
The Problem with the Linpack Benchmark Matrix Generator

June 28, 2008

Jack Dongarra
Department of Electrical Engineering and Computer Science, University of Tennessee
Oak Ridge National Laboatory
University of Manchester
Julien Langou
Department of Mathematical and Statistical Sciences, University of Colorado Denver

Abstract:
We characterize the matrix sizes for which the Linpack Benchmark matrix generator
constructs a matrix with identical columns.

1 Introduction

Since 1993, twice a year, a list of the sites operating the 500 most powerful computer systems is released by
the TOP500 project [3]. A single number is used to rank computer systems based on the results obtained on
the High Performance Linpack (HPL) Benchmark.

The High Performance Computing Linpack Benchmark consists of solving a dense linear system in
double precision, 64–bit floating point arithmetic, using Gaussian elimination with partial pivoting. The
ground rules for running the benchmark state that the supplied matrix generator, which uses a pseudo–
random number generator, must be used in running the HPL benchmark. The supplied matrix generator can
be found in HPL [2] which is an implementation of the High Performance Computing Linpack Benchmark.
In the HPL benchmark program, the correctness of the computed solution is established and the performance
is reported in floating point operations per sec (Flops/sec). It is this number that is used to rank computer
systems across the world in the TOP500 list.

In May 2007, a large high performance computer manufacturer ran a twenty-hour-long High Perfor-
mance Linpack benchmark. The run fails with the output result:

|| A x - b ||_oo / (eps * ||A||_1 * N) = 9.22e+94 FAILED

It turned out that the manufacturer chose n to be n = 2,220,032 = 213 · 217. This was a bad choice. In
this case, the Linpack Benchmark matrix generator produced a matrix A with identical columns. Therefore
the matrix used in the test was singular and one of the checks of correctness determined that there was a
problem with the solution and the results should be considered questionable. The reason for the suspicious
results was neither a hardware failure nor a software failure but a predictable numerical issue.

In this manuscript, we explain why the Linpack Benchmark matrix generator can generate matrices with
at least two identical columns for particular matrix sizes n. We name this set of integers S . We characterize
and give a simple algorithm to determine if a given n is in S .

Definition 1 We define S as the set of all integers such that the Linpack Benchmark matrix generator
produces a matrix with at least two identical columns.

In Table 1, we give the 40 smallest integers in S .
Some remarks are in order.

1

65,536 98,304 131,072 147,456 163,840
180,224 196,608 212,992 229,376 245,760
262,144 270,336 278,528 286,720 294,912
303,104 311,296 319,488 327,680 335,872
344,064 352,256 360,448 368,640 376,832
385,024 393,216 401,408 409,600 417,792
425,984 434,176 442,368 450,560 458,752
466,944 475,136 483,328 491,520 499,712

Table 1: The 40 matrix sizes smaller than 500,000 for which the Linpack Benchmark matrix generator will
produce a matrix with identical columns.

1. If n is in S , then the matrix generated by the Linpack Benchmark generator has at least two identical
columns. If n is not in S , the matrix has no identical columns; however we do not claim that the matrix
is well-conditioned, we do not even even claim that the matrix is nonsingular. Therefore not being in
S is not a sufficient condition for being safe of numerical failures.

2. HPL checks whether a zero-pivot occurs during the factorization and reports it to the user. However
due to rounding errors, even if the initial matrix has two identical columns, exact-zero pivots hardly
ever occur in practice. Consequently, it is difficult for benchmarkers to distinguish between numerical
failures and hardware/software failures.

3. The matrix size for the #1 entry in the TOP500 list of June 2008 was 2,236,927 which is between 221

and 222. The smallest matrix size in the TOP 500 list of June 2008 was 273,919 which is between 218

and 219.

4. To verify the result, the input matrix and right-hand side are regenerated. The following scaled resid-
uals are computed (ε is the relative machine precision):

rn =
‖Ax−b‖∞

nε‖A‖1
(1)

r1 =
‖Ax−b‖∞

ε‖A‖1‖x‖1
(2)

r∞ =
‖Ax−b‖∞

ε‖A‖∞‖x‖∞

(3)

A solution is considered numerically correct when all of these quantities are less than a threshold
value of 16.

The last quantity (r∞) corresponds to a backward error in the infinite norm. The last two quantities (
r∞, r1) are independent of the condition number of the coefficient matrix A and should always be less
than a threshold value of the order of 1 (no matter how ill-conditioned A is). The first quantity (rn) is
proportional to the inverse of the condition number of the coefficient matrix A so this quantity can be
arbitrarily large if the coefficient matrix is not well-conditioned.

2

2 How the Linpack Benchmark matrix generator constructs a pseudo–
random matrix

The pseudo–random coefficient matrix A from the Linpack Benchmark matrix generator is generated by the
HPL subroutine HPL pdmatgen.c. In this subroutine, the pseudo–random generator uses a linear congruen-
tial algorithm [1, §3.2]

X(n+1) = (a∗X(n)+ c) mod m,

with m = 231. From [1, §3.2], we know that the maximum period of the sequence is at most m, and in our
case, with HPL’s parameters a and c, we can check that we indeed obtain the maximal period 231. This
provides us with a periodic sequence s such that s(i + 231) = s(i), for any i ∈ N. HPL fills its matrices
with pseudo–random numbers by columns using this sequence s starting with A(1,1) = s(1), A(2,1) = s(2),
A(3,1) = s(3), and so on.

