
Custom assignment of MPI ranks for parallel multi-dimensional FFTs:
Evaluation of BG/P versus BG/L

Heike Jagode
The University of Tennessee - Knoxville
Oak Ridge National Laboratory (ORNL)

jagode@eecs.utk.edu

Joachim Hein
Edinburgh Parallel Computing Centre (EPCC)

The University of Edinburgh
joachim@epcc.ed.ac.uk

Abstract

For many scientific applications, the Fast Fourier Transfor-
mation (FFT) of multi-dimensional data is the kernel that
limits scalability on a large number of processors. This
paper investigates the extent of performance improvements
for a parallel three-dimensional FFT (3D-FFT) implemen-
tation when using customized MPI task mappings. The MPI
tasks are mapped in a customized fashion from the two-
dimensional virtual processor grid of the algorithm to the
physical hardware of a system with a mesh interconnect.
We compare and analyze the outcomes on Blue Gene/P with
those from previous investigations on Blue Gene/L. The per-
formance analysis is based on bandwidth considerations.
The results demonstrate that on Blue Gene/P, a carefully
chosen MPI task mapping with regards to the network char-
acteristics is more important compared to Blue Gene/L and
yields significant improvement.

1. Introduction

For many scientific applications, parallel multi-dimensional
Fast Fourier Transformation (FFT) routines form the key
performance bottleneck that prevents the application from
scaling to large numbers of processors. FFTs are often em-
ployed in applications requiring the numerical solution of
a differential equation. In this case the differential equa-
tion is solved in Fourier space, but its coefficients are deter-
mined in position space. FFTs can also be efficient for the
determination of the long-range forces, e.g. Particle-Mesh
Ewald methods in molecular dynamics simulations. Most
of these applications require the transformation between a
three-dimensional position and a three-dimensional Fourier
space.

Many previous parallel 3D-FFT implementations have used
a one-dimensional virtual processor grid - only one dimen-
sion is distributed among the processors and the remaining
dimensions are kept locally. This has the advantage that
one all-to-all communication is sufficient. However, for
problem sizes of about one hundred points per dimension,
this approach cannot offer scalability to several hundred or
thousand processors as required for the modern HPC archi-
tectures. For this reason the developers of the IBM’s Blue
Matter application have been promoting the use of a two-
dimensional virtual processor grid for FFTs in three dimen-
sions [1, 2, 3]. This requires two all-to-all type communi-
cations. For lower processor counts, these two communica-
tion operations lead to inferior performance when compared
to an implementation using a one-dimensional virtual grid.
However this algorithm offers superior scalability to pro-
cessor counts where a one-dimensional grid can no longer
be employed [1, 4].

A current trend in supercomputer design is the return of
the mesh type communication network. The systems on
the Top500 list [5] utilizing more than 20000 processors
arrange their compute nodes on a three-dimensional mesh
communication network instead of a switched network.
When using a mesh-type network, it is often possible to
achieve substantial performance gains by taking the net-
work characteristics into account. One example is to facil-
itate nearest neighbor communication by choosing a good
MPI task mapping between the virtual processor grid of the
application space and the physical processor mesh of the
actual compute hardware.

In this article we investigate the scope for such perfor-
mance improvements when mapping the MPI tasks of a par-
allel 3D-FFT implementation with a two-dimensional vir-
tual processor grid onto a machine with a three-dimensional
mesh as its communication network. In general, mapping
is the process of assigning tasks to processors. In this pa-
per, we define a mapping as an assignment of MPI ranks

onto processors. The investigations have been performed on
the Jülich’s Supercomputing Centre IBM Blue Gene/P. The
results on Blue Gene/P (BG/P) have been compared with
those from previous investigations on Blue Gene/L (BG/L).

This paper is organized as follows. Section 2 reviews the
implementation of the parallel 3D-FFT algorithm with a
two-dimensional data decomposition. A short overview of
the BG/P system used for this study is provided in Section 3.
The results of the experimental study on a 512-node parti-
tion as well as a comparison with earlier results from an
IBM eServer BG/L are presented in Section 4. Results on a
4096-node partition are discussed in Section 5. The paper
ends with conclusions and future work.

2 Review of parallel FFT algorithms

2.1 Definition of the Fourier Transforma-
tion

We start the discussion with the definition and the conven-
tions used for the Fourier Transformation (FT) in this paper.
ConsiderAx,y,z as a three-dimensional array ofL×M ×N
complex numbers with:

Ax,y,z ∈ C x ∈ Z ∀x, 0 ≤ x < L

y ∈ Z ∀y, 0 ≤ y < M

z ∈ Z ∀z, 0 ≤ z < N

The Fourier transformed arraỹAu,v,w is computed using the
following formula:
Ãu,v,w :=

L−1X

x=0

M−1X

y=0

N−1X

z=0

Ax,y,z exp(−2πi
wz

N
)

| {z }

1st 1D FT along z

exp(−2πi
vy

M
)

| {z }

2nd 1D FT along y

exp(−2πi
ux

L
)

| {z }

3rd 1D FT along x

(1)
As shown by the underbraces, this computation can be per-
formed in three single stages. This is crucial for under-
standing the parallelization in the next subsection. The first
stage is the one-dimensional FT along thez dimension for
all (x, y) pairs. The second stage is a FT along they dimen-
sion for all (x, w) pairs, and the final stage is along thex
dimension for all(v, w) pairs.

