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Abstract

Erasure coding is a fundemental technique to prevent data loss in storage systems composed of multiple
disks. Recently, there have been multiple open-source implementations of a variety of erasure codes.
In this work, we present a comparison of the performance of various codes and implementations,
concentrating on encoding and decoding. It is hard to draw overarching conclusions from a single
performance study. However, performance data is important to gain an understanding of the real-life
performance ramifications of code properties and implementation decisions. The significance of this
paper is to guide those who use and design codes, so that they may be able to predict what performance
to expect when using an erasure code. One important, although obvious, conclusion is that reducing
cache misses is more important than reducing XOR operations.

1 Introduction

In recent years, erasure codes have moved to the fore to prevent data loss in storage systems composed
of multiple disks. Storage companies such as Cleversafe [6], Data Domain [32], Network Appliance [15]
and Panasas [27] are delivering products that use erasure codes for data availability. Academic projects
such as Oceanstore [24], LoCI [2] and Pergamum [26] are doing the same. And equally important,
major technology corporations such as HP [29], IBM [8, 9] and Microsoft [11, 12] are performing active
research on erasure codes for storage systems.

Along with proprietary implementations of erasure codes, there have been numerous open source
implementations of a variety of erasure codes that are available for download [6, 13, 16, 18, 28]. While
one cannot expect the same level of performance and functionality from an open source implementation
that one gets with a proprietary implementation, it is the intent of some of these projects to provide
storage system developers with high quality tools. As such, there is a need to understand how these
codes and implementations perform.

In this paper, we seek to gain such an understanding. We have installed all of the above erasure
coding implementations on machines at the University of Tennessee, and have performed two bench-

1



marking tests on them. The first performs a fundamental operation of taking a large file (in this case,
a video file), breaking it up into slices for multiple storage nodes and encoding it into other slices for
other storage nodes. The second performs another fundamental operation which is to recompute the
contents of the file from remaining the slices when some of the slices have failed.

The conclusions that we draw are somewhat obvious. The coding technique, implementation and
word size all affect the performance of coding. There is a great deal of variation in encoding and
decoding performance of multiple implementations of the same coding technique. For standard Reed-
Solomon coding, the “Zfec” implementation [28] performs the fastest. The Cauchy Reed-Solomon
code implementation of the Jerasure library [18], which optimizes the encoding matrices, vastly
outperforms the other implementations.

In any performance study, effects due to the memory hierarchy must be observed, and a final
experiment demonstrates clearly that the encoding parameters should take account of the machine’s
cache size to achieve best performance.

2 Nomenclature and Basic Erasure Coding

It is an unfortunate consequence of the history of erasure coding research that there is no unified
nomenclature for erasure coding. We borrow terminology mostly from Hafner et al [10], but try to
conform to more classic coding terminology (e.g. [4, 14]) when appropriate.

Our storage system is composed of an array of n disks, each of which is the same size. Of these n
disks, k of them hold data and the remaining m hold coding information, often termed parity. We
label the data disks D0, . . . , Dk−1 and the parity disks C0, . . . , Cm−1. An example system is pictured
in Figure 1.

Figure 1: An example storage system with erasure coding. There are k data disks and m coding disks.

Disks are composed of sectors, which are the smallest units of I/O to and from a disk. Sector sizes
typically range from 512 to 4096 bytes and are always powers of two. Most erasure codes are defined
such that disks are logically organized to hold bits; however, when they are implemented, all the bits
on one sector are considered as one single entity called an element. When a code specifies that bit
on drive C0 equals the exclusive-or of bits on drives D0 and D1, that really means that a sector on
drive C0 will be calculated to be the parity (bitwise exclusive-or) of corresponding sectors on drives D0

and D1. We will thus use the terms bit, sector and element interchageably in this paper. We also use
the term packet to denote a unit logically equivalent to a sector, but that can be much bigger.

A code typically has a word size w, which means that for the purposes of coding, each disk is
partitioned into strips of w sectors each. Each of these strips is encoded and decoded independently
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from the other strips on the same disk. The collection of strips from all disks on the array that encode
and decode together is called a stripe.

Thus, to define an erasure code, one must specify the word size w, and then one must describe the
way in which sectors on the parity strips are calculated from the sectors on the data strips in the same
stripe.

For small values of m, Maximum Distance Seperable (MDS) codes are highly desirable. These
are codes having the property that when the number of failed disks in the is less than or equal to m,
the original data can always be reconstructed. In this work, we will only consider MDS codes. We
also only consider horizontal codes, where disks hold exclusively data or parity, rather than vertical
codes (e.g. [9, 30, 31]) that require disks to hold both.

