On Convergence of the EM-ML Algorithm for PET Reconstruction

Jens Gregor, Søren P. Olesen, and Michael G. Thomason
Department of Electrical Engineering \& Computer Science
University of Tennessee
1122 Volunteer Blvd., Suite 203 Knoxville, TN 37996-3450

October 31, 2007

Tech. report UT-CS-07-605

Abstract

The EM-ML (expectation-maximization, maximum-likelihood) algorithm for PET reconstruction is an iterative method. Sequence convergence to a fixed point that satisfies the Karush-Kuhn-Tucker conditions for optimality has previously been established [1, 2, 3]. This correspondence first gives an alternative proof of sequence convergence and optimality based on direct expansion of certain Kullback discrimination functions and a standard result in optimization theory. Using results in series convergence, we then show that several sequences converge to 0 faster than $k \rightarrow \infty$, i.e., the sequences are $o\left(k^{-1}\right)$.

I. EM-ML Iteration Scheme

The EM-ML algorithm for PET reconstruction [1, 2, 3] maximizes the Poisson likelihood $P\left(\boldsymbol{n}^{*} \mid \boldsymbol{\lambda}\right)$ where vectors $\boldsymbol{n}^{*}=\left(n_{1}, \ldots, n_{D}\right)$ and $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{B}\right)$, respectively, denote the externally recorded emission counts and the internal emission rates that are to be estimated. The log-likelihood can be expressed as

$$
\begin{align*}
\ell(\boldsymbol{\lambda}) & =\log P\left(\boldsymbol{n}^{*} \mid \boldsymbol{\lambda}\right) \tag{1}\\
& =\sum_{d} n_{d}^{*} \log \lambda_{d}^{*}-\sum_{d} \log n_{d}^{*}!-\sum_{d} \lambda_{d}^{*} \tag{2}
\end{align*}
$$

where $\lambda_{d}^{*}=\sum_{b} \lambda_{b} p_{b d}$ is the expected number of recorded emission counts, collectively referred to by vector $\boldsymbol{\lambda}^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{D}^{*}\right)$, and $p_{b d}$ is the conditional probability that emission activity at pixel b is detected by tube d. Without loss of generality, normalizations $\sum_{d} p_{b d}=1$ for all b and $\sum_{d} n_{d}^{*}=1$ are assumed [2]. $\ell(\boldsymbol{\lambda})$, and thus $P\left(\boldsymbol{n}^{*} \mid \boldsymbol{\lambda}\right)$, is maximized iff $\boldsymbol{\lambda}^{*}=\boldsymbol{n}^{*}$.

The EM-ML algorithm re-estimates the emission rate at pixel b using the multiplicative update scheme

$$
\begin{align*}
\lambda_{b}^{k+1} & =\lambda_{b}^{k}\left(1+\nabla_{b} \ell\left(\boldsymbol{\lambda}^{k}\right)\right) \tag{3}\\
& =\lambda_{b}^{k} \sum_{d} \frac{n_{d}^{*}}{\lambda_{d}^{* k}} p_{b d} \tag{4}
\end{align*}
$$

where $\lambda_{b}^{0}=1$ for each b is a viable choice for the initial estimate (because uniform values in λ^{0} cancel out when computing $\boldsymbol{\lambda}^{1}$). Important features of the algorithm are that $\boldsymbol{\lambda}^{k}$ is always nonnegative and that the normalizations $\sum_{b} \lambda_{b}^{k}=\sum_{d} \lambda_{d}^{* k}=\sum_{d} n_{d}^{*}$ are maintained for $k=1,2, \ldots$

Now rewrite the log-likelihood as

$$
\begin{equation*}
\ell(\boldsymbol{\lambda})=f\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{*}\right)-\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{*}\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{align*}
f\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{*}\right) & =\sum_{d} n_{d}^{*} \log n_{d}^{*}-\sum_{d} \log n_{d}^{*}!-\sum_{d} \lambda_{d}^{*} \tag{6}\\
& =\sum_{d} n_{d}^{*} \log n_{d}^{*}-\sum_{d} \log n_{d}^{*}!-1 \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{*}\right)=\sum_{d} n_{d}^{*} \log \frac{n_{d}^{*}}{\lambda_{d}^{*}} \tag{8}
\end{equation*}
$$

