
A New Minimum Density RAID-6 Code with a Word

Size of Eight

James S. Plank

plank@cs.utk.edu

Technical Report CS-08-612

Department of Electrical Engineering and Computer Science

University of Tennessee

April, 2008.

This paper has been submitted for publication.

See the web link below for current publication status.

http://www.cs.utk.edu/~plank/plank/papers/CS-08-612.html

1

A New Minimum Density RAID-6 Code with a

Word Size of Eight

James S. Plank

Department of Electrical Engineering and Computer Science

University of Tennessee

Abstract

RAID-6 storage systems protect k disks of data with two parity disks so that the system

of k + 2 disks may tolerate the failure of any two disks. Coding techniques for RAID-6

systems are varied, but an important class of techniques are those with minimum density,

with an optimal combination of encoding, decoding and modification complexity. The word

size of a code impacts both how the code is laid out on each disk’s sectors and how large k

can be. Word sizes which are powers of two are especially important, since they fit precisely

into file system blocks. Minimum density codes exist for many word sizes, with the notable

exception of eight. This paper fills that gap by describing new codes for this important word

size. The description includes performance properties as well as details of the discovery

process.

1 Introduction

Disk and network storage systems have grown to the point where the fault-tolerance of

RAID-5 is no longer enough. RAID-5 systems protect k data disks with a single parity disk

so that the loss of any single data or parity disk may be tolerated without data loss. Large

network storage systems such as Oceanstore [19], LoCI [1], Data Domain [25], Pergamum [20]

and Panasas [21] have grown to such an extent that combinations of disk, sector and network

node failures require a higher level of fault tolerance. RAID-6 fits this requirement.

With RAID-6, a second parity disk is added to the system in such a way that the loss of

any two disks may be tolerated without data loss. However, unlike RAID-5, which provides

a precise method for encoding the data, RAID-6 leaves the method unspecified. Methods for

implementing RAID-6 are varied, and include classic erasure coding techniques like Reed-

Solomon coding [4, 17, 12, 18] and more specialized codes such as EVENODD [2], RDP [5],

Blaum-Roth [3], X-Code[24], B-Codes [23] and Liberation codes [15]. These codes have

varied performance characteristics with no one code being ideal for all applications. As

such it is important for RAID-6 storage implementors to have at their disposal a variety of

RAID-6 codes from which to choose [15].

In this paper, we focus on a class of codes called Minimum Density RAID-6 codes. These

codes are based on binary matrices which satisfy a lower-bound on the number of non-zero

entries. They exhibit excellent properties as RAID-6 codes, including near-optimal encoding

and decoding performance combined with optimal modification performance. Additionally,

they allow for flexibility in the number of data drives that they support without sacrificing

encoding or decoding performance. The only known minimum density codes for RAID-6 are

the Blaum-Roth [3] and Liberation codes [15].

One parameter of these codes is the word size which constrains how data is laid out on the

disk. Specifically, these codes require data to be partitioned into blocks whose size must be

multiples of the word size. For convenient manipulation in file systems, word sizes that are

powers of two are extremely convenient. Blaum-Roth codes are defined for word sizes which

are one less than a prime number, and Liberation codes are defined for word sizes which are

equal to a prime number. As such, the very important word size of eight has no minimum

density code defined for it.

In this paper, we define multiple minimum density codes whose word size equals eight,

and in doing so, fill an important hole in the field. We provide their specification, describe

their performance, and give details on how we discovered them. Additionally, we make their

implementation available as part of the Jerasure general purpose erasure coding library [13].

2 Nomenclature and the RAID-6 Specification

It is an unfortunate consequence of the history of erasure coding research that there is no

unified nomenclature for erasure coding. We borrow terminology mostly from Hafner et

al [8], but try to conform to more classic erasure coding terminology (e.g. [3, 11]) when

appropriate.

Our storage system is composed of an array of n disks, each of which is the same size.

Of these n disks, k of them hold data and the remaining m hold coding information, often

termed parity. In a RAID-6 system, m = 2.