2.1 Standard MDS Codes

The grandfather of erasure codes is the set of Reed-Solomon codes [23]. These are general purpose
MDS codes that may be constructed for any values of k and m. Their classic presentation is for noisy
communication channels, where serial data must be transmitted in a way that tolerates arbitrary
(and often bursty) bit flips. These are denoted errors. Storage systems do not fail with errors, but
with erasures, where entire disks or sectors become unusable. Erasures differ from errors in that their
failures are identifiable. Thus the treatment of Reed-Solomon coding for storage differs somewhat from
its classical treatment. Tutorial instructions for employing Reed-Solomon codes for storage systems
are available [17, 21], and there are several open-source implementations [16, 18, 28].

The crux of Reed-Solomon coding is to use linear algebra. In particular, encoding is defined
by a matrix-vector product where the vector is composed of k words of data, and the product is
composed of m words of encoded data. The matrix is called a generator matrix, although some
sources call it a “distribution” matrix. The words are w bits long, where k+m ≤ 2w. A special kind of
arithmetic, termed Galois Field arithmetic, GF (2w), is used to perform the matrix-vector product.
In this arithmetic, addition is equal to bitwise exclusive-or (XOR), and multiplication/division may
be implemented in a variety of ways, all of which are much more expensive than XOR.

Classic Reed-Solomon coding systems do not follow Figure 1, but instead treat each disk as a
collection of words, and encode each set of words independently from each other set. As such, it is
extremely convenient to have words fall on machine word boundaries, meaning that for classic Reed-
Solomon coding, w is restricted to be 8, 16, 32 or 64.

In 1995, Blomer et al presented Cauchy Reed-Solomon (CRS) codes [5]. The major difference
with CRS codes is that they expand the generator matrix by a factor of w in each dimension, converting
each matrix element into a w × w bit matrix. Additionally, they split the multiplicand and product
vectors into k and m sets of w packets. This allows the product to be computed using only XOR
operations, and it also frees w from the restriction of having to align on word boundaries. With CRS
coding, the system looks exactly as in Figure 1, with each strip consisting of w packets. Stripes are
each encoded and decoded independently.

The performance of CRS depends directly on the number of ones in the expanded generator matrix.
In 2006, Plank and Xu made the observation that there are multiple ways of constructing the generator
matrix for CRS, and that significant savings may be achieved by choosing “Good” matrices [22]. The
Jerasure library extends this by massaging the matrix further [18]. In this work, we will refer to
Original matrices, which are those defined by Blomer et al, and Good matrices, which are the
improved matrices derived in the Jerasure library. Besides the Jerasure library, CRS coding has
been implemented in open-source form by Luby [13] and by Cleversafe [6]. Both use Original matrices
for coding.

2.2 RAID-6 Codes

RAID-6 systems are restricted storage systems for which m = 2. In a RAID-6 system, the two
parity drives are called P and Q. Currently, most commercial storage systems that implement high
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availability use RAID-6 [15, 27, 32]. There are several specialized coding algorithms for RAID-6. First,
there is a clever tweak to Reed-Solomon coding that improves encoding performance for RAID-6 [1].
Next, there are two algorithms for RAID-6 that make use of “diagonal” parity construtions. These
are EVENODD [3] and RDP [7] codes. RDP in particular features optimal encoding and decoding
performance for certain values of k. Both codes are laid out as in Figure 1, where w must be a number
such that w + 1 is prime and either k ≤ w + 1 (EVENODD) or k ≤ w (RDP).

A final class of RAID-6 codes are Minimal Density codes, which work using an generator bitma-
trix like CRS coding. However, unlike CRS coding, these matrices have a provably minimal number
of ones. Three different constructions of Minimal Density exist: Liberation codes [20] for when w
is prime, Blaum-Roth codes [4] for when w + 1 is prime, and the Liber8tion code [19] for w = 8.
In all cases, k ≤ w. The theoretical performance of minimal density codes lies between RDP and
EVENODD when k is near w. It outperforms both when k is much smaller than w.

Finally, techniques to optimize the calculation of the bitmatrix-vector product have been explored
by several researchers [12, 10, 20]. The Jerasure library implements the “Code-specific Hybrid Recon-
struction” algorithm of Hafner et al [10], which can drastically reduce the number of XORs required
for CRS encoding/decoding, and for decoding when using the minimal density techniques [19, 20].

3 Description of Open Source Libraries Tested

We used the following open source erasure coding libraries for our tests.
LUBY: CRS coding was developed by Luby et al in 1993-1994 for use in the PET project at ICSI.

It were developed to be fast enough to run on real-time on small blocks. The Luby library is written
C and is available for free download [13].