Note that $f\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{*}\right)$ is constant given observed data \boldsymbol{n}^{*} and that $\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{*}\right)$ is a nonnegative Kullback discrimination which equals 0 iff its two arguments are identical [4]. Therefore, $P\left(\boldsymbol{n}^{*} \mid \boldsymbol{\lambda}\right)$ is maximized iff $\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{*}\right)$ is minimized, which in turn is true iff the sequence $\left\{\boldsymbol{\lambda}^{k}\right\}$ converges to a fixed point $\widehat{\lambda}$ for which $\mathcal{D}\left(\boldsymbol{n}^{*}, \widehat{\boldsymbol{\lambda}}^{*}\right)=0$. This convergence has previously been established by showing $\boldsymbol{\lambda}^{k} \rightarrow \widehat{\boldsymbol{\lambda}}$ where $\widehat{\boldsymbol{\lambda}}$ satisfies the Karush-Kuhn-Tucker conditions for optimality [1, 2, 3].

It can also be convenient and informative to establish that $\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right) \rightarrow 0$ by direct expansion of certain Kullback discrimination functions together with a result in optimization theory for concave functions and convex sets. After giving this alternative proof of sequence convergence and optimality, we use results in series convergence to show that $k \mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right)$ also converges to 0 , i.e., $\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right) \rightarrow$ 0 faster than $k \rightarrow \infty$.

II. Sequence Convergence

Proposition $1 \mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right)-\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k+1}\right) \geq \mathcal{D}\left(\boldsymbol{\lambda}^{k+1}, \boldsymbol{\lambda}^{k}\right)$ for $k=0,1,2, \ldots$
Proof: Expanding the lefthand side of the inequality we get

$$
\begin{aligned}
\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right)-\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k+1}\right) & =\sum_{d} n_{d}^{*} \log \frac{n_{d}^{*}}{\lambda_{d}^{* k}}-\sum_{d} n_{d}^{*} \log \frac{n_{d}^{*}}{\lambda_{d}^{* k+1}} \\
& =\sum_{d} n_{d}^{*} \frac{\lambda_{d}^{* k}}{\lambda_{d}^{* k}} \log \frac{n_{d}^{*}}{\lambda_{d}^{* k}} \frac{p_{b d}}{p_{b d}} \frac{\lambda_{d}^{* k+1}}{n_{d}^{*}} \\
& =\sum_{b, d} \lambda_{b}^{k} \frac{n_{d}^{*}}{\lambda_{d}^{* k}} p_{b d} \log \frac{n_{d}^{*} p_{b d}}{\lambda_{d}^{* k}} \frac{\lambda_{d}^{* k+1}}{n_{d}^{*} p_{b d}} \\
& =\sum_{b, d} \pi_{b d}^{k+1} \log \frac{\pi_{b d}^{k+1}}{\lambda_{b}^{k}} \frac{\lambda_{b}^{k+1}}{\pi_{b d}^{k+2}}
\end{aligned}
$$

where $\pi_{b d}^{k+1}=\lambda_{b}^{k}\left(n_{d}^{*} / \lambda_{d}^{* k}\right) p_{b d}$; note that $\pi_{b d}^{k+1} \geq 0$ and $\sum_{b, d} \pi_{b d}^{k+1}=1$. The righthand side of the inequality is

$$
\begin{aligned}
\mathcal{D}\left(\boldsymbol{\lambda}^{k+1}, \boldsymbol{\lambda}^{k}\right) & =\sum_{b} \lambda_{b}^{k+1} \log \frac{\lambda_{b}^{k+1}}{\lambda_{b}^{k}} \\
& =\sum_{b, d} \lambda_{b}^{k} \frac{n_{d}^{*}}{\lambda_{d}^{* k}} p_{b d} \log \frac{\lambda_{b}^{k+1}}{\lambda_{b}^{k}} \\
& =\sum_{b, d} \pi_{b d}^{k+1} \log \frac{\lambda_{b}^{k+1}}{\lambda_{b}^{k}}
\end{aligned}
$$