2.2 Parallelization

For the three-dimensional case, two different imple-
mentations - one-dimensional decomposition and two-
dimensional decomposition of the data over the physical
processor grid - have been recently investigated [1, 2, 4].
The parallel 3D-FFT algorithm using a two-dimensional de-
composition is often referred to in the literature as the vol-
umetric fast Fourier transform. In this paper we concen-
trate on the performance characteristics resulting from the
MPI task placements of the two-dimensional decomposi-
tion method onto a mesh communication network. Refer-
ence [4] provides an initial investigation. Figure 1 illustrates
the parallelization of the 3D-FFT using a two-dimensional
decomposition of the data arrayA of sizeL×M ×N . The
compute tasks have been organized in a two-dimensional
virtual processor grid withPc columns andPr rows using
the MPI Cartesian grid topology construct [6]. Each indi-
vidual physical processor holds anL/Pr×M/Pc×N sized
section ofA in its local memory. The entire 3D-FFT is per-
formed in five steps as follows:

1. Each processor performsL/Pr × M/Pc one-
dimensional FFTs of sizeN

2. An all-to-all communication is performed within each
of the rows - marked in the four main colors - of the
virtual processor grid to redistribute the data. At the
end of the step, each processor holds anL/Pr × M ×

N/Pc sized section ofA. These arePr independent
all-to-all communications.

3. Each processor performsL/Pr × N/Pc one-
dimensional FFTs of sizeM .

4. A second set ofPc independent all-to-all communica-
tions is performed, this time within the columns of the
virtual processor grid. At the end of this step, each
processor holds aL × M/Pc × N/Pr size section of
A.

5. Each processor performsM/Pc × N/Pr one-
dimensional FFTs of sizeL

For more information on the parallelization, the reader is
referred to [1, 4].

2.3 Details of the Benchmark Application

The benchmark application is written in C. While the com-
munication part of the algorithm is most important to this

2

perform 1D-FFT

along z-dimension

(a)

perform 1D-FFT

along y-dimension

(b)

Proc 0

Proc 1

Proc 2

Proc 3

Proc 4

Proc 5

Proc 6

Proc 7

Proc 8

Proc 9

Proc 10

Proc 11

Proc 12

Proc 13

Proc 14

Proc 15

All-to-All communication

within the ROWs of the

virtual processor grid

to get data over

y-dimension

locally

perform 1D-FFT

along x-dimension

(c)

All-to-All communication

within the COLUMNs of the

virtual processor grid

to get data over

x-dimension

locally

x
z

y

x

z

y

x

z
y

data array

A = 8 x 8 x 8

x

z

y

Pr
Pc

2D virtual Processor grid

Pr x Pc = 4 x 4

0

1

2

3

1
2

3

.

.

.

.

.

.

Figure 1: Computational steps of the 3D-FFT implementationusing 2D-decomposition

project, it is desirable to implement the full algorithm so as
to allow the significance of potential improvements to the
communication part of the algorithm to be evaluated against
the total time of the algorithm. The benchmark application
was run several times. The run measured on a hot L3 cache,
which yielded the best performance with regard to the total
amount of time taken for the entire three-dimensional for-
ward FFT computation, is presented in this paper.

The application uses version 2.1.5 of the open-source
“Fastest Fourier Transform in the West” (FFTW) library
[7] to perform the required one-dimensional FFTs. The Vi-
enna University of Technology offers a FFTW 2.1.5 ver-
sion, known as FFTW-GEL [8, 9], that is specifically opti-
mized for the double floating point unit of the Blue Gene
processors.

The MPI library provided by IBM as part of the system soft-
ware is used for the required communication. In the appli-
cation, a Cartesian communicator is used to create the vir-
tual processor grid described in Section 2.2. This is divided
into sub-communicators for the rows and the columns of the
grid. TheMPI_Alltoall routine is used for the commu-
nication kernel of our parallel three-dimensional FFT com-
putation .

The-mapfile option of the job launchermpirun on the
Blue Gene architecture is used to implement the map be-
tween the virtual processor grid of the application and the
physical processor mesh of the hardware.

3 Overview of the BG/P system

3.1 Processors and Operational Modes

The application described in Section 2 has been tested
on the Jülich’s Supercomputing Centre IBM Blue Gene/P,
named JUGENE. This section gives a short overview of sys-
tem features most relevant for this investigation. Furtherin-
formation can be found in [10, 11]. The machine uses four
IBM PowerPC 450 cores per node with a clock frequency
of 850 MHz. The system in Jülich offers a total of 16,384
compute nodes. 2 GB of main memory are installed per
node.

