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Abstract

An important topic in image fusion is methodology to combine multiple digital images for
visual display or for processing such as traditional edge detection or data mining to find image-
related structure. This paper describes a method of fusion for applications in which (1) input
images have been registered, sized, and scaled in pixel intensities suitably for mutual comparison
(for example, inputs from a multi-lens array), and (2) information about edges and lines is
desired. The fusion is a sequence of computations. The first step organizes the input images as a
third-order tensor A and computes a higher-order generalization of singular value decomposition
(abbreviated HOSVD) for A. HOSVD creates a subtensor B containing a set of images that are
linear fusions of the inputs, orthogonal, and ordered by decreasing norm. The second step is
phase analysis of the basis images in B which extracts edge-line information by computing image
phase maps. The third step fuses the raw phase maps themselves by local energy criteria, i.e.,
by pixel-wise square root of the sum of the squares. Finally, the fused maps are combined with
input images for visualization and can be used in other processing, for instance, to delineate
regions by connected line segments. In some applications additional input images are acquired
after the initial HOSVD, in which case incremental HOSVD is an effective way to update
an existing decomposition without recomputing the entire HOSVD from scratch. Reduced
dimension HOSVD is an option for reducing the storage requirements but introduces an error
that must be acceptable in an application. Examples of fusion are given using multimodal
images and multiresolution images.

Keywords: basis images, HOSVD, image fusion, incremental HOSVD, phase analysis, reduced
dimension HOSVD, tensor

1 Introduction

Image fusion develops methods to combine multiple digitized inputs for visualization (often as single
images) or for processing such as traditional edge detection or data mining to find image-related
structure. Recent work in image fusion includes imaging from multiple exposures [12] or multiple
depths of focus [20], suppression of cloud covering [9], pre-fusion registration based on line and
point features [24], visible and thermal images for face recognition [2, 16], multimodal images in
non-destructive testing [23], multispectral and multiresolution data in remote sensing [11, 21, 29],
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and multimodal medical images in rare but important neurological cases [28]. Methods based on
wavelets [21, 22, 25] and mathematical statistics [3, 4] are popular.

This paper describes a method of digital image fusion for applications in which (1) 2-D inputs
have been registered, sized, and scaled in pixel intensities appropriately for mutual comparison,
and (2) ensemble information in the form of edges and lines is desired. An example of this kind
of application is a system with inputs from a multi-lens array (cf. [26, 30]) that acquires multiple
images of the same object or scene through different spectral filters.

The method is a sequence of computations. It decomposes the input images into a common
basis set, analyzes the basis images to extract ensemble edge-line details, and then fuses the results
of the analysis. The output of this pipeline is a set of fused phase maps, in the form of 2-D images,
that are the explicit edge-line information.

At the start of this pipeline, the first task is to organize the input images into a multilinear
array which is a third-order tensor A and compute a higher-order generalization of singular value
decomposition (SVD) for A. This higher-order decomposition, abbreviated HOSVD, creates a
subtensor B containing a set of images that are orthogonal, are ordered by decreasing norm, and
constitute a basis for the inputs. Each basis image is a linear fusion of the input images. The second
task is phase analysis of each basis image to extract information about edges and lines. The third
task fuses the raw phase maps by pixel-wise square root of the sum of the squares—a computation
consistent with the role of local energy in image phase analysis. Finally, the fused maps are added
to input images for purposes of visualization. They can also be used in other processing in which
edge-line information is relevant.

The paper is organized as follows. Section 2.1 defines the subtensor B of basis images computed
from tensor A by HOSVD. Post-HOSVD image phase analysis to find edges and lines in the images
in B is described in section 2.2 and illustrated in the examples in section 3. In some applications,
additional input images are acquired after HOSVD has been computed for an initial set of images,
in which case the decomposition must be updated to include the new data. Incremental HOSVD
for this task is described in section 2.3 and computed in sections 3.1 and 3.2. Reduced dimension
HOSVD is a well known method for reducing storage requirements at the cost of introducing error
in the decomposition. For completeness, it is discussed in section 2.4 and illustrated in section 3.1.3.