Definition 2 We define a Linpack Benchmark matrix generator, a matrix generator such that

A(i, j) = s((j−1)∗n+ i), 1≤ i, j ≤ n. (4)

and s is such that

s(i+231) = s(i), for any i ∈ N and s(i) 6= s(j), for any 1≤ i, j ≤ 231. (5)

Some remarks:

1. The assumption s(i) 6= s(j), for any 1≤ i, j≤ 231 is true in the case of the Linpack Benchmark matrix
generator. It can be relaxed to admit more sequences s for which some elements can be identical.
However this assumption makes the sufficiency proof of the theorem in §4 easier and clearer.

2. It is important to note that the matrix generated by the Linpack Benchmark matrix generator solely
depends on the dimension n. The Linpack Benchmark matrix generator requires benchmarkers to use
the same matrix for any block size, for any number of processors or for any grid size.

3. Moreover, since the Linpack Benchmark matrix generator possesses its own implementation of the
pseudo–random generator, the computed pseudo–random numbers in the sequence s depend weakly
on the computer systems. Consequently the pivot pattern of the Gaussian elimination is preserved
from one computer system to the other, from one year to the other.

4. Finally, the linear congruential algorithm for the sequence s enables the matrix generator for a scalable
implementation of the construction of the matrix: each process can generate their local part of the
global matrix without communicating or generating the global matrix. This property is not usual
among pseudo–random generators.

3 Understanding S

Consider a large dense matrix of order 3 ·106 generated by the process described in Definition 2. The number
of entries in this matrix is 9 · 1012 which is above the pseudo–random generator period (231 ≈ 2.14 · 109).
However, despite this fact, it is fairly likely for the constructed matrix to have distinct columns and even to
be well–conditioned.

3

On the other hand, we can easily generate a “small” matrix with identical columns. Take n=216, we have
for any i = 1, . . . ,n:

A(i,215 +1) = s(i+n∗ (j−1)) = s(i+215 ∗n) = s(i+215 ∗216) = s(i+231) = s(i) = A(i,1),

therefore the column 1 and the column 215 +1 are exactly the same. The column 2 and the column 215 +2
are exactly the same, etc. We can actually prove that 216 = 65,536 is the smallest matrix order for which a
multiple of a column can happen.

Another example of n ∈ S is n = 231 = 2,147,483,648 for which all columns of the generated matrix
are the same. Our goal in this section is to build more n in S to have a better knowledge of this set.

If n is a multiple of 20 = 1 and n > 231 then n∈ S . (Note that the statement “any n is multiple of 20 = 1
and n > 231” means n > 231.) The reasoning is as follows. There are 231 indexes from 1 to 231. Since there
are at least 231 + 1 elements in the first row of A (assumption n > 231), then, necessarily, at least one index
(say k) is repeated twice in the first row of A. This is the pigeonhole principle. Therefore we have proved
the existence of two columns i and j such that they both start with the k–th term of the sequence. If two
columns start with the index of the sequence, they are the same (since we take the element of the column
sequentially in the sequence). The three smallest numbers of this type are

n = 20 ∗ (231 +1) = 2,147,483,649 ∈ S
n = 20 ∗ (231 +2) = 2,147,483,650 ∈ S
n = 20 ∗ (231 +3) = 2,147,483,651 ∈ S

If n is a multiple of 21 = 2 and n > 230 then n∈ S . If n is even (n = 2q), then the first row of A accesses
the numbers of the sequence s using only odd indexes. There are 230 odd indexes between 1 and 231. Since
there are at least 230 + 1 elements in the first row of A (assumption n > 230), then, necessarily, at least one
index is repeated twice in the first row of A. This is the pigeonhole principle. The three smallest numbers of
this type are:

n = 21 ∗ (229 +1) = 1,073,741,826 ∈ S
n = 21 ∗ (229 +2) = 1,073,741,828 ∈ S

n = 21 ∗ (229 +3) = 1,073,741,830 ∈ S .

If n is a multiple of 22 = 4 and n > 229 then n ∈ S . If n is a multiple of 4 (n = 4q), then the first row
of A accesses the numbers of the sequence s using only (4q + 1)–indexes. There are 229 (4q + 1)–indexes
between 1 and 231. Since there are at least 229 +1 elements in the first row of A (assumption n > 229), then,
necessarily, at least one index is repeated twice in the first row of A. This is the pigeonhole principle. The
first three numbers of this type are:

n = 22 ∗ (227 +1) = 536,870,916 ∈ S
n = 22 ∗ (227 +2) = 536,870,920 ∈ S

n = 22 ∗ (227 +3) = 536,870,924 ∈ S .