The proposition follows by subtracting this result from the one above since

$$
\begin{aligned}
\sum_{b, d} \pi_{b d}^{k+1} \log \frac{\pi_{b d}^{k+1}}{\lambda_{b}^{k}} \frac{\lambda_{b}^{k+1}}{\pi_{b d}^{k+2}}-\sum_{b, d} \pi_{b d}^{k+1} \log \frac{\lambda_{b}^{k+1}}{\lambda_{b}^{k}} & =\sum_{b, d} \pi_{b d}^{k+1} \log \frac{\pi_{b d}^{k+1}}{\pi_{b d}^{k+2}} \\
& =\mathcal{D}\left(\boldsymbol{\pi}^{k+1}, \boldsymbol{\pi}^{k+2}\right) \\
& \geq 0
\end{aligned}
$$

where we used the fact that π^{k+1} and π^{k+2} are probability distributions.

Proposition 2 The sequence $\left\{\boldsymbol{\lambda}^{k}\right\}$ converges monotonically to $\widehat{\boldsymbol{\lambda}}$ which is a fixed point that maximizes the log-likelihood function ℓ.

Proof: Since $\mathcal{D}\left(\boldsymbol{\lambda}^{k+1}, \boldsymbol{\lambda}^{k}\right) \geq 0$ with equality iff $\boldsymbol{\lambda}^{k+1}=\boldsymbol{\lambda}^{k}$, it follows from Proposition 1 that $\left\{\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right)\right\}$ is a monotonically decreasing sequence of real numbers bounded below by 0 ; hence, it converges [5]. Consequently,

$$
\begin{aligned}
\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right)-\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k+1}\right) \rightarrow 0 & \Rightarrow \mathcal{D}\left(\boldsymbol{\lambda}^{k+1}, \boldsymbol{\lambda}^{k}\right) \rightarrow 0 \\
& \Rightarrow \boldsymbol{\lambda}^{k} \rightarrow \widehat{\boldsymbol{\lambda}} .
\end{aligned}
$$

The log-likelihood ℓ is a concave function [1,3]. The set of candidate solutions

$$
\mathcal{P}_{B}=\left\{\left(\lambda_{1}, \ldots, \lambda_{B}\right) \mid \lambda_{b} \geq 0, \sum_{b} \lambda_{b}=1\right\}
$$

is the convex hull of the extreme points $\left\{\lambda_{b}=1 \mid 1 \leq b \leq B\right\}$ and thus a convex set [6]. A standard result in optimization of concave functions on convex sets is that a necessary and sufficient condition for fixed point $\widehat{\boldsymbol{\lambda}}$ to be a maximizer of ℓ is

$$
(\boldsymbol{\lambda}-\widehat{\boldsymbol{\lambda}})^{\prime} \nabla \ell(\widehat{\boldsymbol{\lambda}}) \leq 0
$$

for every $\boldsymbol{\lambda} \in \mathcal{P}_{B}$ [7]. But since $\boldsymbol{\lambda} \geq 0$ and

$$
\begin{aligned}
\widehat{\boldsymbol{\lambda}}^{\prime} \nabla \ell(\widehat{\boldsymbol{\lambda}}) & =\sum_{b} \widehat{\lambda}_{b} \nabla_{b} \ell(\widehat{\boldsymbol{\lambda}}) \\
& =\sum_{b} \widehat{\lambda}_{b} \sum_{d} \frac{n_{d}^{*}}{\widehat{\lambda}_{d}^{*}} p_{b d}-\sum_{b} \widehat{\lambda}_{b} \\
& =\sum_{d} n_{d}^{*}-\sum_{b} \widehat{\lambda}_{b} \\
& =0
\end{aligned}
$$