The BG/P architecture offers three main operational modes.
In SMP mode, a single MPI task is placed on the node. Two
MPI tasks are supported in DUAL mode and four in VN
mode.

3.2 Partitions and Communication

The BG/P architecture offers five different networks that are
dedicated and optimized for different tasks. For all-to-all
communication, only the torus network is relevant. The
internal logic of the torus network remains essentially un-
changed from that of the BG/L system [11, 12]. It arranges
nodes on a 3D torus, with communications taking place be-
tween nearest neighbors. The connecting links of this net-
work offer a bandwidth of 4 bits per cycle per direction,

3

Figure 2: Ping-Pong benchmark

which translates to 405 MB/s when using a clock frequency
of 850 · 106 Hz.

The maximum length of the torus packets is 256 bytes, with
the first 16 bytes being used for control information [11].
Additionally, 14 bytes of error control data are sent for each
packet that is sent into the torus network. This results in
a maximum utilization of the torus network of 89% and a
limit of about 360 MB/s for the bandwidth. For a simple
ping-pong benchmark using MPI, a sustained bandwidth of
358 MB/s, which is remarkably close to that limit, has been
measured and is presented in Figure 2.

Each user application has to request a dedicated cuboidal
partition of the machine. For small partitions the meshed
network can only be configured as an open mesh, while
for partitions of 512 nodes or multiples thereof, there is a
choice of an open mesh or a full torus, with the latter being
the default.

The BG/P system offers several ways to affect the runtime
environment of parallel jobs. The most important one in our
investigation of the MPI task placement is the mapfile. For
each MPI task, the file contains the coordinates with respect
to the physical 3D torus network of the machine on which
this task is to be placed.

The BG/P system features another fundamental modifica-
tion compared to the BG/L system. On BG/L the proces-
sor cores were responsible for injecting (or receiving) data
packets to (or from) the network [11]. On BG/P an addi-
tional piece of hardware, a direct memory access engine
(DMA), has been added that basically offloads most of this
responsibility from the processor cores. Later we will see
how this new piece of hardware affects performance.

4 Results of BG/P versus those of BG/L

Before investigating customized MPI task mappings on a
large partition like the 4096-node partition, we will discuss
the results on the smallest partition that offers torus connec-
tivity on Blue Gene - the 512-node partition. All our investi-
gations focus on the case of a full torus network. The results
we compare within this section show what sort of mappings
we should be aware of and even try to avoid. The choice
of customized mappings discussed in this paper is based on
earlier investigations and performance models presented in
[4, 13]. These investigations have been performed on BG/L
and the results show clearly that best performance can be
achieved by using cube-shaped mapping patterns for either
the rows or the columns of the two-dimensional virtual pro-
cessor grid. For that reason we continue using these cubes
as customized mappings on BG/P.

We start this section with drawing a comparison between
the execution times for the entire 3D-FFT computation on
BG/L and BG/P. Then we consider the times for the com-
munication part only. Finally, we will go into detail for the
communication part and individually compare the times for
the communications between rows of the 2D virtual pro-
cessor grid (first all-to-all type communication) and also
for the communications between columns (second all-to-all
type communication). To identify scaling bottlenecks of the
different mappings we will consider the bandwidth utiliza-
tion for each of them.

4.1 Analysis of Overall Performance

We compare the results for the default and customized MPI
task mapping on BG/P with those on BG/L. Both mapping
patterns - default and customized - using SMP mode on
BG/P (which is CO mode on BG/L) are depicted in Fig-
ure 3 (a). In the remaining of this paper we call the mapping
used for the customized mapping of the rows for case (a) an
“8-cube”. In addition to the mappings in SMP mode, we
investigate mappings in DUAL and VN mode which show
the same shape for the customized and default cases. Fig-
ure 3 (b) illustrates the default and customized mapping us-
ing DUAL mode on BG/P. We do not depict VN mode map-
ping on BG/P since it is similar to the other mappings except
that it uses four MPI tasks per node (instead of one MPI task
for SMP mode and two for DUAL mode).

For the purpose of clarity, the figure showing the SMP mode
mapping (3 (a)) depicts only the basic image of one commu-
nicator. The full map for all rows of the virtual processor
grid is constructed by using displacements of the basic im-

4

x y

z

default
mapping

customized
mapping

communication
between rows

communication
between columns

communication
between rows

communication
between columns

(a) SMP (b) DUAL

Figure 3: Customized vs default mapping on a 512-node partition with a division of processors in a Cartesian gridPr × Pc

on (a)8 × 64 in SMP mode (CO mode on BG/L) and (b)16 × 64 in DUAL mode

age across the entire physical 3D torus network. More pre-
cisely, in Figure 3 (a), the 8-cube is displaced 64 times to fill
the entire partition. The same applies to all other mapping
patterns. The figure showing the DUAL mode mapping (3
(b)) even depicts the basic image of two communicators
since here each node is divided between two communica-
tors.