2 Third-Order Image Tensors and HOSVD

2.1 Tensor A, HOSVD, and Subtensor B

Tensor-based image processing is an active area of research (cf. [31, 32, 33]). Mathematically
speaking, tensors are higher-order equivalents of scalars (zeroth order), one-index vectors (first
order), and two-index matrices (second order). Notation and several important properties of tensor
computations [1, 7, 8] are summarized in the appendix.

When a set of 2-D, grayscale images of the same size is organized as a third-order tensor A,
HOSVD [8] is a powerful decomposition tool. Let Θ1, Θ2, . . . ,ΘI1 denote a set of I1 images,
each one a I2 × I3 matrix of pixels, registered and scaled in intensity suitable for the application.
To organize these input images as a single tensor, they are stacked along dimension 1 to create
(I1 × I2 × I3)-tensor A. The (1× I2 × I3)-subtensor Ai1=i obtained from A by fixing the first index
i1 to i is the tensor version of (I2 × I3)-image Θi.

The decomposition of tensor A by HOSVD is represented in figure 1. A equals the core tensor
S times the three n-mode matrices of left singular vectors:

A = S ×1 U(1) ×2 U(2) ×3 U(3)

=
(
S ×2 U(2) ×3 U(3)

)
×1 U(1)

= B ×1 U(1)
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Figure 1: HOSVD: (I1 × I2 × I3)-tensor A equals S ×1 U(1) ×2 U(2) ×3 U(3).

where ×n denotes a tensor-times-matrix product and the subtensor B = S ×2 U(2) ×3 U(3) defines
a 2-D basis set for the original images. Both B and the core tensor S are size I1 × I2 × I3, the
1-mode matrix U(1) is I1 × I1, the 2-mode matrix U(2) is I2 × I2, and the 3-mode matrix U(3) is
I3 × I3. The original image subtensors are thereby decomposed in the linear form

Ai1=i = B ×1 U(1)(i, :)

where U(1)(i, :) is row i in matrix U(1). The tensor-times-matrix product B ×1 U(1)(i, :) has the
correct size 1 × I2 × I3 because it is an (I1 × I2 × I3)-tensor times a (1 × I1)-matrix. For simpler
notation, we write

uij for the scalar U(1)(i, j) and [ui1 ui2 . . . uiI1 ] for row i in U(1),

βj for the (1 × I2 × I3)-subtensor Bi1=j , and

bj for the (I2 × I3)-matrix version of βj .

Conversion between (1 × I2 × I3)-subtensors and ordinary (I2 × I3)-matrices is straightforward
(essentially by deleting or adding array dimension I1). In matrix form, the decomposition of the
original image Θi is

Θi = ui1b1 + ui2b2 + · · · + uiI1bI1

=
I1∑

j=1

uijbj .

Due to the properties of HOSVD, both the rows of matrix U(1) and its columns are orthonormal.
The subtensors βj are orthogonal,

〈βj , βk〉 = 0 if j 6= k

where 〈-,-〉 denotes the scalar product of two tensors of the same size, and are ordered by decreasing
norm,

||β1|| ≥ ||β2|| ≥ · · · ≥ ||βI1 ||.

Numerically, the coefficient uij is

uij =
〈Ai1=i, βj〉

||βj ||2
,

an equation familar in linear analysis for projection of a vector to a subspace [17]. In fact, given
any (1 × I2 × I3)-tensor Z, the linear combination of the subtensors βj closest to Z in the least
squares sense has coefficients

cj =
〈Z, βj〉

||βj ||2
for 1 ≤ j ≤ I1.
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Since the inverse of orthogonal matrix U(1) is its transpose U(1)T

, the basis images βj themselves
are unique linear combinations of the original images, expressed by the tensor equation

B = A×1 U(1)T

or in matrix form for individual image bj as

bj =
I1∑

i=1

uijΘi.

2.2 Image Phase Analysis for Edge and Line Detection

After HOSVD of tensor A has been computed, the basis images in subtensor B are available for
analysis. We use frequency phase analysis of images [18, 19] to extract information about edges and
lines. The phase analysis map of an (I2 × I3)-image is an (I2 × I3)-image of scaled real numbers,
not hard-thresholded binary, and tends to be robust with respect to variations in contrast and
luminance.

