

HPCS Library Study Effort

Jack Dongarra1,2,3, James Demmel4, Parry Husbands5, Piotr Luszczek6

1University of Tennessee

2Oak Ridge National Laboratory
3University of Manchester

4University of California Berkeley
5Lawrence Berkeley National Laboratory

6MathWorks

 2

HPCS Library Study Effort

Jack Dongarra, James Demmel, Parry Husbands, Piotr Luszczek

1. Overview

In this report we present our research into the implementation of numerical libraries using the
proposed HPCS languages. Faced with the fact that the community has very little application
experience (the implementations are not yet mature) with these languages, we chose a somewhat
atypical approach: perform a case study of parallel LU factorization and determine how this
kernel can be implemented in the languages. As such we decided to gather various algorithmic
techniques that have been successful and make connections to specific HPCS language features.

We settled on parallel LU factorization for a variety of reasons:

- It is a well known, understandable kernel
- Many implementations exist that span the performance spectrum
- Getting it to perform well in parallel on distributed memory machines reveals many

programming issues, solutions to which aren’t well represented in traditional languages.
-

In Section 2 we give a short description of the algorithm and outline some of the roadblocks to
high performance. Section 3 presents some of the abstraction issues that arise when comparing
the implementation of different versions of the algorithm in different languages. Section 4
contains our survey of the implementations. We detail our observations regarding implementing
a high performance LU code in an HPCS language in Section 5 and conclude in Section 6.

2. LU Factorization and its Implementation Challenges

LU factorization attempts to decompose a general matrix A into a unit lower triangular (L) and
upper triangular matrix (U). Row permutations are typically used for numerical stability and so a
permutation matrix (P) is also generated such that LU=PA. The basic algorithm for this is
shown below, assuming a square n x n matrix A:

 3

for i = 1 to n-1
 find maximum absolute element in column i below the diagonal
 swap the row of maximum element with row i
 scale column i below diagonal by 1/A(i,i)

L(i,i)=1
for j = i+1 to n
 L(j,i)=A(j,i)/A(i,i)

 Set row i of U
for j = i to n
 U(i,j)=A(i,j)

 Perform a “trailing matrix update”, i.e. update the part of the matrix below and to the
right of A(i,i)
for j=i+1 to n
 for k = i+1 to n
 A(j,k) = A(j,k)-L(j,i)*U(i,k)

This step can equivalently be expressed as a “rank-one update”:
 A(i+1:n,i+1:n) = A(i+1:n,i+1:n) -
 L(i+1:n,i)*U(i,i+1:n)

In order to achieve high performance through the use of BLAS-3 (matrix-matrix) operations,
implementers usually express the algorithm in block form. Challenges to high performance in a
parallel setting include management of the following:

- Communication for the row exchanges, updates to L and U, and the trailing matrix
updates

- The dependencies in the algorithm

At this point it is interesting to note that sometimes the abstractions provided by a particular
environment might inhibit optimization possibilities. A primary example of such inhibition is the
set of design decisions that lead to the creation of the ScaLAPACK library.

The ScaLAPACK library implementers focused on two primary aspects of large scale parallel
computing: scalability and portability. The former was addressed by the choice of appropriate
parallel data organization and use of established parallel algorithms that could be proven to scale
on distributed memory computers. However, the latter aspect reduced the available optimizations
to a subset that can be implemented on major variants of parallel hardware. Consequently, the
ScaLAPACK code employs a lock-step method that is characterized by heavy synchronization
and lack of overlap of communication and computation in the temporal sense (in the spatial sense
there exists some overlap as some of the processors are computing while others are
communicating data between each other). As a result, ScaLAPACK is easily ported on any
existing parallel platform, but its performance can be easily matched and often exceeded by codes
targeted at a specific architecture.