SCHIFRA: In July, 2000, the first version of the Schifra library was made avaiable for free
download. The library is written in C++, with a robust API and support [16]. There is a license for
documentation of the library and for a high-performance version. Thus, the version we have tested
does not represent the best performance of Schifra. However, it does represent the performance a
developer can expect from the freely available download.

ZOOKO: The “Zfec” library for erasure coding has been in development since 2004. The lat-
est version (1.4.0) was posted in January, 2008. The library is programmable and portable. It in-
cludes command-line tools and APIs in C, Python and Haskell [28]. After evaluating several coding
methodologies, the authors based their implementation of a well-known implementation of classic
Reed-Solomon coding by Rizzo [25].

JERASURE: In September, 2007, the first version of the Jerasure library was made available [18].
The library is in C, and its intent is to be very flexible, implementing a wide variety of coding techniques
and support for coding. Standard Reed-Solomon coding is implemented, along with CRS coding,
including the improved the generator matrices, and the minimal density RAID-6 codes. It is released
under the GNU LGPL.

CLEVERSAFE: In May, 2008, Cleversafe exported the first open source version of its dispersed
storage system [6]. Written entirely in Java, it supports the same API as Cleversafe’s proprietary sys-
tem, which is notable as it is the first commercial distributed storage system to implement availability
beyond RAID-6. For this paper, J. Resch of Cleversafe stripped out the erasure coding part of the
open source distribution. It is based on Luby’s original CRS implementation.

EVENODD/RDP: The implementation of EVENODD and RDP coding is a private version
developed by Plank for comparison with Liberation codes [20]. Since EVENODD and RDP codes
are patented, this implementation is not available to the public, as its sole intent is for performance
comparison.
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4 Main Experimental Setup

The scenario that we wish to explore is this: Suppose one wants to take a large file and distribute it
to n = k + m storage servers so that it may be reconstructed when up to m of the servers are down or
unavailable. We explore this scenario with two experimental tests.

The first test is an encoding test. With this test, we take a large video file (736 MB), divide it
into k data files and encode it into m coding files using the various methods, libraries, and word sizes.
Each of the data and coding files is of size 736/k MB. We do not perform the act of spreading the
various files among storage servers, since that activity has the same performance regardless of the
coding method or implementation.

To test the performance, we implemented a dummy program that performs all of the file activities
(reading the video file and creating the output files) but performs no coding — the m coding files
simply contain zeroes. We subtract the running time of this program from the running time of the
other encoders to remove the time for file activities and localize the performance of encoding. We then
present the performance of encoding as the rate in which all encoding was completed.

For example, suppose k = 6 and m = 2. Our dummy implementation breaks the video file into six
data files of 122.6 MB each, and creates two coding files, also of size 122.6 MB, which contain all zeros.
On average, this takes 53.8 seconds. Now, suppose we wish to test the performance of Cleversafe’s
implementation of CRS coding with w = 8. We run our encoding program, which creates the same six
data files and two coding files (which actually encode this time). This takes 90.3 seconds on average.
Thus the encoding portion of the test takes 39.5 = 90.3−53.8 seconds, and we report the performance
to be 736/39.5 = 18.7 MB/sec.

The second test is a decoding test, where we randomly delete m of the n = k + m files that we
created in encoding and reconstruct them from the remaining k pieces. As with encoding, we use a
dummy program to localize the performance of decoding, and record the performance in MB/sec.

The parameters of the main experiment include the erasure coding technique, the library and the
word size (w). All of the libraries except for Jerasure implement only one coding technique, and all
except Luby and Jerasure have one preset word size. Luby and Jerasure also allow the programmer
to set the packet size. After some initial performance tests, we selected a value of 1KB for the packet
size in these tests. Cleversafe selects an “optimum slice size” based on the other parameters.

Code, Implementation and Value of w.
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Figure 2: Encoding performance of a RAID-6 system with k = 6 (m = 2).

Finally, the encoder and decoder allow for the reading and writing to be performed in stages, with a
fixed size buffer in memory. This is to avoid having to store the entire video file and coding information
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in memory.
The machine for testing has a 2.6 GHz Intel Pentium 4 processor, 2 GB of RAM and a cache size

of 512 KB. It runs Debian Linux, version 3.1. Each data point in the graphs that follow is the average
of five runs.

5 Results from the Main Experiment

We present results from four sets of experiments. These are two RAID-6 tests (k = 6 and k = 14), plus
two higher availability tests where the total number of disks numbers 16. These are {k = 12, m = 4}
and {k = 10, m = 6}. The latter set of parameters is the default set used by Cleversafe in their
commercial storage system.

Code, Implementation and Value of w.
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Figure 3: Decoding performance of a RAID-6 system with k = 6 (m = 2).