...

If n is a multiple of 213 and n > 218 then n ∈ S . This gives for example:

n12 = 213 ∗ (25 +1) = 213 ∗33 = 270,336 ∈ S
n13 = 213 ∗ (25 +2) = 213 ∗34 = 278,528 ∈ S
n15 = 213 ∗ (25 +3) = 213 ∗35 = 294,912 ∈ S .

4

These three numbers correspond to entries (3,2), (3,3) and (3,5) in Table 1.

If n is a multiple of 214 and n > 217 then n ∈ S . This gives for example:

n4 = 214 ∗ (23 +1) = 214 ∗9 = 147,456 ∈ S
n5 = 214 ∗ (23 +2) = 214 ∗10 = 163,840 ∈ S
n6 = 214 ∗ (23 +3) = 214 ∗11 = 180,224 ∈ S .

These three numbers correspond to entries (1,4), (1,5) and (2,1) in Table 1.

If n is a multiple of 215 and n > 216 then n ∈ S . This gives for example:

n2 = 215 ∗ (21 +1) = 215 ∗3 = 98,304 ∈ S
n3 = 215 ∗ (21 +2) = 215 ∗4 = 131,072 ∈ S
n5 = 215 ∗ (21 +3) = 215 ∗5 = 163,840 ∈ S .

These three numbers correspond to entries (1,2), (1,3) and (1,5) in Table 1.

If n is a multiple of 216 and n > 215 then n ∈ S .

n1 = 216 ∗ (20 +1) = 216 ∗1 = 65,536 ∈ S
n3 = 216 ∗ (20 +2) = 216 ∗2 = 131,072 ∈ S
n7 = 216 ∗ (20 +3) = 216 ∗3 = 196,608 ∈ S .

These three numbers correspond to entries (1,1), (1,3) and (2,2) in Table 1.
From this section, we understand that any n multiple of 2k and larger than 231−k is in S . In the next para-

graph, we prove that this is indeed the only integers in S which provides us with a complete characterization
of S .

4 Characterization of S

Theorem: n ∈ S if and only if the matrix of size n generated by the Linpack Benchmark matrix generator
has at least two identical columns if and only if

n > 231−k where n = 2k ·q with q odd.

Proof:

⇐ Let us assume that n is a multiple of 2k, that is to say

n = 2k ·q, 1≤ q

and let us assume that
n > 231−k.

In this case, the first row of A accesses the numbers of the sequence s using only (2k ·q+1)–indexes.
There are 231−k (2k · q + 1)–indexes between 1 and 231. Since there are at least 231−k + 1 elements
in the first row of A (assumption n > 231−k), then, necessarily, at least one index is repeated twice in
the first row of A. This is the pigeonhole principle. If two columns start with the same index in the
sequence, they are the same (since we take the element of the column sequentially in the sequence).

5

⇒ Assume that there are two identical columns i and j in the matrix generated by the Linpack Benchmark
matrix generator (i 6= j). Without loss of generality, assume i > j. The fact that column i is the same
as column j means that these columns have identical entries, in particular, they share the same first
entry. We have

A(1, i) = A(1, j).

From this, Equation (4) implies

s(1+(i−1)n) = s(1+(j−1)n) .

Equation (5) states that all elements in a period of length 231 are different, therefore, since i 6= j, we
necessarily have

1+(i−1)n = 1+(j−1)n+231 · p, 1≤ p.

This implies
(i− j)n = 231 · p, 1≤ p.

We now use the fact that n = 2k ·q with q odd and get

(i− j) ·2k ·q = 231 · p, 1≤ p, q is odd.

Since q is odd, this last equality implies that 231 is a divisor of (i− j) ·2k. This writes

(i− j) ·2k = 231 · r, 1≤ r.

From which, we deduce that
(i− j) ·2k ≥ 231.

A upper bound for i is n, a lower bound for j is 1; therefore,

(n−1) ·2k ≥ 231.

We conclude that, if a matrix of size n generated by the Linpack Benchmark matrix generator has at
least two identical columns, this implies

n > 231−k where n = 2k ·q with q odd.

�

5 Anomalies in Matrix Sizes Reported in the June 2008 Top500 List

Readers of this manuscript may be surprised to find three entries in the TOP 500 data from June 2008 with
matrix sizes that lead to matrices with identical columns if the HPL test matrix generator is used. These
three entries are given in Table 2. For example, the run for the Earth Simulator from 2002 was done with
n = 1,075,200 which corresponds to 211 ·525, therefore, the column j = 220 = 1,048,576 would have been
a repeat of the first under our assumptions. The benchmark run on the Earth Similator in 2002 was done
with an older version of the test harness. This test harness predates the HPL test harness and uses another
matrix generator than the one provided by HPL. Today we require the HPL test harness to be used in the
benchmark run.

6

Rank Site Manufacturer Year NMax
16 Information Technology Center, The University of Tokyo Hitachi 2008 1,433,600
49 The Earth Simulator Center NEC 2002 1,075,200
88 Cardiff University - ARCCA Bull SA 2008 634,880

Table 2: The three entries in the TOP500 June 2008 list with suspicious n.