Phase congruency and phase symmetry analysis compute the frequency components via a trans-
form such as 2-D Gabor wavelets of pixel intensities, then analyze the relative phases of the fre-
quency components locally [18, 19]. Phase congruency assigns numbers that are proportional to
the amount of local in-phase agreement in the frequency components [18]. Phase symmetry assigns
higher numbers (more symmetry) where frequency components are nearer to their maximum or
minimum cycle points and lower numbers (less symmetry) where frequency components are nearer
to the inflection points in their cycles [19]. Phase symmetry is a specialized search for symmetries
and partial symmetries in structure, whereas phase congruency is less specific. In practice, our
choice between them is empirical: we compute both and opt for the one delivering more visual
detail about edges and lines in a given application.

The phase maps themselves are (I2 × I3)-images amenable to fusion. An approach well adapted
to many applications is to fuse the raw phase maps of images in B by pixel-wise square root of
the sum of the squares. This is consistent with the role of local energy in phase analysis. In the
examples in section 3, the phase maps are computed with default values of control parameters
[18, 19] and are fused in this way. Subsequently, the fused phase maps can be combined with other
images by image addition, with the fused maps being rescaled if desired for visualization.

A particular application might also mandate further processing to satisfy various requirements.
For example, processing might be required to suppress non-maximal values in raw phase maps,
find connected line segments and convert them into binary maps by hard thresholding, and finally
combine the binary maps with input images to delineate distinct regions. Application-orientated
processing of this kind is not covered in this paper.

2.3 HOSVD Updating with Additional Data

In some applications, additional input images are acquired after HOSVD has been computed. If
the HOSVD of (I1 × I2 × I3)-tensor A has already been computed and another input image ΘI1+1

is obtained, then the existing decomposition must be updated by incorporating the new (I2 × I3)-
image ΘI1+1 and incrementing dimension I1. Two options are (1) recompute the entire HOSVD
on an upsized ([I1 + 1] × I2 × I3)-tensor or (2) incrementally update the existing decomposition.

The second option is motivated by incremental SVD or SVD updating in conventional SVD
[5]. The updating algorithm in SVD takes an existing decomposition USVT , projects the new
2-D matrix Z onto the subspace spanned by U and onto the orthogonal subspace H in which the
component of Z perpendicular to U lies, finds an orthogonal basis for H, and updates the SVD to
account for the components in subspace H as well as the changes in U. If the projection onto H

is less than some small threshold, truncation to 0 is suggested for noise supression [5].
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Figure 2: Reduced Dimension HOSVD: Tensor A approximated by Â = C×1U
(1)×2U

(2)×3U
(3).

Incremental SVD can be significantly faster than recomputing the entire SVD. (In big O nota-
tion, if M is a (d × N)-matrix of N samples of d × 1 data vectors, then standard SVD of M has
time complexity O(d2N +dN2 +N3) whereas incremental updating to incorporate a (d× c)-matrix
of c new data vectors has time complexity O(d3 + dc2) [5].) Our method for incremental HOSVD
has two parts: first update the three matrices U(1), U(2), U(3) by computing incremental SVD
separately on the unfolded matrices A(1), A(2), A(3), then compute the new core tensor

S̄ = Ā ×1 Ū(1)T

×2 Ū(2)T

×3 Ū(3)T

where the bar denotes updated values. This simultaneously updates the basis images by creating
a new subtensor B̄ = S̄ ×2 Ū(2) ×3 Ū(3).

2.4 Reduced Dimension HOSVD

Reduced dimension HOSVD is concerned with finding the best rank-(κ1 × κ2 × · · · × κN ) approxi-
mation of a given (I1 × I2 × · · · × IN )-tensor A. A reduced dimension decomposition has a smaller
core tensor and at least one smaller n-mode matrix as shown in figure 2, but still defines an ap-
proximation Â identical in size to A. The best approximation in the least squares sense minimizes
the mean squared error (MSE) ||A − Â||2 [8].

A well known method for finding an optimal approximation is higher-order orthogonal iteration
(HOOI) [8]. HOOI is an alternating least squares method that makes repeated passes through
the reduced-size n-mode matrices U(1), U(2), ..., U(N). Each pass steps through all N -modes,
optimizing one n-mode matrix at a time while the others are held constant. In practice, iteration
continues until a relevant measure of error in the approximation falls below a threshold value or
stabilizes with no sign of decreasing further. The example in section 3.1 lists the relative norm
||A − Â||/||A|| and also a structural similarity index [34] designed to take visual characteristics of
images into account. Reduced dimension HOSVD is a trade-off between smaller storage and the
amount of error acceptable in an application.