Disks are composed of sectors, which are the smallest units of I/O to and from a disk.

Sector sizes typically range from 512 to 4096 bytes, and are always powers of two. Most

erasure codes are defined such that disks are logically organized to hold bits; however, when

they are implemented, all the bits on one sector are considered as one single entity called

an element. When a code specifies that bit on drive P equals the exclusive-or of bits on

drives D0 and D1, that really means that a sector on drive P will be calculated to be the

parity (bitwise exclusive-or) of corresponding sectors on drives D0 and D1. We will thus use

the terms bit, sector and element equivalently in this paper.

A code typically has a word size w, which means that for the purposes of coding, each

disk is partitioned into strips of w sectors each. Each of these strips is encoded and decoded

independently from the other strips on the same disk. The collection of strips from all disks

on the array that encode and decode together is called a stripe.

Thus, to define an erasure code, one must specify the word size w, and then one must

describe the way in which sectors on the parity strips are calculated from the sectors on the

data strips in the same stripe.

The RAID-6 specification calls for two parity drives, P and Q. The contents of the P drive

are calculated as the parity of the data drives, just as in RAID-5. The contents of the Q

drive are defined by the particular code, but must be a Maximum Distance Separable (MDS)

code. This means that any combination of two-disk failures may be tolerated without data

loss. While there are a variety of codes that can tolerate two-disk failures (e.g [24, 23, 9,

22, 6, 7, 16]), either the requirement of a specific P and Q drive or the MDS requirement

renders them inapplicable to this RAID-6 specification.

2.1 Bit Matrix Coding

One convenient way to describe an erasure code is to employ bit matrices. In this description,

there are k data disks D0, . . . , Dk−1 and m parity disks C0, . . . , Cm−1, each of which logically

holds exactly w bits (as described above, in reality each is partitioned into strips of w

sectors each). We label these bits di,0, . . . , di,w−1 for data disk Di, and cj,0, . . . , cj,w−1 for

parity disk Cj.

The system uses a w(k+m)×wk matrix over GF (2) to perform encoding. This means that

every element of the matrix is either zero or one, and arithmetic is equivalent to arithmetic

modulo two. We call the matrix a binary distribution matrix, or BDM; however, it relates

to classic error correcting codes by being the transpose of the code’s generator matrix [11].

The state of a bit matrix coding system is described by the matrix-vector product depicted

in Figure 1.

Figure 1: A bit matrix coding system.

The BDM has a specific format. Its first wk rows compose a wk × wk identity matrix,

pictured in Figure 1 as a k × k matrix whose elements are each w × w bit matrices. The

next mw rows are composed of mk matrices, each of which is a w × w bit matrix Xi,j.

We multiply the BDM by a vector composed of the wk bits of data. We depict that in

Figure 1 as k bit vectors with w elements each. The product vector contains the (k + m)w

bits of the entire system. The first wk elements are equal to the data vector, and the last wm

elements contain the parity bits, held in the m parity disks.

Note that each disk corresponds to a row of w × w matrices in the BDM, and that each

bit of each disk corresponds to one of the w(k + m) rows of the BDM. The act of encoding

is to calculate each bit of each Ci as the dot product of that bit’s row in the BDM and the

data. Since each element of the system is a bit, this dot product may be calculated as the

XOR of each data bit that has a one in the parity bit’s row. Therefore, the performance of

encoding is directly related to the number of ones in the BDM.

To decode, suppose some of the disks fail. As long as there are k surviving disks, we

decode by creating a new wk × wk matrix BDM’ from the wk rows corresponding to k of

the surviving disks. The product of that matrix and the original data is equal to these k

surviving disks. To decode, we therefore invert BDM’ and multiply it by the survivors – that

allows us to calculate any lost data. Once we have the data, we may use the original BDM

to calculate any lost parity disks.

For a coding system to be MDS, it must tolerate the loss of any m disks. Therefore, every

possible BDM’ matrix must be invertible.