3. Mapping to languages & Software Metrics

In this Section we discuss how we developed metrics that guide us through implementations in
languages at differing levels of abstraction, the key criticism leveled against using source lines of

 4

code (SLOC). In the survey to follow we augment traditional SLOC counts with an indication of
the various helper abstractions that were used. These abstractions can either be serial or parallel.
In the serial case we primarily have matrix abstractions: use of the familiar “triplet” notation for
indexing, built-in matrix operators (\, for example, in Matlab), and “advanced” object oriented
features. In addition, we assume that uniprocessor BLAS are provided. The parallel space is
more diverse. Languages can provide some subset of any of the following:

- First class distributed arrays
- A global address space
- Data parallelism
- Multithreading
- Atomic transactions
- Advanced synchronization (single/sync variables, clocks, etc.)
- Parallel Matrix Abstractions such as the PBLAS and BLACS.
-

For those implementations that are concerned with high performance we also measure the best
performance attained (absolute and % of peak), the number of processors on which this was
measured (an indication of scalability) and, where available, uniprocessor performance (which
tells us something about parallel overheads).

4. Survey of implementations

It is of course arguable how representative such codes are, but the fact that we can easily obtain
versions of this algorithm for current and future languages are of interest to HPCS.
We present our findings in Table 1 below. Description of the columns of the table

1. Language: The main language used for the implementation
2. Author: the person who wrote the code
3. Method: method used to factorize

a. Vectorized (calling BLAS 1)
b. Blocked (calling BLAS 3)
c. Recursive
d. Parallel
e. 1-D, 2-D
f. Local factorization variants...
g. Library-based (calling optimized library, perhaps written in a different language)

4. Pivoting: is partial pivoting done?
5. Blocking: are blocked calls to BLAS made?
6. Driver: is driver code included with matrix generation, etc?
7. SLOC: number of lines in editor (excluding large blocks of comments)
8. Distribution: parallel distribution type (or 0-D for sequential codes)
9. Lookahead: Can the code overlap panel factorizations with trailing matrix updates?
10. Dist. Mem?: Can this code run on distributed memory machines?

 5

11. Reuse L,U: Can L and U be reused for further solves after the factorization is complete?
12. Features: Any other important features of the code. For example, examples suitable for

teaching purposes are marked as “simple”.

Language Author Method Pivot
-ing

Block
-ing

Drive
r

SLO
C

Dis
t

Look-
ahead

Dist.
Mem
?

Reus
e L,U

Features

MATLAB Cleve
Moler

Outer
product,
row-wise

Yes No No 37 0-D No No Yes Simple

Octave Jason Riedy Recursive Yes Yes No 130 0-D No No Yes Algorithm by
Sivan Toledo

Python Piotr
Luszczek

Outer
product

Yes No No 40 0-D No No Yes Simple

Python Piotr
Luszczek

Outer
product

Yes Yes No 95 0-D No No Yes Library

CAF Robert
Numrich

Outer
product

Yes No Yes 1000 2-D No Yes Yes Simple, long

CAF John Reid Outer
product

Yes Yes Yes 200 1-D No Yes Yes Simple

CAF Robert
Numrich

Outer
product

Yes Yes Yes 120 2-D No Yes Yes CafLib,
SLOC 9222

UPC Parry
Husbands

Outer
product

Yes Yes Yes 5100 2-D Yes
(Dynamic
)

Yes U,
not L

Fast

UPC Calin
Cascaval

Outer
product

Yes Yes Yes 536 2-D No Yes Simple

X10 Vivek
Sarkar

Outer
product

Yes No Yes 167 2-D No (?) Yes* Yes Simple

Chapel Brad
Chamberlai
n

Outer
product,
row-wise

Yes No No 40 0-D No (?) Yes* Yes Simple

Fortress Guy Steele,
Jan Willem-
Massen

Outer-
product,
row-wise

Yes No Yes 100 0-D No (?) Yes* Yes Simple

HPF M.
Nakanishi

Outer
product

Yes No No 70 1-D No (?) Yes Yes Simple

HPF Anotine
Petitet

Outer
product

Yes Yes Yes 25 2-D No (?) Yes Yes Library

LINPACK Cleve
Moler

Outer
product,
vectorize
d

Yes No No 60 0-D No No Yes dgefa

LAPACK LAPACK Outer Yes Yes No 100+ 0-D No No Yes Dgetrf dgetf2

 6

team product 100

ScaLAPAC
K

Antoine
Petitet

Outer
product

Yes Yes No 180+
140

2-D No Yes Yes PDGETRF
PDGETF2

HPL Antoine
Petitet

Outer
product

Yes Yes Yes 5000+ 2-D Yes
(Static)