3 Examples

Two examples using third-order tensors and HOSVD are given here. The first illustrates multimodal
images in non-destructive testing. The second illustrates lower resolution satellite data fused with
aerial photography at a higher resolution.
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(a) (b) (c)

Figure 3: Multimodal images [23]: (a) Θ1 X-ray, (b) Θ2 ultrasound, (c) Θ3 shearography. Courtesy
AIPnD (The Italian Society for Non-Destructive Testing Monitoring Diagnostics).

3.1 Multiple Image Modalities

Multimodal images are used in non-destructive testing. The three images in figure 3 are (a) Θ1

X-ray, (b) Θ2 ultrasound, and (c) Θ3 shearography for part of an aircraft component [23]. Shearog-
raphy is a laser-based method for visual detection of surface deformations without the use of contact
devices such as strain gauges. The images in figure 3 are 256 × 256, 8-bit (0:255) grayscale pixels,
already registered by a preprocessing step [23]. Visible in the X-ray image is a carbon-fiber hon-
eycomb pattern. The ultrasound and shearography images reveal a defect near the bottom of the
structure. Although a three-image tensor incorporating Θ1, Θ2 and Θ3 could be formed at once,
this example begins with a two-image tensor and illustrates incremental HOSVD to incorporate
the third image.

3.1.1 X-Ray and Ultrasound Data

As described in section 2.1, the (2 × 256 × 256)-tensor A is created such that the subtensor Ai1=1

is the X-ray image Θ1 and the subtensor Ai1=2 is the ultrasound image Θ2. The HOSVD of A is

A = S ×1 U(1) ×2 U(2) ×3 U(3)

= B ×1 U(1)

where tensors A, S, and B all have size 2 × 256 × 256, matrices U(2) and U(3) are 256 × 256, and
the 2 × 2 matrix of 1-mode coefficients is

U(1) =

[
0.6988 0.7154
0.7154 −0.6988

]

.

Figures 4(a) and 4(b) are the basis images b1 and b2, the matrix versions of the subtensors β1 =
Bi1=1 and β2 = Bi1=2. The norms are decreasing:

||β1|| = 5.97e+04 > ||β2|| = 9.81e+03.

Figures 4(c) and 4(d) are the raw phase symmetry maps denoted by p1 for b1 and p2 for b2.
Figure 4(e) is the fusion of p1 and p2 by pixel-wise square root of the sum of the squares, denoted
by f(p1,p2).
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(b)(a)

(c) (d) (e)

Figure 4: Matrices in two-image B: (a) b1, (b) b2. Phase symmetry maps: (c) p1, (d) p2, (e)
fusion f(p1,p2).

The reconstructions of the X-ray and ultrasound images are the respective linear forms

Θ1 ≈ 0.6988b1 + 0.7154b2 and Θ2 ≈ 0.7154b1 − 0.6988b2.

Since the four coefficients uij for these particular images are about the same magnitude, namely
|uij | ≈ 0.7, the image b2 is essentially an adjustment added to b1 to reproduce Θ1 and subtracted
to reproduce Θ2. The linear forms are visually indistinguishable from Θ1 and Θ2 when printed as
images. In quantitative terms, the MSE between each of Θ1 and Θ2 and its linear form respectively
is 2.42e-08 and 2.80e-08. MSE is not always a good measure of visual differences [10], so we also
compute a structural similarity index [34] designed to account for illumination, contrast, and local
pixel intensities. This index, which is normalized from 0 (worst comparatively) to 1 (best), has
performed well in empirical testing with subjective assessment of visual differences [34]. Using the
default settings of its control parameters [34], the index value is 1 between each of Θ1 and Θ2 and
its linear form. For reference, the index is 0.1512 between Θ1 and Θ2 themselves.

3.1.2 Updating with Shearography Data

The shearography image Θ3 is incorporated by incremental HOSVD described in section 2.3, i.e.,
the existing HOSVD for Θ1 and Θ2 is updated to incorporate Θ3. The updated 3 × 3 matrix of
coefficients is

Ū(1) =




0.5850 0.2423 −0.7740
0.5940 0.5218 0.6123
0.5523 −0.8179 0.1613





and the norms of the new subtensors in the updated B̄ are

||β̄1|| = 7.10e+04, ||β̄2|| = 1.51e+04, ||β̄3|| = 9.55e+03.