Since the first wk rows of the BDM compose an identity matrix, we may precisely specify

a BDM with a Coding Distribution Matrix (CDM) composed of the last wm rows of the

BDM. It is these rows that define how the parity disks are calculated.

Again, relating the above text to classic coding theory, suppose we label a code’s CDM

to be matrix A. Then the code’s generator matrix is equal to (I|AT), and its parity check

matrix is equal to (A|I) [11], although sometimes it is written (A|I)T [8].

2.2 RAID-6 Bit Matrix Encoding

When this methodology is applied to RAID-6, the BDM is much more restricted. First, m =

2, and the two parity disks are named P = C0 and Q = C1. Since the P disks must be the

parity of the data disks, each matrix X0,i is equal to a w × w identity matrix. Thus, the

Figure 2: Bit matrix representation of RAID-6 coding when k = 4 and w = 4.

only degree of freedom is in the definition of the X1,i matrices that encode the Q disks. For

simplicity of notation, we remove the first subscript and call these matrices X0, . . . , Xk−1. A

RAID-6 system is depicted in Figure 2 for k = 4 and w = 4.

To calculate the contents of a coding bit, we simply look at the bit’s row of the CDM and

calculate the XOR of each data bit that has a one in its corresponding column. For example,

in Figure 2, it is easy to see that p0 = d0,0 ⊕ d1,0 ⊕ d2,0 ⊕ d3,0.

Each data bit di,j corresponds to column wi + j in the CDM. Therefore, when bit di,j is

modified, one must update each parity bit whose row contains a one in column wij with the

XOR of the data bit’s old and new values.

2.3 Minimal Density Bit Matrices

A minimal density bit matrix is a CDM one that achieves a lower bound of 2kw + k − 1

non-zero entries [3], yet still defines an MDS RAID-6 code. This is achieved when one of

the Xi matrices has exactly w ones and the remaining k − 1 matrices have exactly w + 1

ones. These matrices define codes with an excellent blend of properties:

• Their encoding performance is equal to k − 1 + k−1

2w
XOR operations per encoded

element. Optimal encoding is k − 1 XOR operations per encoded element, so the

performance penalty is a factor of 1 + 1

2w
. One nice feature of this penalty is that it

is independent of k, which means that the codes lend themselves well to applications

when data disks need to be added or subtracted dynamically [15].

• Their modification performance is optimal [3].

• Their decoding performance is near optimal as well, although it requires a technique

that augments the standard matrix inversion to use intermediate results in the decod-

ing. This technique is first presented by Hafner [8] and is later applied to minimal

density bit matrices by Plank [15].

• They lend themselves well to general algorithms for uncorrelated sector failure recon-

struction [8].

Minimal density bit matrices have been described when w + 1 is prime [3] and when w is

prime [15]. The most convenient values of w from an implementation standpoint are powers

of two, since they allow for data and coding strips to fit into standard file system blocks.

While w = 16 has a known minimal density bit matrix (since 16+1 is prime), w = 8 does

not. Thus there is a very important gap in the field that needs to be filled: the discovery

of minimal density bit matrices for w = 8. This paper describes the search for these codes,

their discovery, their properties and their performance.

3 Summary of Codes Found

Our approach toward code discovery was not elegant, but pragmatic. Any minimal density

bit matrix for w = 8 will be equivalent to a code where X0 is the identity matrix and the

other seven Xi will each be composed of a permutation matrix (a matrix with exactly one

one in each row and column) plus one extra one bit. There are 56(8!) such matrices, which

means that there are
(

56(8!)

7

)

≈ 5.94 × 1040

possible settings of Xi that can lead to MDS matrices.

Our approach was to perform an enumeration of these matrices, yet to prune the enumer-

ation so that the search would be tractable. This pruning was successful, and we discovered

48 distinct sets of minimal distance MDS matrices, where two matrices belong to a set if they

are permutations of one another (Section 5.2 defines these permutations). Given a matrix,

Figure 3: The eight Xi for the best performing minimal density MDS matrix for w = 8.

there are (8!)(7!) permutations, which means that of the 5.94×1040 possible minimal density

matrices, there are only 9.754 × 109 MDS ones.

