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1. Overview 
 

In this report we present our research into the implementation of numerical libraries using the 
proposed HPCS languages.  Faced with the fact that the community has very little application 
experience (the implementations are not yet mature) with these languages, we chose a somewhat 
atypical approach: perform a case study of parallel LU factorization and determine how this 
kernel can be implemented in the languages.  As such we decided to gather various algorithmic 
techniques that have been successful and make connections to specific HPCS language features. 
 
We settled on parallel LU factorization for a variety of reasons: 

- It is a well known, understandable kernel 
- Many implementations exist that span the performance spectrum 
- Getting it to perform well in parallel on distributed memory machines reveals many 

programming issues, solutions to which aren’t well represented in traditional languages. 
-  

In Section 2 we give a short description of the algorithm and outline some of the roadblocks to 
high performance.  Section 3 presents some of the abstraction issues that arise when comparing 
the implementation of different versions of the algorithm in different languages.  Section 4 
contains our survey of the implementations.  We detail our observations regarding implementing 
a high performance LU code in an HPCS language in Section 5 and conclude in Section 6. 
 
2. LU Factorization and its Implementation Challenges 
 

LU factorization attempts to decompose a general matrix A into a unit lower triangular (L) and 
upper triangular matrix (U).   Row permutations are typically used for numerical stability and so a 
permutation matrix (P) is also generated such that LU=PA.   The basic algorithm for this is 
shown below, assuming a square n x n matrix A: 
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for i = 1 to n-1 
 find maximum absolute element in column i below the diagonal 
 swap the row of maximum element with row i 
 scale column i below diagonal by 1/A(i,i) 

L(i,i)=1 
for j = i+1 to n 
   L(j,i)=A(j,i)/A(i,i)  

 Set row i of U 
for j = i  to n 
  U(i,j)=A(i,j) 

 Perform a “trailing matrix update”, i.e. update the part of the matrix below and to the 
right of A(i,i) 
for j=i+1 to n 
  for k = i+1 to n 
    A(j,k) = A(j,k)-L(j,i)*U(i,k) 
 
This step can equivalently be expressed as a “rank-one update”: 
  A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - 
                                 L(i+1:n,i)*U(i,i+1:n) 

In order to achieve high performance through the use of BLAS-3 (matrix-matrix) operations, 
implementers usually express the algorithm in block form.   Challenges to high performance in a 
parallel setting include management of the following: 

- Communication for the row exchanges, updates to L and U, and the trailing matrix 
updates 

- The dependencies in the algorithm 
 
At this point it is interesting to note that sometimes the abstractions provided by a particular 
environment might inhibit optimization possibilities. A primary example of such inhibition is the 
set of design decisions that lead to the creation of the ScaLAPACK library. 
 
The ScaLAPACK library implementers focused on two primary aspects of large scale parallel 
computing: scalability and portability. The former was addressed by the choice of appropriate 
parallel data organization and use of established parallel algorithms that could be proven to scale 
on distributed memory computers. However, the latter aspect reduced the available optimizations 
to a subset that can be implemented on major variants of parallel hardware. Consequently, the 
ScaLAPACK code employs a lock-step method that is characterized by heavy synchronization 
and lack of overlap of communication and computation in the temporal sense (in the spatial sense 
there exists some overlap as some of the processors are computing while others are 
communicating data between each other). As a result, ScaLAPACK is easily ported on any 
existing parallel platform, but its performance can be easily matched and often exceeded by codes 
targeted at a specific architecture. 
 
3. Mapping to languages & Software Metrics 
 

In this Section we discuss how we developed metrics that guide us through implementations in 
languages at differing levels of abstraction, the key criticism leveled against using source lines of 
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code (SLOC).  In the survey to follow we augment traditional SLOC counts with an indication of 
the various helper abstractions that were used.   These abstractions can either be serial or parallel.  
In the serial case we primarily have matrix abstractions: use of the familiar “triplet” notation for 
indexing, built-in matrix operators (\, for example, in Matlab), and “advanced” object oriented 
features.  In addition, we assume that uniprocessor BLAS are provided.   The parallel space is 
more diverse.  Languages can provide some subset of any of the following: 

- First class distributed arrays 
- A global address space 
- Data parallelism 
- Multithreading 
- Atomic transactions 
- Advanced synchronization (single/sync variables, clocks, etc.) 
- Parallel Matrix Abstractions such as the PBLAS and BLACS. 
-  

For those implementations that are concerned with high performance we also measure the best 
performance attained (absolute and % of peak), the number of processors on which this was 
measured (an indication of scalability) and, where available, uniprocessor performance (which 
tells us something about parallel overheads). 
 