Figures 5(a)-(b)-(c) are the new matrices b̄1, b̄2, and b̄3. Figure 5(d) is the raw phase map p̄1 for
image b̄1 alone; 5(e) is f(p̄1, p̄2), the fusion of the maps p̄1 and p̄2; and 5(f) is f(p̄1, p̄2, p̄3), the
fusion of all three phase maps.
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(a) (b) (c)

Figure 5: Matrices in three-image B̄: (a) b̄1, (b) b̄2, (c) b̄3. Phase symmetry maps: (d) p̄1, (e)
fusion f(p̄1, p̄2), (f) fusion f(p̄1, p̄2, p̄3).

(a) (b) (c)

Figure 6: ROI containing the defect: (a) Θ1 X-ray, (b) X-ray plus f(p1,p2), (c) X-ray plus
f(p̄1, p̄2, p̄3).
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Figure 6(a) shows a (100×100)-pixel region of interest (ROI) containing the defect in the X-ray
image Θ1. There is little or no visible hint of the defect. Figure 6(b) adds the fused phase map
f(p1,p2) to the X-ray ROI. This is a fusion of X-ray and ultrasound data only. As described above,
the existing two-image HOSVD is updated by incremental HOSVD to incorporate the shearography
image. Figure 6(c) adds the fused map f(p̄1, p̄2, p̄3) to the X-ray ROI. This is the fusion to which
all three image modalities contribute.

3.1.3 Reduced Dimension HOSVD

There is an opportunity to reduce the storage needed for the core tensor S and the n-mode matrices
U(1), U(2), U(3) by reduced dimension HOSVD described in section 2.4. Reducing the dimension
of HOSVD is a trade-off between smaller storage and the error introduced by the approximation;
however, substantially reduced dimensions may cause relatively small visual differences as measured
by the structural similarity index. HOOI is computed here to approximate the (3 × 256 × 256)-
tensor A by three reduced sizes: 3 × 100 × 100, 3 × 100 × 50, and 3 × 50 × 100. The iteration was
terminated when the norm of the difference in updating each n-mode matrix U(n) became less than
1e-10.

The norm of tensor A is ||A|| = 7.32e+04 and its energy is ||A||2 = 5.36e+09. The following
lists the relative norms and the storage for the approximations Â. Storage is bytes as a percentage
of the full HOSVD (2,621,964 bytes).

Size 3 × 100 × 100 3 × 100 × 50 3 × 50 × 100

||A − Â||/||A|| 0.0127 0.0233 0.0282
Storage 24.8% 16.3% 16.3%

The structural similarity index [34] computed in section 3.1.1 is one measure of visible error
introduced by the reduction. The following tabulates the index between each image Θ1, Θ2, Θ3

and its linear form from the approximation Â.

Size 3 × 100 × 100 3 × 100 × 50 3 × 50 × 100

Θ1 X-ray 0.9877 0.9579 0.8805
Θ2 ultrasound 0.9742 0.9290 0.9476

Θ3 shearography 0.9772 0.9537 0.9319

For reference, the index between Θ1 and Θ2 is 0.1512, between Θ1 and Θ3 is 0.1514, and between
Θ2 and Θ3 is 0.3151. This index computed between the images in B and in the approximations B̂
measures the visual deterioration in the basis images due to reduced dimensions:

Size 3 × 100 × 100 3 × 100 × 50 3 × 50 × 100

Between b1 and b̂1 0.9844 0.9530 0.9331

Between b2 and b̂2 0.9801 0.9469 0.9159

Between b3 and b̂3 0.9848 0.9456 0.9243

3.2 Multiresolution Images

The use of higher resolution panchromatic image data to “pan-sharpen” lower resolution multispec-
tral data is well established in remote sensing [27]. A complementary way of fusing and displaying
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(a) (b) (c)

Figure 7: D.C. images: (a) Θ1 ASTER (15 meter), (b) Θ2 Landsat (15 meter), (c)
Θ3 aerial photography (1 meter). Credits: (a) is a rotated subimage of a larger im-
age at NASA/GSFC/METI/ERSDAC/JAROS; (b) and (c) are subimages of larger images at
NASA/Goddard Space Fight Center.

edge-line information is to use HOSVD to create optimal subtensor B, fuse the raw phase maps of
images in B, and add the fused maps to low resolution images for visualization.