Figure 4 presents the influence of the 8-cube mapping on
the total performance of the entire 3D-FFT algorithm on
BG/P. To obtain a more readable figure, the results have
been normalized to the performance of the default mapping.
More precisely, the performance result of the default map-
ping for the8 × 64 virtual processor grid in SMP mode
has been divided by the results of all other mappings. The
measured times for the overall performance can be found in
Appendix A. The same investigation has been carried out
on BG/L and those results can be found in [13]. On BG/L
(VN-mode) we obtained a substantial overall performance
improvement due to the 8-cube mapping of 16% for mid-
size problems and 10% for large problems. However, on
BG/P we see an improvement only for the problem size of
5123. This is due to the poor bandwidth utilization when
using non-contiguous mappings which is discussed in more
detail later in this paper.

The results in Figure 5 (a) show that in general, moving the
3D-FFT application from BG/L to BG/P obtains an overall
improvement of about 30% for the entire 3D-FFT compu-
tation. It is interesting to note that assignment of a larger

data sub-grid to each node, which is made possible by in-
creased memory capacity per node as mentioned in Section
3, causes the performance on BG/P to continue to speed up
linearly. If we compare the times for the communication
part only as presented in Figure 5 (b), then the two all-to-all
type communications are about twice as fast on BG/P com-
pared to BG/L, independent of the problem size. This result
was expected since the network on BG/P delivers more than
twice as many bytes per cycle than that on BG/L, while the
internal logic of the torus network remains essentially un-
changed [11].

4.2 Analysis of Individual Communica-
tion Times

Now we compare the improvement we gained from cus-
tomized mappings over default mappings on BG/L with the
results on BG/P. To identify which of the two mappings (ei-
ther for rows or columns) is the scaling bottleneck, the com-
munication times for each of the two all-to-all type com-
munications have been investigated individually. In Fig-
ure 6 we compare the results for the default versus cus-
tomized mapping for the communication between rows (a)
and columns (c) on BG/L in CO mode. Figure 6 (b) and (d)
shows the results of the same comparison on BG/P in SMP
mode.

On BG/L the 8-cube shows an improvement of 30% on the

5

Figure 4: Comparison of the relative performance of the entire 3D-FFT algorithm on a 512-node partition when deploying
8-cube mappings

Figure 5: (a) Execution time of entire 3D-FFT computation – (b) Communication Time (two all-to-all type communications)
on a 512-node partition with a division of processors in a Cartesian gridPr ×Pc of 8×64 in SMP mode (CO mode on BG/L)

average when compared to the default mapping that fills one
physical row of the torus network. Using cubes as the MPI
task mapping pattern on BG/P, we gain an improvement of
about 75% over the default mapping which is an amazing
performance boost.

Although the research reported in this paper investigated
bandwidth utilization, overall performance depends on both
bandwidth utilization and latency. In general, a mesh net-
work as arranged on Blue Gene can provide high communi-
cation performance between neighboring nodes as close as
possible to each other. However, a drawback is that perfor-
mance can suffer if the application topology does not map
well to the physical network topology [14]. The 8-cube en-
sures communication between nearest neighbors which is
even more important on BG/P since the data injection and

reception (and with it the bandwidth) have been more than
doubled. Considering the route, messages have to travel be-
tween nodes furthest away from each other, then this route
is even shorter for the 8-cube mapping than for the com-
munication pattern in line. As the problem size grows, this
low latency together with the high bandwidth becomes more
profitable.

The maps for the rows and the columns of the two-
dimensional virtual processor grid are not independent.
The entire 3D-FFT algorithm requires information to be
exchanged through the entire (partition of the) machine.
Therefore, by selecting a good mapping between the vir-
tual processor grid and the physical mesh, we can only im-
prove the times for communication between either rows or
columns but not both. While we have 8-cubes for the com-

6

Figure 6: Individual Communication time between rows and columns of the 2D virtual processor grid (BG/L vs BG/P)

munication between rows, the customized mapping pattern
for the communication between columns is non-contiguous
and fills the entire partition.

On BG/L we have seen a performance degradation of less
than 5% on the average for the non-contiguous mapping
over the default mapping (see Figure 6 (c)). However,
the gained improvement from the 8-cube mapping for the
rows more than outweighs this performance loss so that for
the overall result we were winning more than losing. We
do not see the same on BG/P. When comparing the cus-
tomized mapping with the default mapping for the com-
munication between columns, we see a disconcerting per-
formance degradation of more than 55% on average. This
result illustrates that with the present system software on
BG/P, the non-contiguous mappings badly damage perfor-
mance.

4.3 Analysis of Average Bandwidth

After discussing the impact of the customized mappings on
the overall and communication performance, we now ad-
dress the question of how well these mappings utilize the

bandwidth. This study helps to identify scaling bottlenecks
of the different mapping patterns used in this paper. For this
investigation, we calculate the average bandwidth utiliza-
tion per wireBl from the measured communication times
tr|c by solving equation (2) forBl and inserting the number
of communicatorsCr|c and the number of wires at the bi-
sectionLr|c from Table (1). A comparison to the hardware
limit of 358 MB/s forBl shows how well the bandwidth is
utilized by the different mapping patterns.