4. Survey of implementations 
 

It is of course arguable how representative such codes are, but the fact that we can easily obtain 
versions of this algorithm for current and future languages are of interest to HPCS. 
We present our findings in Table 1 below. Description of the columns of the table 

1. Language: The main language used for the implementation 
2. Author: the person who wrote the code 
3. Method: method used to factorize 

a. Vectorized (calling BLAS 1) 
b. Blocked (calling BLAS 3) 
c. Recursive 
d. Parallel 
e. 1-D, 2-D 
f. Local factorization variants... 
g. Library-based (calling optimized library, perhaps written in a different language) 

4. Pivoting: is partial pivoting done? 
5. Blocking: are blocked calls to BLAS made? 
6. Driver: is driver code included with matrix generation, etc? 
7. SLOC: number of lines in editor (excluding large blocks of comments) 
8. Distribution: parallel distribution type (or 0-D for sequential codes) 
9. Lookahead:  Can the code overlap panel factorizations with trailing matrix updates? 
10. Dist. Mem?:  Can this code run on distributed memory machines? 
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11. Reuse L,U: Can L and U be reused for further solves after the factorization is complete? 
12. Features: Any other important features of the code.  For example, examples suitable for 

teaching purposes are marked as “simple”. 
 

Language Author Method Pivot
-ing 

Block
-ing 

Drive
r 

SLO
C 

Dis
t 

Look-
ahead 

Dist. 
Mem
? 

Reus
e L,U 

Features 

MATLAB Cleve 
Moler 

Outer 
product, 
row-wise 

Yes No No 37 0-D No No Yes Simple 

Octave Jason Riedy Recursive Yes Yes No 130 0-D No No Yes Algorithm by 
Sivan Toledo

Python Piotr 
Luszczek 

Outer 
product 

Yes No No 40 0-D No No Yes Simple 

Python Piotr 
Luszczek 

Outer 
product 

Yes Yes No 95 0-D No No Yes Library 

CAF Robert 
Numrich 

Outer 
product 

Yes No Yes 1000 2-D No Yes Yes Simple, long 

CAF John Reid Outer 
product 

Yes Yes Yes 200 1-D No Yes Yes Simple 

CAF Robert 
Numrich 

Outer 
product 

Yes Yes Yes 120 2-D No Yes Yes CafLib, 
SLOC 9222 

UPC Parry 
Husbands 

Outer 
product 

Yes Yes Yes 5100 2-D Yes 
(Dynamic
) 

Yes U, 
not L 

Fast 

UPC Calin 
Cascaval 

Outer 
product 

Yes Yes Yes 536 2-D No Yes  Simple 

X10 Vivek 
Sarkar 

Outer 
product 

Yes No Yes 167 2-D No (?) Yes* Yes Simple 

Chapel Brad 
Chamberlai
n 

Outer 
product, 
row-wise 

Yes No No 40 0-D No (?) Yes* Yes Simple 

Fortress Guy Steele, 
Jan Willem-
Massen 

Outer-
product, 
row-wise 

Yes No Yes 100 0-D No (?) Yes* Yes Simple 

HPF M. 
Nakanishi 

Outer 
product 

Yes No No 70 1-D No (?) Yes Yes Simple 

HPF Anotine 
Petitet 

Outer 
product 

Yes Yes Yes 25 2-D No (?) Yes Yes Library 

LINPACK Cleve 
Moler 

Outer 
product, 
vectorize
d 

Yes No No 60 0-D No No Yes dgefa 

LAPACK LAPACK Outer Yes Yes No 100+ 0-D No No Yes Dgetrf dgetf2



 6

team product 100 

ScaLAPAC
K 

Antoine 
Petitet 

Outer 
product 

Yes Yes No 180+
140 

2-D No Yes Yes PDGETRF 
PDGETF2 

HPL Antoine 
Petitet 

Outer 
product 

Yes Yes Yes 5000+ 2-D Yes  
(Static) 

Yes U, 
not L 

 

Titanium Simon Yau Outer 
product 

No Yes Yes 388  No Yes   

C PLASMA 
team 

Outer 
product 

Yes Yes Yes 400 2-D Yes 
(Dynamic
) 

No Yes Multithreade
d 

C Panziera 
and Baron 

Outer 
product 

Yes Yes Yes  2-D Yes 
(Dynamic
) 