6 How to fix the problem

Between 1 and 1 · 106, there are 49 matrix sizes in S (see Table 1). Between 1 and 3 · 106, there are 1,546
matrix sizes in S (see Appendix B). Therefore, for this order of matrix size, there is a good chance to choose
a matrix size that is not in S . Unfortunately benchmarkers tend to pick multiples of high power of 2 for their
matrix sizes which increases the likelihood of picking an n ∈ S .

1. The obvious recommendation is to choose any n as long as it is odd. In the odd case if n < 231≈ 4 ·109,
then n /∈ S .

2. A check can be added at the beginning of the execution of the Linpack Benchmark matrix generator.
The C-code looks as follows:

 long long int m,n;
 int i,k,t,s;
 s = 31;
 m=n; k=0; while (m%2==0) {k++; m=m/2;}
 m=1; t=0; while (m<=n) {t++; m=m*2;}
 if (t+k>s) i = 1; else i = 0;

n is the matrix size, 2s is period of the pseudo–random number generator (s = 31 in our case) and i
is the output flag. If i = 1, then n ∈ S . If i = 0, then n /∈ S . (The check could also consist of looking
over the data given in Appendix B).

3. If n ∈ S , one can simply pad the matrix with an extra line. This can be easily done in the HPL code
HPL pdmatgen.c by changing the variable jump3 from M to M+1 whenever n ∈ S .

4. Another possibility is to increase the period of the pseudo–random generator used. For example, if
the pseudo–random generator had a period of 264 and if n≤ 232, then, assuming (i 6= j⇒ s(i) 6= s(j)),
entries would never repeat.

We are planning to correct the problem.

Acknowledgements

The authors would like to thank Piotr Luszczek and Antoine Petitet for their valuable comments on HPL,
and Asim Yarkhan for one pertinent observation.

References

[1] D. E. Knuth. The Art of Computer Programming, volume 2. Addison–Wesley, third edition, 1997.

[2] http://www.netlib.org/benchmark/hpl/.

7

[3] http://www.top500.org/.

8

A The 1,564 matrix sizes of n from 1 to 3,000,000 for which the Linpack
Benchmark matrix generator will construct a matrix with identical columns

65,536 98,304 131,072 147,456 163,840 180,224 196,608 212,992 229,376 245,760
262,144 270,336 278,528 286,720 294,912 303,104 311,296 319,488 327,680 335,872
344,064 352,256 360,448 368,640 376,832 385,024 393,216 401,408 409,600 417,792
425,984 434,176 442,368 450,560 458,752 466,944 475,136 483,328 491,520 499,712
507,904 516,096 524,288 528,384 532,480 536,576 540,672 544,768 548,864 552,960
557,056 561,152 565,248 569,344 573,440 577,536 581,632 585,728 589,824 593,920
598,016 602,112 606,208 610,304 614,400 618,496 622,592 626,688 630,784 634,880
638,976 643,072 647,168 651,264 655,360 659,456 663,552 667,648 671,744 675,840
679,936 684,032 688,128 692,224 696,320 700,416 704,512 708,608 712,704 716,800
720,896 724,992 729,088 733,184 737,280 741,376 745,472 749,568 753,664 757,760
761,856 765,952 770,048 774,144 778,240 782,336 786,432 790,528 794,624 798,720
802,816 806,912 811,008 815,104 819,200 823,296 827,392 831,488 835,584 839,680
843,776 847,872 851,968 856,064 860,160 864,256 868,352 872,448 876,544 880,640
884,736 888,832 892,928 897,024 901,120 905,216 909,312 913,408 917,504 921,600
925,696 929,792 933,888 937,984 942,080 946,176 950,272 954,368 958,464 962,560
966,656 970,752 974,848 978,944 983,040 987,136 991,232 995,328 999,424 1,003,520