Bl =
DT

4 · tr|c · Cr|c · Lr|c
(2)

We denote the total amount of data involved in the 3D-FFT
by DT . The factor1

4
in equation (2) results from the fact

that each part of the mesh holds1
2

of the data. In all-to-all
communication each part has to keep half of its data and
send half of its data to the other part. Hence1

4
data have

to move from the first part of the mesh to the second and1
4

data have to move the other way.

Furthermore, the time for the communication between rows
of the two-dimensional virtual processor grid is referred to
astr while we usetc for the communication time between
columns.

7

Figure 7: Average bandwidth utilization per link of the bi-section for the communication between rows (a, b) and columns
(c, d) (BG/L vs BG/P)

Communicators Number of Links
rows cols rows cols

8 × 64 default 64 8 2 16
8 × 64 customized 64 8 4 16
16 × 64 default 64 16 2 8
16 × 64 customized 64 16 4 8
32 × 64 default 64 32 2 4
32 × 64 customized 64 32 4 4

Table 1: Number of communicatorsCr|c and links at the
bi-sectionLr|c for each of the different mappings

Figures 7 (a) and (b) present the bandwidth utilization for
the communication between rows of the two-dimensional
virtual processor grid on BG/L and BG/P, respectively. The
grid rows are mapped onto small and dense 8-cube patterns
(as shown in Figure 3). The results for the communica-
tion between columns of the virtual processor grid are pre-
sented in Figure 7 (c) for BG/L and (d) for BG/P. These

are mapped with a non-contiguous pattern, complementary
to the 8-cube, with small gaps equally distributed over the
entire 512-node partition. The two figures presenting the
bandwidth utilization on BG/L contain the results for CO
and VN mode. The results for BG/P are presented in the
same way, but here we have three modes, SMP, DUAL, and
VN mode as explained in Section 3.

We do not go into detail for the results of BG/L since those
have been extensively discussed in [13]. However, those
results provide a basis for understanding what impact the
modernization of BG/P has on the 3D-FFT application.

Figure 7 (a), (b), and (c) demonstrate clearly the efficiency
of the BG/L and BG/P systems with respect to the utiliza-
tion of the bandwidth through the links of the bi-section.
Given a large enough problem, for most of the investigated
maps, the average bandwidth utilization is amazingly close
to the hardware limit. The most important exceptions are 1)
the performance for the 8-cube in CO mode on BG/L and
2) the non-contiguous mapping results of BG/P presented in

8

Figure 7 (d). We will discuss these two exceptions in more
detail.

8-cube BG/L: For the 8-cube in CO mode on BG/L the
performance saturates at an average bandwidth per wire of
around 90 MB/s, which is substantially below the hardware
limit. By contrast, in VN mode the performance is close to
the hardware limit and the 8-cube delivers a sizable boost to
the performance. In contrast, BG/P achieves a performance
close to the hardware limit, independent of the three modes.

We can only speculate about the reasons for this behavior
on BG/L in CO mode. For the 8-cube the ratio of links
at the bi-section to processors is very large. The compute
power of a single core in CO mode might be insufficient to
simultaneously manage the overheads of the MPI call and
the insertion of the data into the network. Outsourcing some
of this work to the second core, which is supposed to act as
a communication co-processor, is known to be difficult due
to the lack of cache coherency between L1-caches on the
node. In VN mode, when each core manipulates its own
private data per node, the problems associated with the lack
of cache coherency go away. The same hardware as in the
case of the CO mode is now capable of saturating the links
of the bi-section. On BG/P cache coherency is no longer
managed by software but is handled in hardware (symmet-
rical multiprocessing) [11, 15]. Furthermore, the compute
power on a single core has increased compared to BG/L,
so that in fact, we do not experience this behavior for the
8-cube in SMP mode on BG/P.

non-contiguous mapping on BG/P: The second exception
that does not show a bandwidth utilization close to the hard-
ware limit is the non-contiguousmapping on BG/P. We have
seen from the results presented in Figure 6 (d) that non-
contiguous mappings are more damaging on BG/P than was
the case on BG/L. Investigations of the bandwidth utiliza-
tion are expected to clarify this behavior.

Increasing the problem size causes the bandwidth utiliza-
tion to increase and to reach a maximum at a certain point.
After this, a heavy drop in bandwidth utilization and perfor-
mance occurs. We would like to point out once more that
the non-contiguous mapping pattern for one communicator
as shown in Figure 3 is displaced seven times to fill the en-
tire 512-node partition. So in total, there are eight different
communicators communicating concurrently and they are
intermixed.