In Figure 3, we display the matrix from the best of the 48 sets. The 48 sets are equivalent

from an encoding and modification standpoint. They differ, though, in decoding perfor-

mance. A matrix from the best decoding of the 48 sets is pictured in Figure 3. All 48 sets

are enumerated in [14].

4 Performance

In this section, we compare the performance of these codes to other RAID-6 codes. The

only other code that exists for w = 8 is the Cauchy Reed-Solomon (CRS) code [4]. For

evaluation, we use the CRS implementation in the Jerasure library [13], which optimizes

the encoding performance. To compare with other RAID-6 codes, we selected the smallest

values of w that are greater than eight. For RDP, EVENODD and Blaum-Roth codes, w+1

must be prime, so w = 10. For Liberation codes, w must be prime, so w = 11. All codes were

implemented using the Jerasure library either directly (CRS, Blaum-Roth, Liberation) or

as a base for the other codes (RDP, EVENODD).

We display the performance of encoding for k ranging from three to eight in Figure 4.

The values on the Y axis are the factor of overhead over optimal encoding, where Optimal

encoding is k − 1 XOR operations per coding element.

Of the two codes for w = 8, the minimal density code vastly outperforms Cauchy Reed-

Solomon coding. When w = 8, the primitive polynomial that generates Cauchy coding

matrices has three non-zero terms, which means that the number of ones in the eight Xi are

8, 11, 11, 14, 14, 17, 18 and 18 respectively. The minimal density X0 has eight ones, and

3 4 5 6 7 8
k

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

O
ve

rh
ea

d:
 f

ac
to

r
ov

er
 o

pt
im

al
Cauchy Reed-Solomon, w=8
EVENODD, w=10
RDP, w=10

Minimal Density, w=8 (this paper)
Minimal Density, w=10 (Blaum-Roth)
Minimal Density, w=11 (Liberation)

Figure 4: Encoding performance of RAID-6 codes when w is the smallest legal value ≥ 8.

the remaining Xi have nine.

With respect to the others, the performance of the three minimal density codes (Blaum-

Roth, Liberation and the codes of this paper) exhibit the same performance as noted in [15].

Their overhead is independent of k. They are always superior to EVENODD coding and

outperform RDP when k is small. Since the performance of these codes improves as w grows,

the Liberation code for w = 11 performs better than the Blaum-Roth code for w = 10, which

performs better than the w = 8 code.

The performance of decoding is displayed in Figure 5. The results mirror the results

of [15]: the decoding performance of minimal density codes is worse than their encoding

performance, but not by a large margin. As with encoding, decoding outperforms CRS

coding significantly. With all the minimal density codes, decoding is optimized with the

the “Code-specific Hybrid Reconstruction” algorithm of [8], (which is equivalent to the “Bit

Scheduling” algorithm of [15]).

Figure 6 shows the decoding performance of each of the 48 sets of minimal density MDS

matrices when k = w = 8. Although they have equivalent encoding and modification perfor-

mance, their inverses have different properties, which means that their decoding performance

ranges from a factor 1.1845 t the best to 1.1962. In the figure, the sets are ordered by their

decoding performance.

Finally, the performance of modification is displayed in Figure 7. The values on the Y

3 4 5 6 7 8
k

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

O
ve

rh
ea

d:
 f

ac
to

r
ov

er
 o

pt
im

al
Cauchy Reed-Solomon, w=8
EVENODD, w=10
RDP, w=10

Minimal Density, w=8 (this paper)
Minimal Density, w=10 (Blaum-Roth)
Minimal Density, w=11 (Liberation)

Figure 5: Decoding performance of RAID-6 codes when w is the smallest legal value ≥ 8.

1 48
Matrix Set

1.18

1.19

1.20

F
ac

to
r

ov
er

 o
pt

im
al

Figure 6: Decoding performance for k = 8 of the 48 minimal distance MDS codes for w = 8.

axis are the average number of coding elements that must be updated when a data element

is modified. For the bit matrix coding techniques, this is the average number of ones in each

column of the CDM.