Yes U, 
not L 

Multithreade
d (up to 
512p) + MPI 

Cilk Bradley 
Kuszmaul 

Recursive Yes Yes Yes 266 0-D  No  Multithreade
d 

 

Table 1. Findings 
 

Because the level of abstraction varies wildly among the various languages, it is beneficial to say 
something about the services and abstractions that each language provides.   
Language Services & Abstractions 
Matlab triplet, BLAS as operators, data parallel abstraction 

Python triplet, BLAS as operators, data parallel abstraction 

CAF triplet, first class distributed arrays, global address space 

UPC first class distributed arrays, global address space 

X10 first class distributed arrays, global address space, data parallel + multithreading, “clocks”, 
atomics, “advanced” OO 

Chapel first class distributed arrays, global address space, data parallel + multithreading, atomics, 
“advanced” OO 

Fortress first class distributed arrays, global address space, data parallel + multithreading, atomics, 
“advanced” OO 

HPF triplet, first class distributed arrays, data parallel 

f77/f90 triplet,  PBLAS, BLACS 

Titanium first class distributed arrays, global address space 

Cilk multithreading, 

  

Table 2. Services & Abstractions of languages 
 

Language Author Best Performance
GFlop/sec 

p Machine % peak Best 
1p 

%peak 
CAF Robert Numrich 509 60 Cray X1 71.0 92.1 

UPC Parry Husbands 2249 512 Itanium/Quadrics 78.4 91.8 

UPC Calin Cascaval 118 256 BG/L 16.4 52.5 
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HPL Antoine Petitet 280600 131072 BG/L  76.4 80.1 

C PLASMA team 48.5 8 Intel Clovertown 57.0 70.3 

C Panziera and Baron 51870 10160 SGI Altix 
Cluster 

85.1 90.1 

ScaLAPACK Antoine Petitet 44 64 Intel Pentium 4 14.3 47.0 

 
Table 3. Performance of those codes that strive for high performance. 

 
Taking LAPACK's code as an example, Table 4 provides a breakdown of line counts of various 
sections of the code: 
 DGETRF DGETF2 Total Percentage 

Leading comments 36 36 72 24.4% 

Blank comments 50 43 93 31.5% 

Other comments 19 13 32 10.8% 

Total comments 105 92 197 67% 

Declarations 11 11 22 7.5% 

Argument checking 14 14 28 9.5% 

Real work 30 18 48 16% 

Total 160 135 295  

 
Table 4. Line counts. 

 
Consequently, the total length can be thought of as anywhere from 48 SLOC (for "real work") up 
to 295 SLOC. And we ignore the code in the library calls to the Basic Linear Algebra Subroutines 
(BLAS): DGER, DSCAL, DSWAP, DGEMM,, DTRSM as well as LAPACK's auxiliary 
routines: DLASWP and ILAENV. Furthermore, this hardly captures the level of effort in the 
Parallel BLAS (PBLAS) or Basic Linear Algebra Communication Subroutines (BLACS), which 
were designed with a lot more generality and complexity in mind than needed for ScaLAPACK's 
PDGETRF subroutine alone. In comparison, the UPC version sacrifices the generality and builds 
the complexity from scratch and so comes in last in the SLOC metric (if SLOC could be 
considered as a metric). 
 
 

Cilk    UPC    PLASMA                   
 
 
 
 
 

Category SLOC 
Scheduler 190 

Panel Factorization 10 

Trailing Matrix Updates 70 

Driver 100 

Comments 30 

Category SLOC 
Serial Kernels 82 

LU 34 

Backsolve 51 

Trailing Matrix 22 

Category SLOC 
Threading Package 215 

Panel Factorization 1002 

Update to U 110 

Trailing Matrix Update  454 

Back Substitution 368 
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5. Writing in an HPCS Language 
 

From our survey, we can conclude that while pure data parallel approaches to writing LU 
factorization can produce compact code, they do not perform particularly well.  This leads us to 
consider alternative approaches.  Because all of the HPCS languages include task parallel 
facilities and bearing in mind that the simple alternative of simulating an SPMD code such as 
HPL is always available, we consider the issues involved in writing task parallel LU factorization 
codes. 
 
We restrict our attention here to multithreaded implementations which have enjoyed a resurgence 
in recent years.  Because our results indicate that blocking and look-ahead are required for 
performance, we also focus on these two aspects.  Blocking is primarily provided by the matrix 
abstraction while support for look-ahead is dependent on the parallel control flow and 
synchronization primitives in the language. 
 