Figure 7 shows three images of Washington, D.C., USA, with the Washington Monument
roughly at the center. These are manually registered subimages of larger images, converted to
8-bit grayscale and resized to 256 × 256 pixels for this example. Figure 7(a) Θ1 is a combina-
tion of visible and near infrared bands from ASTER, a US/Japan Advanced Spaceborne Thermal
Emission and Reflection Radiometer, at 15 meter resolution. Figure 7(b) Θ2 is a Landsat image
pan-sharpended to 15 meter resolution, i.e, panchromatic data has already been used to sharpen
the edges in multispectral bands to produce the image at that resolution. Figure 7(c) Θ3 is aerial
photography at 1 meter resolution. For reference as a measure of visual differences, the structural
similarity index [34] is 0.3591 between Θ1 and Θ2, 0.1730 between Θ1 and Θ3, and 0.2423 between
Θ2 and Θ3.

The (2 × 256 × 256)-tensor A is created with subtensor Ai1=1 = Θ1, the ASTER image, and
subtensor Ai1=2 = Θ2, the Landsat image. The HOSVD of A is

A = S ×1 U(1) ×2 U(2) ×3 U(3)

= B ×1 U(1)

where the 2 × 2 matrix of 1-mode coefficients is

U(1) =

[
0.6926 −0.7213
0.7213 0.6926

]

and the subtensor norms are

||β1|| = 4.91e+04 > ||β2|| = 8.41e+03.

The two-image HOSVD is updated with image Θ3 by incremental HOSVD described in section 2.3.
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(a) (b)

(c) (d)

Figure 8: Phase congruency maps in ROI: (a) p1, (b) fusion f(p1,p2), (c) p̄1, (d) fusion
f(p̄1, p̄2, p̄3).

The updated 3 × 3 matrix of coefficients is

Ū(1) =




0.6061 0.5708 0.5539
0.6359 0.0706 −0.7686

−0.4778 0.8180 −0.3202





and the updated subtensor norms are

||β̄1|| = 5.56e+04, ||β̄2|| = 1.08e+04, ||β̄3|| = 7.98e+03.

The phase congruency maps in figure 8 give an overall visual impression of the edge and line
details in subtensors B and B̄ within a (128 × 128)-pixel ROI in which the Washington Monument
is approximately centered. Figure 8(a) is the raw phase map for b1, the image with the larger
norm in the two-image subtensor B, and figure 8(b) is f(p1,p2), the fusion of the phase maps p1

and p2 by pixel-wise square root of the sum of the squares. This is a fusion of information from
ASTER and Landsat images. Figure 8(c) is the phase map for b̄1, the image with largest norm
in the three-image subtensor B̄. Figure 8(d) is f(p̄1, p̄2, p̄3), the fusion of all three phase maps
incorporating high resolution information from aerial photography with the other two.

Figure 9(a) is the ROI in Θ1, the ASTER image. Figures 9(b) and 9(c) are the ASTER ROI
with the addition of the fused phase maps f(p1,p2) and f(p̄1, p̄2, p̄3) respectively. Figure 9(d)
is the ROI in Θ2, the Landsat image. Figures 9(e) and 9(f) are the Landsat ROI to which are
added the fused maps f(p1,p2) and f(p̄1, p̄2, p̄3) respectively. Figures 9(b) and 9(e) are fusions of
ASTER and Landsat data only. Figures 9(c) and 9(f) are fusions of the high resolution image with
the other two.