Yes U,
not L

Titanium Simon Yau Outer
product

No Yes Yes 388 No Yes

C PLASMA
team

Outer
product

Yes Yes Yes 400 2-D Yes
(Dynamic
)

No Yes Multithreade
d

C Panziera
and Baron

Outer
product

Yes Yes Yes 2-D Yes
(Dynamic
)

Yes U,
not L

Multithreade
d (up to
512p) + MPI

Cilk Bradley
Kuszmaul

Recursive Yes Yes Yes 266 0-D No Multithreade
d

Table 1. Findings

Because the level of abstraction varies wildly among the various languages, it is beneficial to say
something about the services and abstractions that each language provides.
Language Services & Abstractions
Matlab triplet, BLAS as operators, data parallel abstraction

Python triplet, BLAS as operators, data parallel abstraction

CAF triplet, first class distributed arrays, global address space

UPC first class distributed arrays, global address space

X10 first class distributed arrays, global address space, data parallel + multithreading, “clocks”,
atomics, “advanced” OO

Chapel first class distributed arrays, global address space, data parallel + multithreading, atomics,
“advanced” OO

Fortress first class distributed arrays, global address space, data parallel + multithreading, atomics,
“advanced” OO

HPF triplet, first class distributed arrays, data parallel

f77/f90 triplet, PBLAS, BLACS

Titanium first class distributed arrays, global address space

Cilk multithreading,

Table 2. Services & Abstractions of languages

Language Author Best Performance
GFlop/sec

p Machine % peak Best
1p

%peak
CAF Robert Numrich 509 60 Cray X1 71.0 92.1

UPC Parry Husbands 2249 512 Itanium/Quadrics 78.4 91.8

UPC Calin Cascaval 118 256 BG/L 16.4 52.5

 7

HPL Antoine Petitet 280600 131072 BG/L 76.4 80.1

C PLASMA team 48.5 8 Intel Clovertown 57.0 70.3

C Panziera and Baron 51870 10160 SGI Altix
Cluster

85.1 90.1

ScaLAPACK Antoine Petitet 44 64 Intel Pentium 4 14.3 47.0

Table 3. Performance of those codes that strive for high performance.

Taking LAPACK's code as an example, Table 4 provides a breakdown of line counts of various
sections of the code:
 DGETRF DGETF2 Total Percentage

Leading comments 36 36 72 24.4%

Blank comments 50 43 93 31.5%

Other comments 19 13 32 10.8%

Total comments 105 92 197 67%

Declarations 11 11 22 7.5%

Argument checking 14 14 28 9.5%

Real work 30 18 48 16%

Total 160 135 295

Table 4. Line counts.

Consequently, the total length can be thought of as anywhere from 48 SLOC (for "real work") up
to 295 SLOC. And we ignore the code in the library calls to the Basic Linear Algebra Subroutines
(BLAS): DGER, DSCAL, DSWAP, DGEMM,, DTRSM as well as LAPACK's auxiliary
routines: DLASWP and ILAENV. Furthermore, this hardly captures the level of effort in the
Parallel BLAS (PBLAS) or Basic Linear Algebra Communication Subroutines (BLACS), which
were designed with a lot more generality and complexity in mind than needed for ScaLAPACK's
PDGETRF subroutine alone. In comparison, the UPC version sacrifices the generality and builds
the complexity from scratch and so comes in last in the SLOC metric (if SLOC could be
considered as a metric).

Cilk UPC PLASMA

Category SLOC
Scheduler 190

Panel Factorization 10

Trailing Matrix Updates 70

Driver 100

Comments 30

Category SLOC
Serial Kernels 82

LU 34

Backsolve 51

Trailing Matrix 22

Category SLOC
Threading Package 215

Panel Factorization 1002

Update to U 110

Trailing Matrix Update 454

Back Substitution 368

 8

5. Writing in an HPCS Language

From our survey, we can conclude that while pure data parallel approaches to writing LU
factorization can produce compact code, they do not perform particularly well. This leads us to
consider alternative approaches. Because all of the HPCS languages include task parallel
facilities and bearing in mind that the simple alternative of simulating an SPMD code such as
HPL is always available, we consider the issues involved in writing task parallel LU factorization
codes.