1,007,616 1,011,712 1,015,808 1,019,904 1,024,000 1,028,096 1,032,192 1,036,288 1,040,384 1,044,480
1,048,576 1,050,624 1,052,672 1,054,720 1,056,768 1,058,816 1,060,864 1,062,912 1,064,960 1,067,008
1,069,056 1,071,104 1,073,152 1,075,200 1,077,248 1,079,296 1,081,344 1,083,392 1,085,440 1,087,488
1,089,536 1,091,584 1,093,632 1,095,680 1,097,728 1,099,776 1,101,824 1,103,872 1,105,920 1,107,968
1,110,016 1,112,064 1,114,112 1,116,160 1,118,208 1,120,256 1,122,304 1,124,352 1,126,400 1,128,448
1,130,496 1,132,544 1,134,592 1,136,640 1,138,688 1,140,736 1,142,784 1,144,832 1,146,880 1,148,928
1,150,976 1,153,024 1,155,072 1,157,120 1,159,168 1,161,216 1,163,264 1,165,312 1,167,360 1,169,408
1,171,456 1,173,504 1,175,552 1,177,600 1,179,648 1,181,696 1,183,744 1,185,792 1,187,840 1,189,888
1,191,936 1,193,984 1,196,032 1,198,080 1,200,128 1,202,176 1,204,224 1,206,272 1,208,320 1,210,368
1,212,416 1,214,464 1,216,512 1,218,560 1,220,608 1,222,656 1,224,704 1,226,752 1,228,800 1,230,848
1,232,896 1,234,944 1,236,992 1,239,040 1,241,088 1,243,136 1,245,184 1,247,232 1,249,280 1,251,328
1,253,376 1,255,424 1,257,472 1,259,520 1,261,568 1,263,616 1,265,664 1,267,712 1,269,760 1,271,808
1,273,856 1,275,904 1,277,952 1,280,000 1,282,048 1,284,096 1,286,144 1,288,192 1,290,240 1,292,288
1,294,336 1,296,384 1,298,432 1,300,480 1,302,528 1,304,576 1,306,624 1,308,672 1,310,720 1,312,768
1,314,816 1,316,864 1,318,912 1,320,960 1,323,008 1,325,056 1,327,104 1,329,152 1,331,200 1,333,248
1,335,296 1,337,344 1,339,392 1,341,440 1,343,488 1,345,536 1,347,584 1,349,632 1,351,680 1,353,728
1,355,776 1,357,824 1,359,872 1,361,920 1,363,968 1,366,016 1,368,064 1,370,112 1,372,160 1,374,208
1,376,256 1,378,304 1,380,352 1,382,400 1,384,448 1,386,496 1,388,544 1,390,592 1,392,640 1,394,688
1,396,736 1,398,784 1,400,832 1,402,880 1,404,928 1,406,976 1,409,024 1,411,072 1,413,120 1,415,168
1,417,216 1,419,264 1,421,312 1,423,360 1,425,408 1,427,456 1,429,504 1,431,552 1,433,600 1,435,648
1,437,696 1,439,744 1,441,792 1,443,840 1,445,888 1,447,936 1,449,984 1,452,032 1,454,080 1,456,128
1,458,176 1,460,224 1,462,272 1,464,320 1,466,368 1,468,416 1,470,464 1,472,512 1,474,560 1,476,608
1,478,656 1,480,704 1,482,752 1,484,800 1,486,848 1,488,896 1,490,944 1,492,992 1,495,040 1,497,088
1,499,136 1,501,184 1,503,232 1,505,280 1,507,328 1,509,376 1,511,424 1,513,472 1,515,520 1,517,568
1,519,616 1,521,664 1,523,712 1,525,760 1,527,808 1,529,856 1,531,904 1,533,952 1,536,000 1,538,048
1,540,096 1,542,144 1,544,192 1,546,240 1,548,288 1,550,336 1,552,384 1,554,432 1,556,480 1,558,528
1,560,576 1,562,624 1,564,672 1,566,720 1,568,768 1,570,816 1,572,864 1,574,912 1,576,960 1,579,008
1,581,056 1,583,104 1,585,152 1,587,200 1,589,248 1,591,296 1,593,344 1,595,392 1,597,440 1,599,488
1,601,536 1,603,584 1,605,632 1,607,680 1,609,728 1,611,776 1,613,824 1,615,872 1,617,920 1,619,968
1,622,016 1,624,064 1,626,112 1,628,160 1,630,208 1,632,256 1,634,304 1,636,352 1,638,400 1,640,448
1,642,496 1,644,544 1,646,592 1,648,640 1,650,688 1,652,736 1,654,784 1,656,832 1,658,880 1,660,928
1,662,976 1,665,024 1,667,072 1,669,120 1,671,168 1,673,216 1,675,264 1,677,312 1,679,360 1,681,408
1,683,456 1,685,504 1,687,552 1,689,600 1,691,648 1,693,696 1,695,744 1,697,792 1,699,840 1,701,888
1,703,936 1,705,984 1,708,032 1,710,080 1,712,128 1,714,176 1,716,224 1,718,272 1,720,320 1,722,368

