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Abstract

The EM-ML (expectation-maximization, maximume-likelihood) algorithm for PETorestruction is
an iterative method. Sequence convergence to a fixed point that satisfigarush-Kuhn-Tucker
conditions for optimality has previously been established [1, 2, 3]. Thisespondence first gives
an alternative proof of sequence convergence and optimality basettemh ekpansion of certain
Kullback discrimination functions and a standard result in optimization theming.results in series
convergence, we then show that several sequences convergesteriiak — oo, i.e., the sequences
areo(k™1).
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I. EM-ML lIteration Scheme

The EM-ML algorithm for PET reconstruction [1, 2, 3] maximizes the Poidd@ilihood P(n*|\)
where vectorst™ = (n1,...,np)andA = (\,..., Ap), respectively, denote the externally recorded
emission counts and the internal emission rates that are to be estimated. Tikelioged can be
expressed as

(A) = log P(n*|A) (1)

= anlog)\d Zlogn*'—Z/\Z (2)
d

where\;, = >, \ypia is the expected number of recorded emission counts, collectively réferre
by vectorA™ = (A}, ..., A})), andpyq is the conditional probability that emission activity at pikes
detected by tubd. Without loss of generality, normalizatio)s ; prq = 1 forall b and) ", n}; =1
are assumed [2F(A), and thusP(n*|X), is maximized iffA* = n*.

The EM-ML algorithm re-estimates the emission rate at pixasing the multiplicative update
scheme

AT = N1+ VReAY) 3
n*
= )\kz/\*kpbd (4)

where)) = 1 for eachb is a viable choice for the initial estimate (because uniform valuas$ irancel
out when computind\!'). Important features of the algorithm are tidt is always nonnegative and
that the normalizationy", A\¥ = Y~ , \:F = Y~ n} are maintained fok = 1,2, ...

Now rewrite the log-likelihood as

tA) = f(n",X7) =D(n", A7) (5)
where
X =) nglogng— > logngl =Y A; (6)
= anlognd—Zlognd!—ld (7)
and d d
D(n*, \") anlog : (8)

Note thatf(n*, A*) is constant given observed dat& and thatD(n*, A*) is a nonnegative Kullback
discrimination which equals 0 iff its two arguments are identical [4]. TheeefB(n*|\) is maxi-
mized iff D(n*, \*) is minimized, which in turn is true iff the sequen¢a®} converges to a fixed
pomtA for which D(n*, ’Y ) = 0. This convergence has previously been established by showing
A% — X whereX satisfies the Karush-Kuhn-Tucker conditions for optimality [1, 2, 3].

It can also be convenient and informative to establish Thai*, A**) — 0 by direct expansion
of certain Kullback discrimination functions together with a result in optimizatioorghéor concave
functions and convex sets. After giving this alternative proof of segeieonvergence and optimality,
we use results in series convergence to showitBdin*, A**) also converges to 0, i.eD(n*, A**) —
0 faster thark — oc.



I1.  Seguence Convergence
Proposition 1 D(n*, A**) — D(n*, X**+1) > DAL XK fork =0,1,2,...

Proof: Expanding the lefthand side of the inequality we get

D(n*, A**) — D(n*, A+ = anlog anlog *k:+1

n
= 3 i tog T PAL
d )‘d Ad" Pod - Ty
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k+1 )\k—‘rl

+1
= Zwb lg k k+2
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wherer !t = AF(n% /A )pra; note thatry it > 0.andy", ;77" = 1. The righthand side of the
mequahty is

k+1
D(}\k—kl’)\k) _ Z)\kJrllOg

lc+1

- Z)‘b *kpbdbg k
b A Ay

k+1

= Z 7Tk+1 log .

The proposition follows by subtracting this result from the one above since

i1 k+1 )\k+1 ol k+1 ol k+1
+ + _ +
Sk o Th T - Sk s e = Sl s T
bd Tbd
_ D(Trk—l—l k)
> 0
where we used the fact thatt! and7**+2 are probability distributions. O

Proposition 2 The sequencg\*} converges monotonically fowhich is a fixed point that maximizes
the log-likelihood functiord.

Proof: SinceD(A**1, A*) > 0 with equality iff A**1 = X*, it follows from Proposition 1 that
{D(n*, X**)} is a monotonically decreasing sequence of real numbers bounded helyénce, it
converges [5]. Consequently,

D(n*, X*F) = D(n*, M) -0 = DAL AN -0
- AF S



The log-likelihoodf is a concave function [1, 3]. The set of candidate solutions

,PB:{()\:L?"'?)\B)’)\I)ZO’ ZAbzl}
b

is the convex hull of the extreme poing;, = 1 | 1 < b < B} and thus a convex set [6]. A standard
result in optimization of concave functions on convex sets is that a negesgasufficient condition
for fixed point to be a maximizer of is

(A=A)VLA) <0
for everyA € Pgp [7]. But sinceX > 0 and

NV

> NVul(A)
b
P P
b )‘d b

d
= ZnZ—ZXb
d b
= 0,

~

it suffices to show tha¥,¢(A) < 0 for everyb. By contradiction, suppose that there exists a pixel
for which V,¢(X) > 0. Thenl + V,¢(A\¥) converges to a value greater than 1 which in turn implies
that\} — oo (cf. Equation 3), but this is a contradiction of the convergekjces \, to a finite \,. O

Corollary 1 D(n*, A**) — 0.

Proof: From Proposition 2\* — X which means thax** — X". The corollary then follows sinck
is @ maximizer ofP(n*|\) which implies that\ = n*. O

I11. o(k~') Sequences
Proposition 3 D(X, A¥) — D(A, A1) > D(n* A*F) fork =0,1,2,...

Proof: Expanding the lefthand side of the inequality we get

R . - )\kJrl
DA = DA = > N log ;k
b b

= Y hlos Y
b d
*

n
= E; [logEp, [W] ]




whereEA denotes expectation with respect to fixed pmnandpr. denotes conditional expectation
with respect tap,g. The proposition follows by applying Jensen’s inequality (cf. [8]) to tleisutt
since

n* *
B3, [log Ep,, [W] ] > B3, [pr- [log )\*k ] }
= > A > Pha log - )\*k
b d d
= > > Neppalog
d b v
= nylog *d
zd: N
= D(n*,A*F)
where we used the fact thaj, = X; => /):bpbd. d

Corollary 2 322, D(n*, A*) < D(A, A?).

Proof: Since Kullback discrimination is non-negative, we can take the partial subotinsides of
the inequality of Proposition 3 to obtain

> DA <
k=0 =0

= DA, A% — DA, A™H.

(D(A, AF) — DX, A1)

NE

o

The corollary follows becaust™"! — X such thatD(X, A1) — 0. U

Corollary 3 The sequencéD(n*, A**)}is o(k~1).

Proof: From Proposition 2 and corollary 2 we have thaf>, D(n*, \**) is a convergent series of
positive monotonically decreasing terms. HericB(n*, A**) — 0 [5] and the corollary follows.]

It is also true that botD(A*1 A¥) and [|A*F!1 — A¥||? are o(k~!) because the inequality
DAL AF) < D(n*, A**) holds by Proposition 1 and the inequaligk* 1 —\*| |2 < CD(AFL, AF)
for constant” > 0 holds between the squared-norm and the Kullback function (cf.[9]).
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