The reason for this might be that the different communica-
tors - mapped in a non-contiguous fashion - disturb each
other. To investigate whether the performance drop is due
to mutual disturbance of the communicators, we ran a 2D-
FFT computation on the 512-node partition with only one

communicator. This communicator is mapped in a non-
contiguous way as shown in Figure 3 (a). More precisely,
we used only 64 nodes of the entire 512-node partition, so
that this time no other communicators disturb communica-
tion. Again, this investigation has been carried out on BG/P
as well as BG/L. Figure 8 depicts the average bandwidth
utilization per link on (a) BG/L and (b) BG/P.

On BG/L we see a poor performance when using only one
communicator. On the other hand, using eight concurrent
communicators performs similar to the default mappings
and comes reasonably close to the hardware limit. The re-
sults for the customized mappings on BG/P are similarly
poor, independent of the use of one communicator or eight
concurrent communicators. From this it can be concluded
that the poor performance has a geometry reason rather than
mutual disturbance issues. As an example, the BG/P per-
formance for mid-size problems such as1283 and2563 is
inferior to what we see on BG/L. BG/P with the present
system software - as the latest release of the parallel Blue
Gene supercomputer line - does not manage to achieve the
same performance as its forerunner BG/L.

As mentioned in section 3.2, a DMA engine has been added
to offload data packets injection (or reception) from the pro-
cessor cores. It seems that this new piece of hardware is
responsible for the performance difference we experience
between BG/L and BG/P results. It is very likely that the
system software - in particular the all-to-all call inside the
MPI library - is not fully tuned yet to the new hardware. We
did not see this sort of problem on BG/L.

The most important lesson learned from this section is
that mapping MPI tasks onto the physical mesh in a non-
contiguous way is extremely damaging for the performance.
With this result in mind, we know that on large partitions,
such as a16 × 16 × 16 partition, even the default mapping
is no longer contiguous. In the next section we will dis-
cuss how a carefully chosen customized mapping pattern
can yield significant improvements.

5 Experimental Investigations on the
16

3-node partition on BG/P

In this section, we investigate a4 × 4 × 4 cube mapping
pattern for a16 × 16 × 16 partition on BG/P which is in
fact the small cube mapping on this large partition propor-
tional to the2×2×2 cube on the 512-node partition. In the
remainder of this paper, we call the customized4 × 4 × 4
cube mapping for the communication between rows a “64-
cube”. Figure 9 (a) depicts the 64-cube mapping and its
corresponding mapping pattern for the communication be-

9

Figure 8: Average bandwidth utilization per link of the bi-section for the communication of a 2D-FFT computation on (a)
BG/L and (b) BG/P in SMP-mode

tween columns using SMP mode on BG/P. The default map-
ping is presented in part (b) of this Figure. In addition to
the mappings in SMP mode, we investigate mappings in
DUAL and VN mode which show the same shape for the
customized and default cases. We do not depict DUAL and
VN mode mappings since they are similar to the other map-
pings except that they use two MPI tasks per node in DUAL
mode and four MPI tasks per node in VN mode (instead of
one MPI task in SMP mode).

Similar to Figure 3, these figures here depict only the basic
image of one communicator. The full map for all rows and
columns of the virtual processor grid is constructed by using
displacements of the basic image across the entire physical
3D torus network. More precisely, in Figure 9 (a) the 64-
cube is displaced 64 times to fill the entire partition. The
same applies to all other mapping patterns.

As mentioned earlier, when a certain partition size is
reached, the default case is no longer able to map MPI tasks
in a contiguous way onto the network. We will consider
how much we can profit by using customized mappings in-
stead. First, we will have a look at the results for the overall
performance of the entire 3D-FFT computation using cus-
tomized mapping instead of the default choice. Secondly,
we look deeper into detail at the communication part to
identify from where performance variances accrue.

5.1 Analysis of Overall Performance

Figure 10 presents the influence of the 64-cube mapping on
the total performance of the entire 3D-FFT algorithm. To
obtain a more readable figure, the results have been nor-
malized to the performance of the default mapping. More
precisely, the performance result of the default mapping for

the64 × 64 virtual processor grid in SMP mode has been
divided by the results of all other mappings. The mea-
sured times for the overall performance can be found in Ap-
pendix A.

For small problems such as643 and 1283 about 93% of
the total execution time is spent in communication. For
all the other investigated problem sizes this percentage is
about 35% on a sustained basis. For those small problems
and hence small messages, the VN mode does not show any
benefits. The SMP mode is more efficient for small prob-
lems since the shorter time spent in communications cancels
out the advantage of using more processors for the compu-
tations. Aside from that, in some cases, for DUAL and VN
mode the problem size is too small to divide the problem
between the number of processors. For large problem sizes,
DUAL mode and, even more, VN mode become attractive,
independent of whether the customized or the default map-
ping is used.

We observe even for SMP mode an overall performance im-
provement for the dense 64-cube over the non-contiguous
default mapping of about 10% for mid-size problems such
as5123 and10243. A much superior improvement can be
achieved in DUAL and VN mode. Here for mid-size prob-
lems the entire 3D-FFT application runs about 70% faster in
DUAL mode, while in VN mode the computation is more
than twice as fast. For the largest problem investigated in
this paper, with a problem size of40963, the performance
for default and customized mappings is basically the same.