The examples in this paper use the fused phase maps without attempting, for instance, to
suppress noise artifacts or to define binary edge-line maps by thresholding. The four images of
the ROI in figure 10 give a brief example only of further image processing of a traditional nature,
specifically, gradients in Canny edge detection [6] computed for fused phase maps. The gradient
maps are computed using a Gaussian smoothing filter with standard deviation 1 but without
subsequent hysteresis thresholding [6] to derive binary images, and are added to the ASTER and
Landsat input images. Figures 10(a) and 10(b) respectively are the edge gradient maps of f(p1,p2)
and f(p̄1, p̄2, p̄3) added to the ASTER ROI. Figures 10(c) and 10(d) are the same edge gradient
maps respectively added to the Landsat ROI.
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(a) (b) (c)

(d) (e) (f)

Figure 9: ROI images and fused phase maps: (a) Θ1 ASTER, (b) ASTER plus f(p1,p2),
(c) ASTER plus f(p̄1, p̄2, p̄3). (d) Θ2 Landsat, (e) Landsat plus f(p1,p2), (f) Landsat plus
f(p̄1, p̄2, p̄3).

(a)

(c) (d)

(b)

Figure 10: Gradients of Canny edge detection of fused phase maps: (a) ASTER plus gradient of
f(p1,p2), (b) ASTER plus gradient of f(p̄1, p̄2, p̄3). (c) Landsat plus gradient of f(p1,p2), (d)
Landsat plus gradient of f(p̄1, p̄2, p̄3).
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4 Conclusions

In many digital imaging applications, multiple input images are acquired and some version of fusion
is needed. An input mix of multimodal, multispectral, or multiresolution images is not uncommon.
This paper describes a computational pipeline for image fusion in applications in which (1) input
images are registered, sized, and scaled in pixel intensities suitably for mutual comparison, and (2)
details about edges and lines are important information. When input images are packaged as a
third-order tensor A, HOSVD is a powerful decomposition tool. The basis images in the subtensor
B found optimally by HOSVD are linear combinations of the inputs, orthogonal, and ordered by
decreasing norm. Image phase analysis of these basis images is one way to extract details about
edges and lines. Fusing the raw phase maps themselves by pixel-wise square root of the sum of
the squares is consistent with the role of local energy in phase analysis. The fused maps can be
added to inputs (or other images) for visualization or used for further image-related processing.
(Further application-dependent processing is not a topic covered here. A particular application
might mandate additional processing of images or phase maps or, at a more fundamental level,
could call for a method other than phase analysis of the images in B in the first place.) If HOSVD
has been computed for an initial set of images and additional images are acquired, incremental
HOSVD is an effective way to update the decomposition, including the basis images. Reduced
dimension HOSVD computed by HOOI results in smaller storage requirements and introduces an
error that must be acceptable in an application; however, empirical results show that substantial
reductions cause little degradation in visual quality in some cases.

Applications under development include multimodal tomography and multi-lens imaging with
an emphasis on medical applications.
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Appendix: Tensors and Higher-Order SVD

A.1. Summary of Notation and Basic Results

Refer to [1, 7, 8] for mathematical details of higher-order tensors, computations such as tensor-
times-tensor product, and higher-order singular value decomposition (HOSVD). Let A denote
an Nth-order tensor with dimensions I1, I2, . . . , IN . The n-mode product of A times an ordinary
(Jn × In)-matrix U is denoted by A×n U. This tensor-times-matrix product creates an Nth-order
tensor with nth dimension equal to Jn and other dimensions the same as A. If Jn = In, then
A×n U is the same size as A but in general does not have the same elements as A (the product
A ×n I where I is the In × In identity matrix does equal A). The n-mode matrix unfolding of A,
denoted by A(n), is a conventional matrix with In rows, number of columns equal to the product
I1I2 · · · In−1In+1 · · · IN of the non-n dimensions, and elements copied from A by cycling through
the non-n indices in a fixed order (backward cyclic [7] or forward cyclic [15]). If Nth-order tensor
A and Mth-order tensor B have the same n-mode dimension In, then the n-mode tensor product
A×n B creates a tensor of order (N − 1) + (M − 1). If tensors A and B have identical dimensions,
their tensor-times-tensor product over all N modes yields a tensor of order 2N − 2N = 0. This
zeroth-order tensor, which is a single real number, is the scalar product of A and B denoted 〈A,B〉.
Two tensors for which 〈A,B〉 = 0 are orthogonal. The Frobenius norm of a tensor A is

||A|| =
√
〈A,A〉

and its square ||A||2 is the energy in A. The squared norm ||A − B||2 for two same-sized tensors is
the mean squared error (MSE). The Euclidean norm for matrix A is also denoted ||A||.