We restrict our attention here to multithreaded implementations which have enjoyed a resurgence
in recent years. Because our results indicate that blocking and look-ahead are required for
performance, we also focus on these two aspects. Blocking is primarily provided by the matrix
abstraction while support for look-ahead is dependent on the parallel control flow and
synchronization primitives in the language.

Multithreaded approaches have some potential advantages on distributed memory machines:

• Better communication latency tolerance
• Look-ahead (algorithmic latency tolerance) is dynamic leading to improved machine

utilization
There are, however, some costs:

• User control over the schedule is needed in order to minimize parallel execution time.
• User (or system) control over the amount of buffering required in distributed memory

machines.

The scheduling issue is paramount for performance. It essentially comes down to scheduling a
directed acyclic graph (DAG) of tasks on each of the processors. These tasks correspond to the
major operations of the algorithm, and edges between them represent dependencies that must be
satisfied before the task can run. In the dense linear algebra case, the tasks and dependencies are
statically determined by the matrix size and block size. In more complex algorithms, the tasks
and edges may be dynamically determined by the data.

Ultimately the scheduler (either a global or many local ones) must decide, for each
processor/core, the “best” task to run at any given time, knowing which dependencies have
already been met and some information (flops, running time) about the task pool. The difficulty
lies in the definition of “best”. There are many, possibly competing requirements:

• The task must advance the parallel execution of the algorithm. The scheduler’s decision
should delay other tasks as little as possible. This is also known as the “critical path”
issue.

 9

• The sequence of tasks run on any given processor/core should incur as few cache misses
as possible (this may compete with the previous requirement). Because of the dominance
of BLAS-3 operations in LU factorization, this is less of an issue here.

• The tasks must be chosen so that buffer memory is not exceeded.

The definition and implementation of protocols for interacting with schedulers is, however, still a
research topic (and so have been excluded from the HPCS languages). As such, schedulers have
traditionally been built in an application specific manner using parallel control flow features
(spawns and waits) combined with various data structures, such as scoreboards for keeping track
of dependencies. Thread priorities are also another way of influencing the scheduler, but to our
knowledge this hasn’t been widely used in scientific computing codes. We anticipate the use of
similar techniques in X10, Fortress, and Chapel. Features in these languages for task control
include single and sync variables (for producer consumer relationships), spawns with locality
directives, guarded statements (that fire when a condition is satisfied), and atomic regions. These
are the basic tools that will be used for constructing schedulers.

6. Conclusions

Even with its perceived simplicity, parallel LU factorization presents unique challenges to
language designers and library writers. We have shown that scaling up the available hardware
resources has to be accompanied by programming language tools. If the tools are not provided,
then firstly the scaling of the code quickly deteriorates, and secondly the fraction of the peak
performance observed in a sequential environment can never be achieved in a parallel setup. But
performance is only one part of HPCS’ productivity goal. The other important part is programmer
effort in delivering a well performing code. Both the programming language features and a rich
set of third party libraries are required to achieve this goal.

7. Acknowledgment

This material is based on research sponsored by DARPA under agreement number FA8750-06-1-
0240. The US Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation therein.

 10

8. References

[1] Allen E., Chase D., Hallett J., Luchangco V., Maessen J-W., Ryu S., Steele G. L., and Tobin-
Hochstadt S. The Fortress Language Specification. Available at
http://research.sun.com/projects/plrg/Publications/index.html, 2007

[2] Blumofe R. and Leiserson C. “Space-Efficient Scheduling of Multithreaded Computations,”
SIAM J. on Computing, 27, 1 (1998), 202-229.

[3] A. Buttari, J. Dongarra, P. Husbands, J. Kurzak and K. Yelick. “Multithreading for
Synchronization Tolerance in Matrix Factorization,” To Appear in Proceedings of the 2007
SciDAC Conference, Boston, MA, July 2007.