The results again mirror those in [15]. The minimal density codes achieve optimality for

their respective values of w [3] and clearly outperform the others.

5 Details of the Search

Brute-force enumeration is typically as subtle hitting a rock with a sledge hammer. water.

However, in our quest to discover minimal density MDS codes for w = 8, the number of

3 4 5 6 7 8
k

2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

A
ve

ra
ge

 M
od

if
ie

d
C

od
in

g
E

le
m

en
ts Cauchy Reed-Solomon, w=8

EVENODD, w=10
RDP, w=10

Minimal Density, w=8 (this paper)
Minimal Density, w=10 (Blaum-Roth)
Minimal Density, w=11 (Liberation)

Figure 7: Modification performance of RAID-6 codes when w is the smallest legal value ≥ 8.

matrices is too large to exhaustively search without thousands of machines and months of

time. We employed some interesting techniques, described in this section, to limit the search

space so that our enumeration of MDS matrices took four days, zero hours and 34 minutes

on a MacBook Pro with a 2.16 GHz Intel Core Duo processor.

To perform the enumeration, we represent each Xi (i > 0) with a permutation matrix

and an extra one. The permutation matrix may be represented by a vector Πi which has w

integer elements πi,0, . . . , πi,w−1. πi,j is the column which contains the location of the one in

row j. In order to be a valid permutation matrix, Πi must be such that 0 ≤ πi,j < w and

if j 6= j′ then πi,j 6= πi,j′. When generating a permutation matrix Πi, we have w choices

for πi,0, w − 1 choices for πi,1, etc. Thus, there are w! possible permutation matrices.

We can represent an Xi with its permutation matrix Πi plus a row and column identifying

the extra one. We will use the following notation to represent Xi:

Xi = {Πi, ri, ci}

For example, X1 in Figure 3 may be represented as {(7, 3, 0, 2, 6, 1, 5, 4), 4, 7}. Given a

permutation matrix Πi, there are w2 −w possible locations for the extra one, since it cannot

coincide with any of the existing ones in Πi. Thus, there are (w!)(w2 −w) possible matrices

for each Xi.

5.1 MDS Testing and Enumeration

We will always start with X0 = I. For i > 0, Xi = {Πi, ri, ci} must be such that πi,ri
6= ci.

In order for a RAID-6 code to be MDS, the Xi matrices must satisfy two properties [3, 15]:

1. They must each be invertible.

2. For all i 6= j, the sum Xi + Xj must also be invertible.

If we devine our Xi as described above, then we know that each Xi is invertible, so we never

need to test that property. Next, suppose that we have a minimal MDS code for k = j < w

composed of j matrices X0, . . . , Xj−1. Then if we define a matrix Xj such that if Xj + Xi is

invertible for 0 ≤ i < j, then X0, . . . , Xj compose a minimal MDS code for k = j + 1.

This gives us a simple technique for enumeration — start with j = 1 and X0 = I, and

repeat the following steps:

• Enumerate all possible Xj . If Xj is such that if Xj + Xi is invertible for 0 ≤ i < j,

then increment j and repeat these steps.

• Record each code for which j = k.

• When the enumeration for this step is finished, decrement j and continue enumeration

from the previous step.

This enumeration does perform some pruning of the original 5.94×1040 matrices. However,

there are three techniques that we employed to prune the enumeration further. They are

described below.

5.2 Permutations

First, it should be clear that if a code defined by matrices X0, . . . , Xk−1 is MDS, then so

is a code defined by any permutation of these matrices. Since we require that X0 to be

the identity matrix, and it is clear that the Xi must be distinct (or their sums will not be

invertible), then whenever we have a code defined by X0, . . . , Xk−1, then that code represents

a set of (k − 1)! equivalent codes, where each code is a permutation of X1, . . . , Xk−1.