Figures 2 and 3 show the performance of the various implementations, codes and word sizes on a
RAID-6 system with six data disks. The values of w are ones that are likely to be used in practice.
For the minimal density codes, Liberation codes are employed for w ∈ {7, 17}, the Blaum-Roth code
is used for w = 16, and the Liber8tion code is used for w = 8.

The most glaring feature of these graphs is the extremely wide range of performances, from under
50 MB/sec for Schifra and Cleversafe, to roughly 900 MB/sec for the minimal density codes. Of
course, all parameters impact perforamnce — code type, implementation and word size. However, it
is interesting that some de facto assumptions that are made in the community, for example that CRS
always outperforms standard Reed-Solomon coding, clearly are not true.

Of the standard Reed-Solomon coding implementations, Zooko performs better than the others
by a factor of two at the smallest. The Schifra library performs the slowest, which may be attributed
to the fact that its open source library is meant to demonstrate functionality and not performance.

The CRS implemtations display a very high range in performance, with the Jerasure implemen-
tation performing the best. The generator matrix clearly has an important effect on performance – in
Jerasure, the good matrices perform roughly a factor of two better than their original counterparts.

With regard to the specialized RAID-6 codes, it is surprising that the minimal density codes
outperform RDP and EVENODD in encoding. We surmise that this is due to cache effects, or perhaps
because the Jerasure code is meant to be exported and used by others, while the RDP/EVENODD
implementations were written for a paper evaluation. The performance of minimal density decoding
is worse than encoding, as expected [19, 20].
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We include the remainder of the performance results in the Appendix. They mirror the results
above. The performance of minimal density decoding when k = 14 and m = 2 is much worse than
encoding; however, this is to be expected as k grows [20].

6 Packet and Cache Size Ramifications

Figuring out the sources of performance improvements and penalties is a difficult task on a real
machine and application. As the graphs from section 5 show, counting XORs alone is not enough.
Understanding the caching behavior of a program is difficult, but to a coarse degree, we can modify
a code’s packet size in an attempt to optimize cache behavior. We performed two brief experiments
to assess this effect at a high level. In Figure 4, we test the effect of modifying the packet size on the
encoding rate in four scenarios:

1. k = 14, m = 2, w = 16, Blaum-Roth coding.

2. k = 14, m = 2, w = 7, CRS coding (good matrix).

3. k = 10, m = 6, w = 7, CRS coding (good matrix).

4. k = 10, m = 6, w = 16, CRS coding (good matrix).

All use the Jerasure implementation, but plot only one or two runs per data point. The left graph
shows an exploration of small packet sizes and the right graph shows an exploration of large packet
sizes.
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Figure 4: The effect of modifying the packet size in four coding scenarios.

As the graphs show, the effect of modifying the packet size is drastic. When packets are very
small, the performance suffers because the inner loops peforming XOR operations is too small. As
such, increasing the packet size improves performance to a point where the overhead of cache misses
starts to penalize performance. As the right graph shows, this effect continues until the performance
is nearly an order of magnitude worse than the best performance. This underscores the importance of
considering caching behavior when performing erasure coding.
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For a given packet size, a larger value of w means a larger stripe size. Accordingly, the stripe sizes
in Figure 4 for w = 16 are 16

7 larger than those for w = 7. This effect is reflected in the left graph of
Figure 4, where the peak performance of the two codes when w = 16 is achieved at a smaller packet
size than the codes for w = 7.

We acknowledge that this experiment is sketchy at best – more data needs to be taken, and more
experimentation on this topic needs to be performed.

7 Concluding Remarks

This paper has compared the performance of several open source erasure coding libraries. Their per-
formance runs the gamut from slow to fast, with factors being the erasure coding technique used,
optimization of the underlying coding structure (i.e. the generator matrix in CRS coding), and atten-
tion to cache behavior.

While this work should be useful in helping storage practitioners evaluate and use erasure coding
libraries, it is clear that more work can and should be done. First, the tests should be performed
on multiple machines so that individual machine quirks do not impact results. Second, in the XOR
codes, one may schedule the individual XOR operations in an exponential number of ways – doing so
to improve cache utilization may yield further improvements in performance. It will be a challenge
to perform this additional work, yet digest the results in a coherent way. We look forward to that
challenge.
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Appendix: Performance Results for the other Parameters
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Figure 5: Encoding performance when k = 14 and m = 2.
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Figure 6: Decoding performance when k = 14 and m = 2.
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Figure 7: Encoding performance when k = 12 and m = 4.
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Figure 8: Decoding performance when k = 12 and m = 4.
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Figure 9: Encoding performance when k = 10 and m = 6.
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Figure 10: Decoding performance when k = 10 and m = 6.
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