10

x y

z

communication
between rows

(a) Customized mapping: (b) Default mapping:

communication
between columns

communication
between rows

communication
between columns

Figure 9: (a) Customized vs (b) default mapping on a 4096-node partition in SMP mode with a division of processors in a
Cartesian gridPr × Pc of 64 × 64

Figure 10: Comparison of the relative performance of the entire 3D-FFT algorithm on a 4096-node partition when deploying
64-cube mappings

Figure 11: Individual Communication time between rows (a) and columns (b) with a division of processors in a Cartesian
grid Pr × Pc of 256 × 64 (in VN mode)

11

5.2 Analysis of Individual Communica-
tion Times

The default mapping for the communication between rows
is non-contiguous. However, it is interesting to note that the
corresponding mapping pattern for the customized 64-cube
is also non-contiguous. By looking at the performance for
each of the two all-to-all type communications individually,
we can determine from where the improvement for the en-
tire 3D-FFT computation as discussed above accrues.

As shown in Section 5.1, the best performance can be
achieved by using a customized mapping in VN mode on
BG/P. On this account, we consider the times for communi-
cation between rows and columns individually for the VN
mode example. More precisely, in VN mode we have a di-
vision of processors in a Cartesian gridPr×Pc of 256×64.

64-cube for ROWs: In Figure 11 (a) we compare the com-
munication times between rows of the default mapping with
those of the customized mapping. We learned in Section 4.2
that the 8-cube offers an amazing performance boost of
about 75% over the default mapping in a line. We see the
same behavior for the 64-cube on the large partition. Here
we are even four times faster on average which is a terrific
enhancement. This extreme improvement is because of en-
suring communication between processors as close as pos-
sible to each other compared to the non-contiguous map-
ping we get for the default case.

However, the excellent performance we experience for mid-
size problems decreases by further increasing the problem
size. It seems likely that the bandwidth utilization for the
communication within the 64-cube is affected by hot spots
in the middle of the bi-section. Assuming message rout-
ing along the shortest path, there are more sender-receiver
pairs for which message routing through the center of the
bi-section is among the shortest paths than there are pairs
for the links at the corners of the bi-section. Nevertheless,
the cube-shaped mapping is still more than twice as fast on
average for large problem sizes than the default case.

64-cube complementary mapping for COLUMNs: In
Figure 11 (b) we compare the communication times be-
tween columns for the default mapping with those for the
customized mapping. The customized maps, complemen-
tary to the 64-cube, are non-contiguous with gaps equally
distributed over the entire 4096-node partition, enabling
torus connectivity in all three dimensions. The default case
maps the MPI task onto four lines next to each other, which
means that there is torus connectivity in only one direction.
Both mappings are depicted in Figure 9 for SMP mode.
However, since we investigate VN mode, it is important to

note that the one basic image for the communication be-
tween columns is now shared by four communicators.

For the non-contiguous customized mapping we see a per-
formance degradation of less than 30% on average. This
was expected from the lesson learned on the 512-node par-
tition. However, we can draw conclusions that the 64-cube
for the communication between rows is good enough to
cancel out the performance degradation we get from the
non-contiguous mapping for the communication between
columns. For large problem sizes such as40963, the perfor-
mance for the non-contigous mappings spirals downward.
This is the reason that for such a large problem the overall
performance for default and customized mappings is basi-
cally the same as mentioned above.

6 Conclusions and Future Work

This paper investigates the potential performance benefit
from MPI task placement for the volumetric Fast Fourier
Transformation on a modern massively parallel machine
with a meshed or toroidal communication network. Earlier
investigations performed on BG/L and performance mod-
els have clearly shown that the best performance can be
achieved by using cube-shaped mapping patterns for either
rows or columns of the two-dimensional virtual processor
grid. Our experimental results show that performance ben-
efits of more than 30% on average for the entire 3D-FFT
algorithm are possible when using cube-shaped mappings
on a 4096-node partition in DUAL or VN mode on BG/P.
For mid-size problems such as2563 or 5123 the entire 3D-
FFT application runs more than twice as fast. As an ex-
ample, the observed performance increase of the commu-
nication part due to customized MPI task placements is as
large as 178% for a5123 problem running in VN mode on
BG/P. The reason for this performance boost is that on such
a large partition, there is a high potential that the default
mapping is also non-contiguous. Non-contiguous mapping
patterns badly damage performance on BG/P compared to
BG/L. There could be several factors for this, however the
newly added DMA engine on BG/P or the system software
are probably the major contributing factors. Particularly,
MPI Alltoall operations do not appear to be well-tuned
for the new system configurations. Future work will entail
more detailed investigations of the DMA engine as well as
the algorithm used for data routing.

12

Acknowledgements

The authors would like to thank the Jülich Supercomput-
ing Centre for access to Blue Gene/P and sustained sup-
port. Furthermore, Shirley Moore (UTK) and Sadaf Alam
(ORNL) are greatly acknowledged for reading and com-
menting on draft versions of this paper.