Figure 8: The matrix of Figure 3 where the Xi are replaced with X
0,1
i .

Second, let M be a square matrix. If M is invertible, then so is any matrix constructed by

swapping rows or columns of M . Now, suppose we have a code defined by X0, . . . , Xk−1. Let

us construct a new code defined by the matrices X
x,y
0

, . . . , X
x,y

k−1
where X

x,y
i is equal to Xi

with rows x and y swapped, and columns x and y swapped. For example, in Figure 8 we

replace the Xi of Figure 3 with X
0,1
i .

Note that if the original code is MDS, then so is the new code. Moreover X
x,y
0

will equal

the identity matrix. Since there are (w!) ways to permute the rows and columns of a w ×w

matrix, this means that a code defined by X0, . . . , Xk−1 represents a set of (w!) equivalent

codes where each code is a permutation of swapping rows and columns of X0, . . . , Xk−1.

Combining the two types of permutations, we see that a single code represents (k−1)!(w!)

equivalent codes. This is why the 48 sets of codes discovered in our enumeration represent

9.754 × 109 matrices.

We can use the permutations to limit our enumeration. Specifically, let Xi = {Πi, ri, ci}

and Xj = {Πj , rj, cj}. It should be clear that ri 6= rj , for if they were equal, Xi+Xj would be

a matrix with an even number of ones in each row, and would therefore not be invertible [3].

Similarly ci 6= cj . This means that each ri must be distinct, as must each cj. Since we can

permute rows and columns to generate equivalent codes, any MDS code must permute to

one where ri = w − i for i > 0. Thus, we can limit our enumeration of Xi to only those

where ri = w − i, which is an improvement by a factor of w.

In the discussion that follows, we only consider Xi such that ri = w − i.

5.3 The I1 Function

Let M1 and M2 be two r × w matrices where r ≤ w and there exist two permutation

matrices Π1 and Π2 such that M1 composes the first r rows of Π1 and that M2 composes the

first r rows of Π2. We call Π1 and Π2 superset matrices of M1 and M2.

We define the boolean function I1(M1, M2) to be true iff M1 and M2 have two superset

permutation matrices Π1 and Π2 such that Π1 + Π2 plus any one bit is an invertible matrix.

Note, that means that for every one of the w2 possible bits, Π1 + Π2 plus that bit must be

invertible.

M1 M2 M3 M4

Figure 9: Examples to illustrate the I1 function.

We give a few examples in Figure 9. I1(M1, M2) is true, because we can find two superset

matrices (I and I rotated right one column) such that their sum equals M4, and it is easy to

verify that M4 plus any one bit is invertible. I1(M1, M3) is false, because the sum of any two

superset matrices plus a one bit in any column but the first two will yield a matrix whose

leftmost two columns have ones in the first two rows and zeroes in the rest. Such a matrix

is clearly not invertible. Similarly, I1(M2, M3) is false because the sum of any two superset

matrices plus a one bit in any row but the first will have an empty first row. Again, such a

matrix is clearly not invertible.

Now, the I1 function gives us a way to restrict the Xj matrices when we enumerate them.

Specifically, let Xi = {Πi, ri, ci} and Xj = {Πj, rj, cj}. Then let Mi be Xi with rows ri and rj

removed, and Mj be Xj with rows ri and rj removed. If I1(Mi, Mj) is false, then Xi + Xj

cannot be invertible.

When we enumerate Xj as above, we may do so incrementally by constructing rows starting

with row 0. After the construction of each row, we check to make sure that the I1 function

holds with Xj and each other Xi minus rows rj and ri. If it does, then we move onto the

next row. If it does not, then we continue enumerating the next constructions of the current

row. This technique allows for significant pruning during the enumeration of matrices and

makes the enumeration proceed much faster.

