Jerasure: A Library in C/C++ Facilitating Erasure Coding for Storage Applications

Version 1.2

James S. Plank* Scott Simmerman Catherine D. Schuman
Technical Report CS-08-627
Department of Electrical Engineering and Computer Science
University of Tennessee
Knoxville, TN 37996
http://www.cs.utk.edu/~plank/plank/papers/CS-08-627.html

This describes revision 1.2 of the code.

Abstract

This paper descibes version 1.2 of jerasure, a library in $\mathrm{C} / \mathrm{C}++$ that supports erasure coding in storage applications. In this paper, we describe both the techniques and algorithms, plus the interface to the code. Thus, this serves as a quasi-tutorial and a programmer's guide.

Version 1.2 adds Blaum-Roth and Liber8tion coding to the library, provides better examples, and an example file encoder/decoder. Additionally, it removes a bug from the previous writeup: the packetsize must be a multiple of sizeof(long). It does not have to be a multiple of w.

If You Use This Library or Document

Please send me an email to let me know how it goes. One of the ways in which I am evaluated both internally and externally is by the impact of my work, and if you have found this library and/or this document useful, I would like to be able to document it. Please send mail to plank@eecs.utk.edu.

The library itself is protected by the GNU LGPL. It is free to use and modify within the bounds of the LGPL. None of the techniques implemented in this library have been patented.

Finding the Code

Please see http: //www.cs.utk.edu/~plank/plank/papers/CS-08-627.html to get the TAR file for this code.

[^0]
Contents

1 Introduction 3
2 The Modules of the Library 4
3 Matrix-Based Coding In General 5
4 Bit-Matrix Coding In General 5
4.1 Using a schedule rather than a bit-matrix 6
5 MDS Codes 7
6 Part 1 of the Library: Galois Field Arithmetic 8
7 Part 2 of the Library: Kernel Routines 8
7.1 Matrix/Bitmatrix/Schedule Creation Routines 9
7.2 Encoding Routines 10
7.3 Decoding Routines 10
7.4 Dot Product Routines 11
7.5 Basic Matrix Operations 12
7.6 Statistics 12
7.7 Example Programs to Demonstrate Use 13
8 Part 3 of the Library: Classic Reed-Solomon Coding Routines 24
8.1 Vandermonde Distribution Matrices 24
8.2 Procedures Related to Reed-Solomon Coding Optimized for RAID-6 25
8.3 Example Programs to Demonstrate Use 25
9 Part 4 of the Library: Cauchy Reed-Solomon Coding Routines 29
9.1 The Procedures in cauchy.c 30
9.2 Example Programs to Demonstrate Use 30
9.3 Extending the Parameter Space for Optimal Cauchy RAID-6 Matrices 33
10 Part 5 of the Library: Minimal Density RAID-6 Coding 33
10.1 Example Program to Demonstrate Use 33
11 Example Encoder and Decoder 35
11.1 Judicious Selection of Buffer and Packet Sizes 37

1 Introduction

Erasure coding for storage applications is growing in importance as storage systems grow in size and complexity. This paper describes jerasure, a library in $\mathrm{C} / \mathrm{C}++$ that supports erasure coding applications. Jerasure has been designed to be modular, fast and flexible. It is our hope that storage designers and programmers will find jerasure to be a convenient tool to add fault tolerance to their storage systems.

Jerasure supports a horizontal mode of erasure codes. We assume that we have k devices that hold data. To that, we will add m devices whose contents will be calculated from the original k devices. If the erasure code is a Maximum Distance Separable (MDS) code, then the entire system will be able to tolerate the loss of any m devices.

Figure 1: The act of encoding takes the contents of k data devices and encodes them on m coding devices. The act of decoding takes some subset of the collection of $(k+m)$ total devices and from them recalcalates the original k devices of data.

As depicted in Figure 1, the act of encoding takes the original k data devices, and from them calculates m coding devices. The act of decoding takes the collection of $(k+m)$ devices with erasures, and from the surviving devices recalculates the contents of the original k data devices.

