∑

d

log n∗

d! −
∑

d

λ∗

d (6)

=
∑

d

n∗

d log n∗

d −
∑

d

log n∗

d! − 1 (7)

and

D(n∗, λ∗) =
∑

d

n∗

d log
n∗

d

λ∗

d

. (8)

Note thatf(n∗, λ∗) is constant given observed datan
∗ and thatD(n∗, λ∗) is a nonnegative Kullback

discrimination which equals 0 iff its two arguments are identical [4]. Therefore, P (n∗|λ) is maxi-
mized iff D(n∗, λ∗) is minimized, which in turn is true iff the sequence{λk} converges to a fixed
point λ̂ for which D(n∗, λ̂

∗

) = 0. This convergence has previously been established by showing
λ

k → λ̂ whereλ̂ satisfies the Karush-Kuhn-Tucker conditions for optimality [1, 2, 3].
It can also be convenient and informative to establish thatD(n∗, λ∗k) → 0 by direct expansion

of certain Kullback discrimination functions together with a result in optimization theory for concave
functions and convex sets. After giving this alternative proof of sequence convergence and optimality,
we use results in series convergence to show thatkD(n∗, λ∗k) also converges to 0, i.e.,D(n∗, λ∗k) →
0 faster thank → ∞.
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II. Sequence Convergence

Proposition 1 D(n∗, λ∗k) −D(n∗, λ∗k+1) ≥ D(λk+1, λk) for k = 0, 1, 2, . . .

Proof: Expanding the lefthand side of the inequality we get

D(n∗, λ∗k) −D(n∗, λ∗k+1) =
∑

d

n∗

d log
n∗

d

λ∗k
d

−
∑

d

n∗

d log
n∗

d

λ∗k+1

d

=
∑

d

n∗

d

λ∗k
d

λ∗k
d

log
n∗

d

λ∗k
d

pbd

pbd

λ∗k+1

d

n∗

d

=
∑

b,d

λk
b

n∗

d

λ∗k
d

pbd log
n∗

dpbd

λ∗k
d

λ∗k+1

d

n∗

dpbd

=
∑

b,d

πk+1

bd log
πk+1

bd

λk
b

λk+1

b

πk+2

bd

whereπk+1

bd = λk
b (n

∗

d/λ∗k
d )pbd; note thatπk+1

bd ≥ 0 and
∑

b,d πk+1

bd = 1. The righthand side of the
inequality is

D(λk+1, λk) =
∑

b

λk+1

b log
λk+1

b

λk
b

=
∑

b,d

λk
b

n∗

d

λ∗k
d

pbd log
λk+1

b

λk
b

=
∑

b,d

πk+1

bd log
λk+1

b

λk
b

.

The proposition follows by subtracting this result from the one above since

∑

b,d

πk+1

bd log
πk+1

bd

λk
b

λk+1

b

πk+2

bd

−
∑

b,d

πk+1

bd log
λk+1

b

λk
b

=
∑

b,d

πk+1

bd log
πk+1

bd

πk+2

bd

= D(πk+1, πk+2)

≥ 0

where we used the fact thatπ
k+1 andπ

k+2 are probability distributions. �

Proposition 2 The sequence{λk} converges monotonically tôλ which is a fixed point that maximizes
the log-likelihood functionℓ.

Proof: SinceD(λk+1, λk) ≥ 0 with equality iff λ
k+1 = λ

k, it follows from Proposition 1 that
{D(n∗, λ∗k)} is a monotonically decreasing sequence of real numbers bounded below by 0; hence, it
converges [5]. Consequently,

D(n∗, λ∗k) −D(n∗, λ∗k+1) → 0 ⇒ D(λk+1, λk) → 0

⇒ λ
k → λ̂.
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The log-likelihoodℓ is a concave function [1, 3]. The set of candidate solutions