5.4 When Πi and Πj Share Values

The last enumeration pruning technique arises when Xi = {Πi, ri, ci} and Xj = {Πj , rj, cj}

have the property that for some value of a, πi,a = πj,a. An example of this is in Figure 8,

where X2 = {(2, 6, 4, 1, 7, 3, 0, 5), 0, 3} and X3 = {(5, 2, 7, 6, 1, 3, 4, 0), 5, 4}. In this example,

a = 5 and π2,5 = π3,5 = 3. When this occurs, the bit in row a, column πi,a of Xi + Xj will

equal zero, and unless ri or rj equals a, row a of Xi + Xj will contain all zeros and will

therefore not be invertible. Similarly, unless ci or cj equals πi,a, column πi,a will contain all

zeros.

We can use this observation again to limit our enumeration. Recall from Section 5.2 that

we constrain ri for all Xi in our enumeration. When we incrementally generate row a of Xj ,

we check to see if πj,a is equal to πi,a for 0 < i < j. If it is, then either ri or rj must be equal

to a, and either ci or cj must be equal to πi,a. In our above example from Figure 8, c2 = 3

and r3 = 5. If all of these conditions do not hold, then we may reject row a of Xj without

futher testing, again helping us prune the enumeration.

5.5 Pruned Enumeration Results

As mentioned in Section 5, the pruned enumeration completed in approximately four days

on one consumer quality laptop computer. In the enumeration, 5064 MDS matrices were

discovered, and by generating all permutations of these matrices, we identified the 48 distinct

sets of matrices listed in [14].

6 Implementation and Availability

The best code that we discovered, which is depicted in Figure 3r, has been implemented as

part of version 2.0 of the the Jerasure erasure coding library [13]. This library facilitates

all aspects of matrix and bit matrix erasure coding discussed in Section 2.

7 Conclusion

This paper has two contributions to the field of RAID-6 erasure codes. First is the discovery

of minimal density MDS codes for w = 8. This is an important value of w since it allows

coding strips to fit evenly within file system blocks. The performance characteristics of these

codes are on par with other minimal density MDS codes [3, 15] and compare favorably with

other RAID-6 codes as well [2, 5].

The second contribution details the techniques that we used to turn a largely intractible

enumeration to one that completed in four days on a single machine. These techniques may

prove useful for other MDS code explorations.

Our future work in this arena is to use our knowledge of RAID-6 codes to start exploring

MDS codes for larger numbers of failures, and to explore better algorithms than previous

ones [8, 10, 15] for improving the performance of decoding.

8 Acknowledgements

This material is based upon work supported by the National Science Foundation under

grant CNS-0615221. The author would like to thank Lihao Xu, Jim Hafner and Jay Wylie

for valuable discussions that helped the author to hone the focus of this work.

References

[1] Beck et al, M. Logistical computing and internetworking: Middleware for the use of storage in

communication. In Third Anual International Workshop on Active Middleware Services (AMS) (San

Francisco, August 2001).

[2] Blaum, M., Brady, J., Bruck, J., and Menon, J. EVENODD: An efficient scheme for tolerating

double disk failures in RAID architectures. IEEE Transactions on Computing 44, 2 (February 1995),

192– 202.

[3] Blaum, M., and Roth, R. M. On lowest density MDS codes. IEEE Transactions on Information

Theory 45, 1 (January 1999), 46–59.

[4] Blomer, J., Kalfane, M., Karpinski, M., Karp, R., Luby, M., and Zuckerman, D. An XOR-

based erasure-resilient coding scheme. Tech. Rep. TR-95-048, International Computer Science Institute,

August 1995.

[5] Corbett, P., English, B., Goel, A., Grcanac, T., Kleiman, S., Leong, J., and Sankar, S.

Row diagonal parity for double disk failure correction. In 4th Usenix Conference on File and Storage

Technologies (San Francisco, CA, March 2004).

[6] Hafner, J. L. WEAVER Codes: Highly fault tolerant erasure codes for storage systems. In FAST-

2005: 4th Usenix Conference on File and Storage Technologies (San Francisco, December 2005),

pp. 211–224.

[7] Hafner, J. L. HoVer erasure codes for disk arrays. In DSN-2006: The International Conference on

Dependable Systems and Networks (Philadelphia, June 2006), IEEE.