it suffices to show that $\nabla_{b} \ell(\widehat{\boldsymbol{\lambda}}) \leq 0$ for every b. By contradiction, suppose that there exists a pixel b for which $\nabla_{b} \ell(\widehat{\boldsymbol{\lambda}})>0$. Then $1+\nabla_{b} \ell\left(\boldsymbol{\lambda}^{k}\right)$ converges to a value greater than 1 which in turn implies that $\lambda_{b}^{k} \rightarrow \infty$ (cf. Equation 3), but this is a contradiction of the convergence $\lambda_{b}^{k} \rightarrow \widehat{\lambda}_{b}$ to a finite $\widehat{\lambda}_{b}$.

Corollary $1 \mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right) \rightarrow 0$.
Proof: From Proposition $2, \boldsymbol{\lambda}^{k} \rightarrow \widehat{\boldsymbol{\lambda}}$ which means that $\boldsymbol{\lambda}^{* k} \rightarrow \widehat{\boldsymbol{\lambda}}^{*}$. The corollary then follows since $\widehat{\boldsymbol{\lambda}}$ is a maximizer of $P\left(\boldsymbol{n}^{*} \mid \boldsymbol{\lambda}\right)$ which implies that $\widehat{\boldsymbol{\lambda}}^{*}=\boldsymbol{n}^{*}$.

III. $o\left(k^{-1}\right)$ Sequences

Proposition $3 \mathcal{D}\left(\widehat{\boldsymbol{\lambda}}, \boldsymbol{\lambda}^{k}\right)-\mathcal{D}\left(\widehat{\boldsymbol{\lambda}}, \boldsymbol{\lambda}^{k+1}\right) \geq \mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right)$ for $k=0,1,2, \ldots$
Proof: Expanding the lefthand side of the inequality we get

$$
\begin{aligned}
\mathcal{D}\left(\widehat{\boldsymbol{\lambda}}, \boldsymbol{\lambda}^{k}\right)-\mathcal{D}\left(\widehat{\boldsymbol{\lambda}}, \boldsymbol{\lambda}^{k+1}\right) & =\sum_{b} \widehat{\lambda}_{b} \log \frac{\lambda_{b}^{k+1}}{\lambda_{b}^{k}} \\
& =\sum_{b} \widehat{\lambda}_{b} \log \sum_{d} \frac{n_{d}^{*}}{\lambda_{d}^{* k}} p_{b d} \\
& =E_{\widehat{\lambda}_{\bullet}}\left[\log E_{p_{b} \bullet}\left[\frac{n^{*}}{\lambda^{* k}}\right]\right]
\end{aligned}
$$

where $E_{\widehat{\lambda}_{\bullet}}$ denotes expectation with respect to fixed point $\widehat{\lambda}_{b}$ and $E_{p_{b}}$ denotes conditional expectation with respect to $p_{b d}$. The proposition follows by applying Jensen's inequality (cf. [8]) to this result since

$$
\begin{aligned}
E_{\hat{\lambda}_{\bullet}}\left[\log E_{p_{b}}\left[\frac{n^{*}}{\lambda^{* k}}\right]\right] & \geq E_{\widehat{\lambda}}\left[E_{p_{b}}\left[\log \frac{n^{*}}{\lambda^{* k}}\right]\right] \\
& =\sum_{b} \hat{\lambda}_{b} \sum_{d} p_{b d} \log \frac{n_{d}^{*}}{\lambda_{d}^{* k}} \\
& =\sum_{d} \sum_{b} \widehat{\lambda}_{b} p_{b d} \log \frac{n_{d}^{*}}{\lambda_{d}^{* k}} \\
& =\sum_{d} n_{d}^{*} \log \frac{n_{d}^{*}}{\lambda_{d}^{* k}} \\
& =\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right)
\end{aligned}
$$

where we used the fact that $n_{d}^{*}=\widehat{\lambda}_{d}^{*}=\sum_{b} \widehat{\lambda}_{b} p_{b d}$.