HOSVD is a generalization of conventional SVD [14] to higher orders. Theorem 2 in [7] is a
characterization of tensor HOSVD summarized for real-valued tensors as follows:
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Theorem. Every (I1×I2×· · ·×IN )-tensor A can be written as the tensor-times-matrix
product

A = S ×1 U(1) ×2 U(2) · · · ×N U(N)

with the following characteristics:

1. n-mode matrix U(n) =
[
U

(n)
1 U

(n)
2 · · · U

(n)
In

]
with column vectors U

(n)
i is an orthog-

onal (In × In)-matrix.

2. Core tensor S is an (I1 × I2 × · · · × IN )-tensor of which the subtensors Sin=j,
obtained by fixing the nth index to j, have the properties of

(i) all-orthogonality: two subtensors Sin=j and Sin=k are orthogonal if for all n, j,
and k

〈Sin=j,Sin=k〉 = 0 when j 6= k,

(ii) ordering by decreasing norm:

||Sin=1|| ≥ ||Sin=2|| ≥ · · · ≥ ||Sin=In
|| ≥ 0

for all possible values of n.

The Frobenius norms ||Sin=j||, symbolized by σ
(n)
j , are the n-mode singular values of A

and the vector U
(n)
j is a jth n-mode singular vector.

See [7] for a proof of the theorem and an enumeration of several properties including the following.

Let the HOSVD of Nth order tensor A be given as in the Theorem.

• Norm Property: The energy in A is related to the squared n-mode Frobenius norms
as follows:

||A||2 =
R1∑

i=1

σ
(1)2

i = · · · =
RN∑

i=1

σ
(N)2

i

= ||S||2.

• Oriented Energy Property: The n-mode oriented energy of A in the direction
of a unit-norm column vector X is the oriented energy of the complete set of n-mode
vectors, i.e., is equal to the squared Euclidean norm

||XT A(n)||
2.

The n-mode singular vectors U
(n)
1 , U

(n)
2 , . . . , U

(n)
In

are the directions of the extremes of
n-mode oriented energy and the corresponding extremal energy values are the squared

n-mode singular values σ
(n)2

1 , σ
(n)2

2 , . . . , σ
(n)2

In
.

A.2. Computation of HOSVD and Reduced Dimension HOSVD

Let A be an (I1 × . . .× IN )-tensor and let its HOSVD be defined as in the Theorem. Each n-mode
matrix U(n) has orthonormal rows and orthonormal columns and its inverse is its transpose:

U(n)T

U(n) = U(n)U(n)T

= I

where I is the identity matrix. The HOSVD of an Nth order tensor A can be computed [7, 8]
by finding each matrix U(n) of left singular vectors by standard SVD of the unfolded matrix A(n),

then using the matrix transposes U(n)T

and tensor A to solve for the core tensor S as

S = A×1 U(1)T

×2 U(2)T

×3 · · · ×N U(N)T

.
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The span of the left singular vectors U(n) is the column space of the unfolded matrix A(n) and the

singular values σ
(n)
i are the corresponding norms ||Sin=i||, 1 ≤ i ≤ In.

A straightforward way to create a reduced dimension approximation Â of (I1 × I2 × · · · × IN )-
tensor A is by truncating or discarding parts of a full-dimensioned HOSVD, i.e., by computing
the HOSVD for A, then given the target dimensions κn ≤ In, 1 ≤ n ≤ N , reducing the size

along each mode n by discarding the smallest n-mode singular values σ
(n)
κn+1, . . . , σ

(n)
In

and deleting

the corresponding parts of S and U(n). This method is not guaranteed to minimize the MSE
||A−Â||2. By contrast, higher-order orthogonal iteration (HOOI) [8] searches for an approximation
Â to minimize the MSE. HOOI is an alternating least squares method. It makes repeated passes
through the reduced-size n-mode matrices U(1), . . . , U(N), optimizing each matrix in turn within
each pass while the other matrices are held constant, and recomputing the core tensor at the end
of a pass.

HOOI can be used for tensors of any order. An iterative optimization specialized to rank-
(κ1, κ2, κ3) approximation of a third-order tensor is given in [33] and applied to image analysis
problems. The standard termination criteria for these iterative algorithms are that a maximum-
iteration count is reached or an error measure falls below a threshold or stabilizes with no sign of
further decrease.
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