[8] Hafner, J. L., Deenadhayalan, V., Rao, K. K., and Tomlin, A. Matrix methods for lost data

reconstruction in erasure codes. In FAST-2005: 4th Usenix Conference on File and Storage Technologies

(San Francisco, December 2005), pp. 183–196.

[9] Huang, C., Chen, M., and Li, J. Pyramid codes: Flexible schemes to trade space for access efficienty

in reliable data storage systems. In NCA-07: 6th IEEE International Symposium on Network Computing

Applications (Cambridge, MA, July 2007).

[10] Huang, C., Li, J., and Chen, M. On optimizing XOR-based codes for fault-tolerant storage appli-

cations. In ITW’07, Information Theory Workshop (Tahoe City, CA, September 2007), IEEE, pp. 218–

223.

[11] MacWilliams, F. J., and Sloane, N. J. A. The Theory of Error-Correcting Codes, Part I. North-

Holland Publishing Company, Amsterdam, New York, Oxford, 1977.

[12] Plank, J. S. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Software –

Practice & Experience 27, 9 (September 1997), 995–1012.

[13] Plank, J. S. Jerasure: A library in C/C++ facilitating erasure coding for storage applications. Tech.

Rep. CS-07-603, University of Tennessee, September 2007.

[14] Plank, J. S. The 48 sets of minimal density MDS RAID-6 matrices for a word size of eight. Tech.

Rep. UT-CS-08-611, University of Tennessee, March 2008.

[15] Plank, J. S. The RAID-6 Liberation codes. In FAST-2008: 6th Usenix Conference on File and Storage

Technologies (San Jose, February 2008), pp. 97–110.

[16] Plank, J. S., Buchsbaum, A. L., Collins, R. L., and Thomason, M. G. Small parity-check

erasure codes - exploration and observations. In DSN-05: International Conference on Dependable

Systems and Networks (Yokohama, Japan, 2005), IEEE.

[17] Plank, J. S., and Ding, Y. Note: Correction to the 1997 tutorial on Reed-Solomon coding. Software

– Practice & Experience 35, 2 (February 2005), 189–194.

[18] Reed, I. S., and Solomon, G. Polynomial codes over certain finite fields. Journal of the Society for

Industrial and Applied Mathematics 8 (1960), 300–304.

[19] Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weatherspoon, H., and Kubiatowicz,

J. Maintenance-free global data storage. IEEE Internet Computing 5, 5 (2001), 40–49.

[20] Storer, M. W., Greenan, K. M., Miller, E. L., and Voruganti, K. Pergamum: Replacing

tape with energy efficient, reliable, disk-based archival storage. In FAST-2008: 6th Usenix Conference

on File and Storage Technologies (San Jose, February 2008), pp. 1–16.

[21] Welch, B., Unangst, M., Abbasi, Z., Gibson, G., Mueller, B., Small, J., Zelenka, J.,

and Zhou, B. Scalable performance of the panasas parallel file system. In FAST-2008: 6th Usenix

Conference on File and Storage Technologies (San Jose, February 2008), pp. 17–33.

[22] Wylie, J. J., and Swaminathan, R. Determining fault tolerance of XOR-based erasure codes effi-

ciently. In DSN-2007: The International Conference on Dependable Systems and Networks (Edinburgh,

Scotland, June 2007), IEEE.

[23] Xu, L., Bohossian, V., Bruck, J., and Wagner, D. Low density MDS codes and factors of

complete graphs. IEEE Transactions on Information Theory 45, 6 (September 1999), 1817–1826.

[24] Xu, L., and Bruck, J. X-Code: MDS array codes with optimal encoding. IEEE Transactions on

Information Theory 45, 1 (January 1999), 272–276.

[25] Zhu, B., Li, K., and Patterson, H. Avoiding the disk bottleneck in the Data Domain deduplication

file system. In FAST-2008: 6th Usenix Conference on File and Storage Technologies (San Jose, February

2008), pp. 269–282.