PB = {(λ1, . . . , λB) | λb ≥ 0,
∑

b

λb = 1}

is the convex hull of the extreme points{λb = 1 | 1 ≤ b ≤ B} and thus a convex set [6]. A standard
result in optimization of concave functions on convex sets is that a necessary and sufficient condition
for fixed pointλ̂ to be a maximizer ofℓ is

(λ − λ̂)′∇ℓ(λ̂) ≤ 0

for everyλ ∈ PB [7]. But sinceλ ≥ 0 and

λ̂
′

∇ℓ(λ̂) =
∑

b

λ̂b∇bℓ(λ̂)

=
∑

b

λ̂b

∑

d

n∗

d

λ̂∗

d

pbd −
∑

b

λ̂b

=
∑

d

n∗

d −
∑

b

λ̂b

= 0,

it suffices to show that∇bℓ(λ̂) ≤ 0 for everyb. By contradiction, suppose that there exists a pixelb
for which∇bℓ(λ̂) > 0. Then1 + ∇bℓ(λ

k) converges to a value greater than 1 which in turn implies
thatλk

b → ∞ (cf. Equation 3), but this is a contradiction of the convergenceλk
b → λ̂b to a finiteλ̂b. �

Corollary 1 D(n∗, λ∗k) → 0.

Proof: From Proposition 2,λk → λ̂ which means thatλ∗k → λ̂
∗

. The corollary then follows sincêλ
is a maximizer ofP (n∗|λ) which implies that̂λ

∗

= n
∗. �

III. o(k−1) Sequences

Proposition 3 D(λ̂, λk) −D(λ̂, λk+1) ≥ D(n∗, λ∗k) for k = 0, 1, 2, . . .

Proof: Expanding the lefthand side of the inequality we get

D(λ̂, λk) −D(λ̂, λk+1) =
∑

b

λ̂b log
λk+1

b

λk
b

=
∑

b

λ̂b log
∑

d

n∗

d

λ∗k
d

pbd

= Ebλ•

[
log Epb•

[ n∗

λ∗k

] ]
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whereEbλ•

denotes expectation with respect to fixed pointλ̂b andEpb•
denotes conditional expectation

with respect topbd. The proposition follows by applying Jensen’s inequality (cf. [8]) to this result
since

Ebλ•

[
log Epb•

[ n∗

λ∗k

] ]
≥ Ebλ•

[
Epb•

[
log

n∗

λ∗k

] ]

=
∑

b

λ̂b

∑

d

pbd log
n∗

d

λ∗k
d

=
∑

d

∑

b

λ̂bpbd log
n∗

d

λ∗k
d

=
∑

d

n∗

d log
n∗

d

λ∗k
d

= D(n∗, λ∗k)

where we used the fact thatn∗

d = λ̂∗

d =
∑

b λ̂bpbd. �

Corollary 2
∑

∞

k=0
D(n∗, λ∗k) ≤ D(λ̂, λ0).

Proof: Since Kullback discrimination is non-negative, we can take the partial sum onboth sides of
the inequality of Proposition 3 to obtain

m∑

k=0

D(n∗, λ∗k) ≤
m∑

k=0

(D(λ̂, λk) −D(λ̂, λk+1))

= D(λ̂, λ0) −D(λ̂, λm+1).

The corollary follows becauseλm+1 → λ̂ such thatD(λ̂, λm+1) → 0. �

Corollary 3 The sequence{D(n∗, λ∗k)} is o(k−1).

Proof: From Proposition 2 and corollary 2 we have that
∑

∞

k=0
D(n∗, λ∗k) is a convergent series of

positive monotonically decreasing terms. Hence,kD(n∗, λ∗k) → 0 [5] and the corollary follows.�

It is also true that bothD(λk+1, λk) and ||λk+1 − λ
k||21 are o(k−1) because the inequality

D(λk+1, λk) ≤ D(n∗, λ∗k) holds by Proposition 1 and the inequality||λk+1−λ
k||21 ≤ CD(λk+1, λk)

for constantC > 0 holds between the squared-norm and the Kullback function (cf.[9]).
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