9

1,724,416 1,726,464 1,728,512 1,730,560 1,732,608 1,734,656 1,736,704 1,738,752 1,740,800 1,742,848
1,744,896 1,746,944 1,748,992 1,751,040 1,753,088 1,755,136 1,757,184 1,759,232 1,761,280 1,763,328
1,765,376 1,767,424 1,769,472 1,771,520 1,773,568 1,775,616 1,777,664 1,779,712 1,781,760 1,783,808
1,785,856 1,787,904 1,789,952 1,792,000 1,794,048 1,796,096 1,798,144 1,800,192 1,802,240 1,804,288
1,806,336 1,808,384 1,810,432 1,812,480 1,814,528 1,816,576 1,818,624 1,820,672 1,822,720 1,824,768
1,826,816 1,828,864 1,830,912 1,832,960 1,835,008 1,837,056 1,839,104 1,841,152 1,843,200 1,845,248
1,847,296 1,849,344 1,851,392 1,853,440 1,855,488 1,857,536 1,859,584 1,861,632 1,863,680 1,865,728
1,867,776 1,869,824 1,871,872 1,873,920 1,875,968 1,878,016 1,880,064 1,882,112 1,884,160 1,886,208
1,888,256 1,890,304 1,892,352 1,894,400 1,896,448 1,898,496 1,900,544 1,902,592 1,904,640 1,906,688
1,908,736 1,910,784 1,912,832 1,914,880 1,916,928 1,918,976 1,921,024 1,923,072 1,925,120 1,927,168
1,929,216 1,931,264 1,933,312 1,935,360 1,937,408 1,939,456 1,941,504 1,943,552 1,945,600 1,947,648
1,949,696 1,951,744 1,953,792 1,955,840 1,957,888 1,959,936 1,961,984 1,964,032 1,966,080 1,968,128
1,970,176 1,972,224 1,974,272 1,976,320 1,978,368 1,980,416 1,982,464 1,984,512 1,986,560 1,988,608
1,990,656 1,992,704 1,994,752 1,996,800 1,998,848 2,000,896 2,002,944 2,004,992 2,007,040 2,009,088
2,011,136 2,013,184 2,015,232 2,017,280 2,019,328 2,021,376 2,023,424 2,025,472 2,027,520 2,029,568
2,031,616 2,033,664 2,035,712 2,037,760 2,039,808 2,041,856 2,043,904 2,045,952 2,048,000 2,050,048
2,052,096 2,054,144 2,056,192 2,058,240 2,060,288 2,062,336 2,064,384 2,066,432 2,068,480 2,070,528
2,072,576 2,074,624 2,076,672 2,078,720 2,080,768 2,082,816 2,084,864 2,086,912 2,088,960 2,091,008
2,093,056 2,095,104 2,097,152 2,098,176 2,099,200 2,100,224 2,101,248 2,102,272 2,103,296 2,104,320
2,105,344 2,106,368 2,107,392 2,108,416 2,109,440 2,110,464 2,111,488 2,112,512 2,113,536 2,114,560
2,115,584 2,116,608 2,117,632 2,118,656 2,119,680 2,120,704 2,121,728 2,122,752 2,123,776 2,124,800
2,125,824 2,126,848 2,127,872 2,128,896 2,129,920 2,130,944 2,131,968 2,132,992 2,134,016 2,135,040
2,136,064 2,137,088 2,138,112 2,139,136 2,140,160 2,141,184 2,142,208 2,143,232 2,144,256 2,145,280
2,146,304 2,147,328 2,148,352 2,149,376 2,150,400 2,151,424 2,152,448 2,153,472 2,154,496 2,155,520
2,156,544 2,157,568 2,158,592 2,159,616 2,160,640 2,161,664 2,162,688 2,163,712 2,164,736 2,165,760
2,166,784 2,167,808 2,168,832 2,169,856 2,170,880 2,171,904 2,172,928 2,173,952 2,174,976 2,176,000
2,177,024 2,178,048 2,179,072 2,180,096 2,181,120 2,182,144 2,183,168 2,184,192 2,185,216 2,186,240