Corollary $2 \sum_{k=0}^{\infty} \mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right) \leq \mathcal{D}\left(\widehat{\boldsymbol{\lambda}}, \boldsymbol{\lambda}^{0}\right)$.
Proof: Since Kullback discrimination is non-negative, we can take the partial sum on both sides of the inequality of Proposition 3 to obtain

$$
\begin{aligned}
\sum_{k=0}^{m} \mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right) & \leq \sum_{k=0}^{m}\left(\mathcal{D}\left(\widehat{\boldsymbol{\lambda}}, \boldsymbol{\lambda}^{k}\right)-\mathcal{D}\left(\widehat{\boldsymbol{\lambda}}, \boldsymbol{\lambda}^{k+1}\right)\right) \\
& =\mathcal{D}\left(\widehat{\boldsymbol{\lambda}}, \boldsymbol{\lambda}^{0}\right)-\mathcal{D}\left(\widehat{\boldsymbol{\lambda}}, \boldsymbol{\lambda}^{m+1}\right)
\end{aligned}
$$

The corollary follows because $\boldsymbol{\lambda}^{m+1} \rightarrow \hat{\boldsymbol{\lambda}}$ such that $\mathcal{D}\left(\widehat{\boldsymbol{\lambda}}, \boldsymbol{\lambda}^{m+1}\right) \rightarrow 0$.

Corollary 3 The sequence $\left\{\mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right)\right\}$ is $o\left(k^{-1}\right)$.
Proof: From Proposition 2 and corollary 2 we have that $\sum_{k=0}^{\infty} \mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right)$ is a convergent series of positive monotonically decreasing terms. Hence, $k \mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right) \rightarrow 0$ [5] and the corollary follows.

It is also true that both $\mathcal{D}\left(\boldsymbol{\lambda}^{k+1}, \boldsymbol{\lambda}^{k}\right)$ and $\left\|\boldsymbol{\lambda}^{k+1}-\boldsymbol{\lambda}^{k}\right\|_{1}^{2}$ are $o\left(k^{-1}\right)$ because the inequality $\mathcal{D}\left(\boldsymbol{\lambda}^{k+1}, \boldsymbol{\lambda}^{k}\right) \leq \mathcal{D}\left(\boldsymbol{n}^{*}, \boldsymbol{\lambda}^{* k}\right)$ holds by Proposition 1 and the inequality $\left\|\boldsymbol{\lambda}^{k+1}-\boldsymbol{\lambda}^{k}\right\|_{1}^{2} \leq C \mathcal{D}\left(\boldsymbol{\lambda}^{k+1}, \boldsymbol{\lambda}^{k}\right)$ for constant $C>0$ holds between the squared-norm and the Kullback function (cf.[9]).

References

[1] L. A. Shepp and Y. Vardi, "Maximum likelihood reconstruction for emission tomography," IEEE Trans. Med. Imaging, vol. 1, pp. 113-122, 1982.
[2] Y. Vardi, L. A. Shepp, and L. Kaufman, "A statistical model of positron emission tomography," J. Am. Stat. Assoc., vol. 80, pp. 8-20, 1985.
[3] K. Lange and R. Carson, "EM reconstruction algorithms for emission and transmission tomography," J. Comp. Asst. Tomog., vol. 8, pp. 306-316, 1984.
[4] S. Kullback, Information Theory and Statistics. New York: Wiley, 1959.
[5] K. Knopp, Theory and Application of Infinite Series. London and Glasgow: Blackie and Son Limited, 1949.
[6] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming Theory and Algorithms. New York: Wiley, 1993.
[7] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[8] T. M. Cover, "An algorithm for maximizing expected log investment return," IEEE Trans. Info. Theory, vol. IT-30, pp. 369-373, 1984.
[9] S. Kullback, "A lower bound for discrimination information in terms of variation," IEEE Trans. Info. Theory, vol. IT-13, pp. 126-127, 1967.