Most codes have a third parameter w, which is the word size. The description of a code views each device as having w bits worth of data. The data devices are denoted D_{0} through D_{k-1} and the coding devices are denoted C_{0} through C_{m-1}. Each device D_{i} or C_{j} holds w bits, denoted $d_{i, 0}, \ldots d_{i, w-1}$ and $c_{i, 0}, \ldots c_{i, w-1}$. In reality of course, devices hold megabytes of data. To map the description of a code to its realization in a real system, we do one of two things:

1. When $w \in\{8,16,32\}$, we can consider each collection of w bits to be a byte, short word or word respectively. Consider the case when $w=8$. We may view each device to hold B bytes. The first byte of each coding device will be encoded with the first byte of each data device. The second byte of each coding device will be encoded with the second byte of each data device. And so on. This is how Standard Reed-Solomon coding works, and it should be clear how it works when $w=16$ or $w=32$.
2. Most other codes work by defining each coding bit $c_{i, j}$ to be the bitwise exclusive-or (XOR) of some subset of the other bits. To implement these codes in a real system, we assume that the device is composed of w packets of equal size. Now each packet is calculated to be the bitwise exclusive-or of some subset of the other packets. In this way, we can take advantage of the fact that we can perform XOR operations on whole computer words rather than on bits.

The process is illustrated in Figure 2. In this figure, we assume that $k=4, m=2$ and $w=4$. Suppose that a code is defined such that coding bit $c_{1,0}$ is goverened by the equation:

$$
c_{1,0}=d_{0,0} \oplus d_{1,1} \oplus d_{2,2} \oplus d_{3,3}
$$

where \oplus is the XOR operation. Figure 2 shows how the coding packet corresponding to $c_{1,0}$ is calculated from the data packets corresponding to $d_{0,0}, d_{1,1}, d_{2,2}$ and $d_{3,3}$. We call the size of each packet the packet size, and the size of w packets to be the coding block size. The packetsize must be a multiple of the computer's word size so obviously, the coding block size will be a multiple of $w *$ packetsize.

Figure 2: Although codes are described on systems of w bits, their implementation employs packets that are much larger. Each packet in the implementation corresponds to a bit of the description. This figure is showing how the equation $c_{1,0}=d_{0,0} \oplus d_{1,1} \oplus d_{2,2} \oplus d_{3,3}$ is realized in an implementation.

2 The Modules of the Library

This library is broken into five modules, each with its own header file and implementation in C. Typically, when using a code, one only needs three of these modules: galois, jerasure and one of the others. The modules are:

1. galois.h/galois.c: These are procedures for Galois Field Arithmetic as described and implemented in [Pla07].
2. jerasure.h/jerasure.c: These are kernel routines that are common to most erasure codes. They do not depend on any module other than galois. They include support for matrix-based coding and decoding, bit-matrix-based coding and decoding, conversion of bit-matrices to schedules, matrix and bit-matrix inversion.
3. reedsol.h/reedsol.c: These are procedures for creating distribution matrices for Reed-Solomon coding [RS60, Pla97, PD05]. They also include the optimized version of Reed-Solomon encoding for RAID-6 as discussed in [Anv07].
4. cauchy.h/cauchy.c: These are procedures for performing Cauchy Reed-Solomon coding [BKK ${ }^{+} 95$, PX06], which employs a different matrix construction than classic Reed-Solomon coding. We include support for creating optimal Cauchy distribution matrices for RAID-6, and for creating distribution matrices that are better than those currently published.
5. liberation.h/liberation.c: These are procedures for performing RAID-6 coding and decoding with minimal density MDS codes - the RAID-6 Liberation codes [Pla08b], Blaum-Roth codes [BR99] and the RAID-6 Liber8tion code [Pla08a]. These are bit-matrix codes that perform much better than the Reed-Solomon variants and better than EVENODD coding [BBBM95]. In some cases, they even outperform RDP [CEG ${ }^{+} 04$], which is the best currently known RAID-6 code.

Each module is described in its own section below. Additionally, there are example programs that show the usage of each module.

3 Matrix-Based Coding In General

The mechanics of matrix-based coding are explained in great detail in [Pla97]. We give a high-level overview here.

Abstract

Authors' Caveat: We are using old nomenclature of "distribution matrices." In standard coding theory, the "distribution matrix" is the transpose of the Generator matrix. In the next revision of jerasure, we will update the nomenclature to be more consistent with classic coding theory.