2,187,264 2,188,288 2,189,312 2,190,336 2,191,360 2,192,384 2,193,408 2,194,432 2,195,456 2,196,480
2,197,504 2,198,528 2,199,552 2,200,576 2,201,600 2,202,624 2,203,648 2,204,672 2,205,696 2,206,720
2,207,744 2,208,768 2,209,792 2,210,816 2,211,840 2,212,864 2,213,888 2,214,912 2,215,936 2,216,960
2,217,984 2,219,008 2,220,032 2,221,056 2,222,080 2,223,104 2,224,128 2,225,152 2,226,176 2,227,200
2,228,224 2,229,248 2,230,272 2,231,296 2,232,320 2,233,344 2,234,368 2,235,392 2,236,416 2,237,440
2,238,464 2,239,488 2,240,512 2,241,536 2,242,560 2,243,584 2,244,608 2,245,632 2,246,656 2,247,680
2,248,704 2,249,728 2,250,752 2,251,776 2,252,800 2,253,824 2,254,848 2,255,872 2,256,896 2,257,920
2,258,944 2,259,968 2,260,992 2,262,016 2,263,040 2,264,064 2,265,088 2,266,112 2,267,136 2,268,160
2,269,184 2,270,208 2,271,232 2,272,256 2,273,280 2,274,304 2,275,328 2,276,352 2,277,376 2,278,400
2,279,424 2,280,448 2,281,472 2,282,496 2,283,520 2,284,544 2,285,568 2,286,592 2,287,616 2,288,640
2,289,664 2,290,688 2,291,712 2,292,736 2,293,760 2,294,784 2,295,808 2,296,832 2,297,856 2,298,880
2,299,904 2,300,928 2,301,952 2,302,976 2,304,000 2,305,024 2,306,048 2,307,072 2,308,096 2,309,120
2,310,144 2,311,168 2,312,192 2,313,216 2,314,240 2,315,264 2,316,288 2,317,312 2,318,336 2,319,360
2,320,384 2,321,408 2,322,432 2,323,456 2,324,480 2,325,504 2,326,528 2,327,552 2,328,576 2,329,600
2,330,624 2,331,648 2,332,672 2,333,696 2,334,720 2,335,744 2,336,768 2,337,792 2,338,816 2,339,840
2,340,864 2,341,888 2,342,912 2,343,936 2,344,960 2,345,984 2,347,008 2,348,032 2,349,056 2,350,080
2,351,104 2,352,128 2,353,152 2,354,176 2,355,200 2,356,224 2,357,248 2,358,272 2,359,296 2,360,320
2,361,344 2,362,368 2,363,392 2,364,416 2,365,440 2,366,464 2,367,488 2,368,512 2,369,536 2,370,560
2,371,584 2,372,608 2,373,632 2,374,656 2,375,680 2,376,704 2,377,728 2,378,752 2,379,776 2,380,800
2,381,824 2,382,848 2,383,872 2,384,896 2,385,920 2,386,944 2,387,968 2,388,992 2,390,016 2,391,040
2,392,064 2,393,088 2,394,112 2,395,136 2,396,160 2,397,184 2,398,208 2,399,232 2,400,256 2,401,280
2,402,304 2,403,328 2,404,352 2,405,376 2,406,400 2,407,424 2,408,448 2,409,472 2,410,496 2,411,520
2,412,544 2,413,568 2,414,592 2,415,616 2,416,640 2,417,664 2,418,688 2,419,712 2,420,736 2,421,760
2,422,784 2,423,808 2,424,832 2,425,856 2,426,880 2,427,904 2,428,928 2,429,952 2,430,976 2,432,000
2,433,024 2,434,048 2,435,072 2,436,096 2,437,120 2,438,144 2,439,168 2,440,192 2,441,216 2,442,240
2,443,264 2,444,288 2,445,312 2,446,336 2,447,360 2,448,384 2,449,408 2,450,432 2,451,456 2,452,480
2,453,504 2,454,528 2,455,552 2,456,576 2,457,600 2,458,624 2,459,648 2,460,672 2,461,696 2,462,720
2,463,744 2,464,768 2,465,792 2,466,816 2,467,840 2,468,864 2,469,888 2,470,912 2,471,936 2,472,960