A Performance results for 3D-FFT computa-
tion

The following table gives the total times used by our bench-
mark for a forward transformation on a 512-node partition
on the Jülich Supercomputing Centre Blue Gene/P.

Problem size: 643 1283 2563 5123

SMP8×64 cust.: 1.897 ms 2.108 ms 16.162 ms 144.370 ms
SMP8×64 def.: 0.283 ms 1.664 ms 16.581 ms 136.015 ms
DUAL 16×64 cust.: 1.244 ms 1.713 ms 9.274 ms 76.504 ms
DUAL 16×64 def.: 0.237 ms 1.205 ms 9.419 ms 81.794 ms
VN 32×64 cust.: 0.740 ms 4.243 ms 6.532 ms 49.86 ms
VN 32×64 def.: 0.208 ms 1.032 ms 6.496 ms 55.56 ms

Problem size: 10243 20483

SMP8×64 cust.: 1.44 s 12.08 s
SMP8×64 def.: 1.37 s 11.45 s
DUAL 16×64 cust.: 942.60 ms 7.54 s
DUAL 16×64 def.: 877.88 ms 6.95 s
VN 32×64 cust.: 785.22 ms 6.27 s
VN 32×64 def.: 738.55 ms 5.74 s

The next table gives the total times used by our benchmark
for a forward transformation on a 4096-node partition on
the Jülich Supercomputing Centre Blue Gene/P.

Problem size: 643 1283 2563 5123

SMP64×64 cust.: 0.526 ms 2.096 ms 3.667 ms 17.69 ms
SMP64×64 def.: 0.517 ms 2.034 ms 3.692 ms 19.79 ms
DUAL 128×64 cust.: — 1.464 ms 3.557 ms 11.97 ms
DUAL 128×64 def.: — 1.612 ms 9.159 ms 15.15 ms
VN 256×64 cust.: — — 5.368 ms 10.80 ms
VN 256×64 def.: — — 6.680 ms 24.31 ms

Problem size: 10243 20483 40963

SMP64×64 cust.: 174.29 ms 1.82 s 15.56 s
SMP64×64 def.: 188.51 ms 1.88 s 15.66 s
DUAL 128×64 cust.: 102.28 ms 1.26 s 10.79 s
DUAL 128×64 def.: 115.01 ms 1.32 s 10.93 s
VN 256×64 cust.: 72.28 ms 1.10 s 9.52 s
VN 256×64 def.: 88.08 ms 0.99 s 9.50 s

References

[1] M. Eleftheriou, et al., “A Volumetric FFT for Blue-
Gene/L”, in G. Goos, J. Hartmanis, J. van Leeuwen,
editors, volume 2913 of Lecture Notes in Computer
Science, page 194, Springer-Verlag, 2003.

[2] M. Eleftheriou, et al., “Performance Measurements
of the 3D FFT on the Blue Gene/L Supercomputer”,
J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005,
LNCS 3648, page 795, 2005.

[3] S. Alam, et al., “Performance Characterization of
Molecular Dynamics Techniques for Biomolecular
Simulations”, PPOPP’06, New York City, New York,
USA, 2006.

[4] H. Jagode, “Fourier Transforms for the BlueGene/L
Communication Network”, MSc thesis, The Univer-
sity of Edinburgh, 2006,
http://www.epcc.ed.ac.uk/msc/dissertations/2005-
2006/

[5] http://www.top500.org

[6] MPI Standard,
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.html.

[7] FFTW Homepage, http://www.fftw.org

[8] J. Lorenz, S. Kral, F. Franchetti, C.W. Ueberhuber.,
“Vectorization techniques for the Blue Gene/L dou-
ble FPU”, IBM Journal of Research and Development,
Vol. 49, page 437, 2005

[9] S. Kral, FFTW-GEL Homepage,
http://www.complang.tuwien.ac.at/skral/fftwgel.html

[10] “Introduction to JUGENE at Forschungszentrum
Jülich”, available:
http://www.fz-juelich.de/jsc/jugene/documentation/

[11] IBM BG team, “Overview of the IBM Blue Gene/P
project”, IBM Journal of Research and Development,
Vol. 52, page 199, 2008.

[12] N. R. Adiga, et al., “Blue Gene/L torus interconnec-
tion network”, IBM Journal of Research and Develop-
ment, Volume 49, page 265, 2005.

[13] H. Jagode, et al., “Task placement of parallel multi-
dimensional FFTs on a mesh communication net-
work”, University of Tennessee Knoxville, Technical
Report No. ut-cs-08-613, 2008,
http://www.cs.utk.edu/ library/2008.html

[14] D. Kerbyson, et al., “Performance Modeling of the
Blue Gene Architecture”, IEEE International Sympo-
sium on Modern Computing (JVA’06), 2006.

[15] C. P. Sosa, “IBM System Blue Gene Solution: Blue
Gene/P Application Development”, IBM Redbook,
2007,
http://www.redbooks.ibm.com/abstracts/sg247287.html

13