 
 
Multithreaded approaches have some potential advantages on distributed memory machines: 

• Better communication latency tolerance 
• Look-ahead (algorithmic latency tolerance) is dynamic leading to improved machine 

utilization 
There are, however, some costs: 

• User control over the schedule is needed in order to minimize parallel execution time. 
• User (or system) control over the amount of buffering required in distributed memory 

machines. 
 

The scheduling issue is paramount for performance.  It essentially comes down to scheduling a 
directed acyclic graph (DAG) of tasks on each of the processors.  These tasks correspond to the 
major operations of the algorithm, and edges between them represent dependencies that must be 
satisfied before the task can run.  In the dense linear algebra case, the tasks and dependencies are 
statically determined by the matrix size and block size.  In more complex algorithms, the tasks 
and edges may be dynamically determined by the data.  
 
Ultimately the scheduler (either a global or many local ones) must decide, for each 
processor/core, the “best” task to run at any given time, knowing which dependencies have 
already been met and some information (flops, running time) about the task pool.   The difficulty 
lies in the definition of “best”.  There are many, possibly competing requirements: 

• The task must advance the parallel execution of the algorithm.  The scheduler’s decision 
should delay other tasks as little as possible.  This is also known as the “critical path” 
issue. 
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• The sequence of tasks run on any given processor/core should incur as few cache misses 
as possible (this may compete with the previous requirement).  Because of the dominance 
of BLAS-3 operations in LU factorization, this is less of an issue here. 

• The tasks must be chosen so that buffer memory is not exceeded. 
 
The definition and implementation of protocols for interacting with schedulers is, however, still a 
research topic (and so have been excluded from the HPCS languages).  As such, schedulers have 
traditionally been built in an application specific manner using parallel control flow features 
(spawns and waits) combined with various data structures, such as scoreboards for keeping track 
of dependencies.  Thread priorities are also another way of influencing the scheduler, but to our 
knowledge this hasn’t been widely used in scientific computing codes.  We anticipate the use of 
similar techniques in X10, Fortress, and Chapel.  Features in these languages for task control 
include single and sync variables (for producer consumer relationships), spawns with locality 
directives, guarded statements (that fire when a condition is satisfied), and atomic regions.  These 
are the basic tools that will be used for constructing schedulers. 
 
6. Conclusions 
 

Even with its perceived simplicity, parallel LU factorization presents unique challenges to 
language designers and library writers. We have shown that scaling up the available hardware 
resources has to be accompanied by programming language tools. If the tools are not provided, 
then firstly the scaling of the code quickly deteriorates, and secondly the fraction of the peak 
performance observed in a sequential environment can never be achieved in a parallel setup. But 
performance is only one part of HPCS’ productivity goal. The other important part is programmer 
effort in delivering a well performing code. Both the programming language features and a rich 
set of third party libraries are required to achieve this goal. 
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Acronyms 
 
Explanation of acronyms used in this report: 
 
• BLAS – Basic Linear Algebra Subprograms 
• BLACS - Basic Linear Algebra Communication Subroutines  
• CAF – Co-array Fortran 
• DAG - Directed Acyclic Graph 
• DARPA – The Defense Advanced Research Projects Agency 
• DGEMM – Double-precision General Matrix-Matrix multiply 
• DGER – Double-precision General Rank 1 Update (BLAS) 
• DLASWP – Double-precision LAPACK Auxiliary Swap 
• DSCAL – Double-precision Scale (BLAS) 
• DSWAP - Double-precision Swap (BLAS) 
• DTRSM – Double-precision Triangular Matrix Solve Matrix (BLAS) 
• HPCS – High Productivity Computing Systems 
• HPF – High Performance Fortran 
• HPL – High Performance Linpack benchmark 
• ILAENV – Integer LAPACK Auxiliary Environment 
• LAPACK – Linear Algebra PACKage 
• Linpack – LINear PACKage: a set of Fortran subroutines for numerical linear algebra; 
also a benchmark based on one of the Linpack subroutines 
• LU – Lower Upper 
• MPI – Message Passing Interface 
• PBLAS – Parallel BLAS 
• PDGETRF – Parallel Double-precision General Triangular Factorization (ScaLAPACK) 
• PLASMA – Parallel Linear Algebra for Scalable Multi-core Architectures 
• ScaLAPACK – Scalable LAPACK 
• SLOC – Source Line of Code 
• SPMD – Single Program Multiple Data 
• UPC – Unified Parallel C 
 
 