10

2,473,984 2,475,008 2,476,032 2,477,056 2,478,080 2,479,104 2,480,128 2,481,152 2,482,176 2,483,200
2,484,224 2,485,248 2,486,272 2,487,296 2,488,320 2,489,344 2,490,368 2,491,392 2,492,416 2,493,440
2,494,464 2,495,488 2,496,512 2,497,536 2,498,560 2,499,584 2,500,608 2,501,632 2,502,656 2,503,680
2,504,704 2,505,728 2,506,752 2,507,776 2,508,800 2,509,824 2,510,848 2,511,872 2,512,896 2,513,920
2,514,944 2,515,968 2,516,992 2,518,016 2,519,040 2,520,064 2,521,088 2,522,112 2,523,136 2,524,160
2,525,184 2,526,208 2,527,232 2,528,256 2,529,280 2,530,304 2,531,328 2,532,352 2,533,376 2,534,400
2,535,424 2,536,448 2,537,472 2,538,496 2,539,520 2,540,544 2,541,568 2,542,592 2,543,616 2,544,640
2,545,664 2,546,688 2,547,712 2,548,736 2,549,760 2,550,784 2,551,808 2,552,832 2,553,856 2,554,880
2,555,904 2,556,928 2,557,952 2,558,976 2,560,000 2,561,024 2,562,048 2,563,072 2,564,096 2,565,120
2,566,144 2,567,168 2,568,192 2,569,216 2,570,240 2,571,264 2,572,288 2,573,312 2,574,336 2,575,360
2,576,384 2,577,408 2,578,432 2,579,456 2,580,480 2,581,504 2,582,528 2,583,552 2,584,576 2,585,600
2,586,624 2,587,648 2,588,672 2,589,696 2,590,720 2,591,744 2,592,768 2,593,792 2,594,816 2,595,840
2,596,864 2,597,888 2,598,912 2,599,936 2,600,960 2,601,984 2,603,008 2,604,032 2,605,056 2,606,080
2,607,104 2,608,128 2,609,152 2,610,176 2,611,200 2,612,224 2,613,248 2,614,272 2,615,296 2,616,320
2,617,344 2,618,368 2,619,392 2,620,416 2,621,440 2,622,464 2,623,488 2,624,512 2,625,536 2,626,560
2,627,584 2,628,608 2,629,632 2,630,656 2,631,680 2,632,704 2,633,728 2,634,752 2,635,776 2,636,800
2,637,824 2,638,848 2,639,872 2,640,896 2,641,920 2,642,944 2,643,968 2,644,992 2,646,016 2,647,040
2,648,064 2,649,088 2,650,112 2,651,136 2,652,160 2,653,184 2,654,208 2,655,232 2,656,256 2,657,280
2,658,304 2,659,328 2,660,352 2,661,376 2,662,400 2,663,424 2,664,448 2,665,472 2,666,496 2,667,520
2,668,544 2,669,568 2,670,592 2,671,616 2,672,640 2,673,664 2,674,688 2,675,712 2,676,736 2,677,760
2,678,784 2,679,808 2,680,832 2,681,856 2,682,880 2,683,904 2,684,928 2,685,952 2,686,976 2,688,000
2,689,024 2,690,048 2,691,072 2,692,096 2,693,120 2,694,144 2,695,168 2,696,192 2,697,216 2,698,240
2,699,264 2,700,288 2,701,312 2,702,336 2,703,360 2,704,384 2,705,408 2,706,432 2,707,456 2,708,480
2,709,504 2,710,528 2,711,552 2,712,576 2,713,600 2,714,624 2,715,648 2,716,672 2,717,696 2,718,720
2,719,744 2,720,768 2,721,792 2,722,816 2,723,840 2,724,864 2,725,888 2,726,912 2,727,936 2,728,960
2,729,984 2,731,008 2,732,032 2,733,056 2,734,080 2,735,104 2,736,128 2,737,152 2,738,176 2,739,200
2,740,224 2,741,248 2,742,272 2,743,296 2,744,320 2,745,344 2,746,368 2,747,392 2,748,416 2,749,440
2,750,464 2,751,488 2,752,512 2,753,536 2,754,560 2,755,584 2,756,608 2,757,632 2,758,656 2,759,680
2,760,704 2,761,728 2,762,752 2,763,776 2,764,800 2,765,824 2,766,848 2,767,872 2,768,896 2,769,920
2,770,944 2,771,968 2,772,992 2,774,016 2,775,040 2,776,064 2,777,088 2,778,112 2,779,136 2,780,160
2,781,184 2,782,208 2,783,232 2,784,256 2,785,280 2,786,304 2,787,328 2,788,352 2,789,376 2,790,400
2,791,424 2,792,448 2,793,472 2,794,496 2,795,520 2,796,544 2,797,568 2,798,592 2,799,616 2,800,640
2,801,664 2,802,688 2,803,712 2,804,736 2,805,760 2,806,784 2,807,808 2,808,832 2,809,856 2,810,880
2,811,904 2,812,928 2,813,952 2,814,976 2,816,000 2,817,024 2,818,048 2,819,072 2,820,096 2,821,120
2,822,144 2,823,168 2,824,192 2,825,216 2,826,240 2,827,264 2,828,288 2,829,312 2,830,336 2,831,360
2,832,384 2,833,408 2,834,432 2,835,456 2,836,480 2,837,504 2,838,528 2,839,552 2,840,576 2,841,600
2,842,624 2,843,648 2,844,672 2,845,696 2,846,720 2,847,744 2,848,768 2,849,792 2,850,816 2,851,840
2,852,864 2,853,888 2,854,912 2,855,936 2,856,960 2,857,984 2,859,008 2,860,032 2,861,056 2,862,080
2,863,104 2,864,128 2,865,152 2,866,176 2,867,200 2,868,224 2,869,248 2,870,272 2,871,296 2,872,320
2,873,344 2,874,368 2,875,392 2,876,416 2,877,440 2,878,464 2,879,488 2,880,512 2,881,536 2,882,560
2,883,584 2,884,608 2,885,632 2,886,656 2,887,680 2,888,704 2,889,728 2,890,752 2,891,776 2,892,800
2,893,824 2,894,848 2,895,872 2,896,896 2,897,920 2,898,944 2,899,968 2,900,992 2,902,016 2,903,040
2,904,064 2,905,088 2,906,112 2,907,136 2,908,160 2,909,184 2,910,208 2,911,232 2,912,256 2,913,280
2,914,304 2,915,328 2,916,352 2,917,376 2,918,400 2,919,424 2,920,448 2,921,472 2,922,496 2,923,520
2,924,544 2,925,568 2,926,592 2,927,616 2,928,640 2,929,664 2,930,688 2,931,712 2,932,736 2,933,760
2,934,784 2,935,808 2,936,832 2,937,856 2,938,880 2,939,904 2,940,928 2,941,952 2,942,976 2,944,000
2,945,024 2,946,048 2,947,072 2,948,096 2,949,120 2,950,144 2,951,168 2,952,192 2,953,216 2,954,240
2,955,264 2,956,288 2,957,312 2,958,336 2,959,360 2,960,384 2,961,408 2,962,432 2,963,456 2,964,480
2,965,504 2,966,528 2,967,552 2,968,576 2,969,600 2,970,624 2,971,648 2,972,672 2,973,696 2,974,720
2,975,744 2,976,768 2,977,792 2,978,816 2,979,840 2,980,864 2,981,888 2,982,912 2,983,936 2,984,960
2,985,984 2,987,008 2,988,032 2,989,056 2,990,080 2,991,104 2,992,128 2,993,152 2,994,176 2,995,200
2,996,224 2,997,248 2,998,272 2,999,296

11