[4] Buttari A., Dongarra J., Kurzak J., Langou J., Luszczek P., and Tomov S. “The Impact of
Multicore on Math Software,” In Proceedings of PARA 2006, Umeå, Sweden, June 2006.

[5] Buttari A., Langou J., Kurzak J., and Dongarra J. Parallel Tiled QR Factorization for
Multicore Architectures. Technical Report UT-CS-07-598, University of Tennessee,
Computer Science Department, July 2007. Also published as LAPACK Working Note 190.

[6] Callahan D., Chamberlain B. L., and Zima, H,P. “The Cascade High Productivity Language,”
In Proceedings of the 9th International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS 2004), pages 52-60. IEEE Computer Society,
2004.

[7] Choi J., Dongarra J., Ostrouchov S., Petitet A., Walker D., and Whaley, R.C. “The Design
and Implementation of the ScaLAPACK LU, QR, and Cholesky Factorization Routines,”
Scientific Programming, 5, (1996), 173-184.

[8] Cicotti P. and Baden S. “Asynchronous programming with Tarragon,” In Proceedings of the
15th IEEE International Symposium on High Performance Distributed Computing, June 19-
23 2006.

[9] Ebcioglu K., Saraswat V., and Sarkar, V. “X10: an Experimental Language for High
Productivity Programming of Scalable Systems,” In Proceedings of the P-PHEC 2005
Workshop, held in conjunction with HPCA 2005, 2005.

[10] El-Ghazawi T., Carlson W., Sterling T., and Yelick K. UPC: Distributed Shared-Memory
Programming. Wiley-Interscience, 2005.

[11] Husbands P. and Yelick K. “Multi-Threading and One-Sided Communication in Parallel LU
Factorization,” To Appear in Proceedings of SC 07, November 2007

[12] Kurzak J. and Dongarra J. Implementing Linear Algebra Routines on Multi-Core Processors
with Pipelining and a Look Ahead. Technical Report UT-CS-06-581, University of
Tennessee, Computer Science Department, 2006. Also published as LAPACK Working Note
178.

[13] Panziera J.-P. and Baron J. “A Highly Efficient Linpack Implementation Based on Shared-
Memory Parallelism,” In Proceedings of the 2005 International Supercomputer Conference,
2005.

[14] Snir M., Otto S., Huss-Lederman S., Walker D., and Dongarra J. MPI: The Complete
Reference - 2nd Edition: Volume 1. The MIT Press. ISBN 0-262-57123-4, 1998.

[15] The Top 500 Supercomputer Sites. Available at: http://www.top500.org, 2007.
[16] UPC Consortium. UPC Language Specification, v1.2. Available at:

http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf, 2005.

 11

Acronyms

Explanation of acronyms used in this report:

• BLAS – Basic Linear Algebra Subprograms
• BLACS - Basic Linear Algebra Communication Subroutines
• CAF – Co-array Fortran
• DAG - Directed Acyclic Graph
• DARPA – The Defense Advanced Research Projects Agency
• DGEMM – Double-precision General Matrix-Matrix multiply
• DGER – Double-precision General Rank 1 Update (BLAS)
• DLASWP – Double-precision LAPACK Auxiliary Swap
• DSCAL – Double-precision Scale (BLAS)
• DSWAP - Double-precision Swap (BLAS)
• DTRSM – Double-precision Triangular Matrix Solve Matrix (BLAS)
• HPCS – High Productivity Computing Systems
• HPF – High Performance Fortran
• HPL – High Performance Linpack benchmark
• ILAENV – Integer LAPACK Auxiliary Environment
• LAPACK – Linear Algebra PACKage
• Linpack – LINear PACKage: a set of Fortran subroutines for numerical linear algebra;
also a benchmark based on one of the Linpack subroutines
• LU – Lower Upper
• MPI – Message Passing Interface
• PBLAS – Parallel BLAS
• PDGETRF – Parallel Double-precision General Triangular Factorization (ScaLAPACK)
• PLASMA – Parallel Linear Algebra for Scalable Multi-core Architectures
• ScaLAPACK – Scalable LAPACK
• SLOC – Source Line of Code
• SPMD – Single Program Multiple Data
• UPC – Unified Parallel C