Suppose we have k data words and m coding words, each composed of w bits. We can describe the state of a matrix-based coding system by a matrix-vector product as depicted in Figure 3. The matrix is called a distribution matrix and is a $(k+m) \times k$ matrix. The elements of the matrix are numbers in $G F\left(2^{w}\right)$ for some value of w. This means that they are integers between 0 and $2^{w}-1$, and arithmetic is performed using Galois Field arithmetic: addition is equal to XOR, and multiplication is implemented in a variety of ways. The Galois Field arithmetic library in [Pla07] has procedures which implement Galois Field arithmetic.

Figure 3: Using a matrix-vector product to describe a coding system.

The top k rows of the distribution matrix compsose a $k \times k$ identity matrix. The remaining m rows are called the coding matrix, and are defined in a variety of ways [Rab89, Pre89, BKK +95 , PD05]. The distribution matrix is multiplied by a vector that contains the data words and yields a product vector containing both the data and the coding words. Therefore, to encode, we need to perform m dot products of the coding matrix with the data.

To decode, we note that each word in the system has a corresponding row of the distribution matrix. When devices fail, we create a decoding matrix from k rows of the distribution that correspond to non-failed devices. Note that this matrix multiplied by the original data equals the k survivors whose rows we selected. If we invert this matrix and multiply it by both sides of the equation, then we are given a decoding equation - the inverted matrix multiplied by the survivors equals the original data.

4 Bit-Matrix Coding In General

Bit-matrix coding is first described in the original Cauchy Reed-Solomon coding paper [BKK ${ }^{+} 95$]. To encode and decode with a bit-matrix, we expand a distribution matrix in $G F\left(2^{w}\right)$ by a factor of w in each direction to yield
a $w(k+m) \times w k$ matrix which we call a binary distribution matrix $(B D M)$. We multiply that by a $w k$ element vector, which is composed of w bits from each data device. The product is a $w(k+m)$ element vector composed of w bits from each data and coding device. This is depicted in Figure 4. It is useful to visualize the matrix as being composed of $w \times w$ sub-matrices.

Figure 4: Describing a coding system with a bit-matrix-vector product.

As with the matrix-vector product in $G F\left(2^{w}\right)$, each row of the product corresponds to a row of the BDM, and is computed as the dot product of that row and the data bits. Since all elements are bits, we may perform the dot product by taking the XOR of each data bit whose element in the matrix's row is one. In other words, rather than performing the dot product with additions and multiplications, we perform it only with XORs. Moreover, the performance of this dot product is directly related to the number of ones in the row. Therefore, it behooves us to find matrices with few ones.

Decoding with bit-matrices is the same as with matrices over $G F\left(2^{w}\right)$, except now each device corresponds to w rows of the matrix, rather than one. Also keep in mind that a bit in this description corresponds to a packet in the implementation.

While the classic construction of bit-matrices starts with a standard distribution matrix in $G F\left(2^{w}\right)$, it is possible to construct bit-matrices that have no relation to Galois Field arithmetic yet still have desired coding and decoding properties. The minimal density RAID-6 codes work in this fashion.

4.1 Using a schedule rather than a bit-matrix

Consider the act of encoding with a bit-matrix. We give an example in Figure 5, where $k=3, w=5$, and we are calculating the contents of one coding device. The straightforward way to encode is to calculate the five dot products for each of the five bits of the coding device, and we can do that by traversing each of the five rows, performing XORs where there are ones in the matrix.

Figure 5: An example super-row of a bit-matrix for $k=3, w=5$.

Since the matrix is sparse, it is more efficient to precompute the coding operations, rather than traversing the matrix each time one encodes. The data structure that we use to represent encoding is a schedule, which is a list of 5-tuples:

$$
<o p, s_{d}, s_{b}, d_{d}, d_{b}>
$$

where $o p$ is an operation code: 0 for copy and 1 for XOR, s_{d} is the id of the source device and s_{b} is the bit of the source device. The last two elements, d_{d} and d_{b} are the destination device and bit. By convention, we identify devices using integers from zero to $k+m-1$. An id $i<k$ identifies data device D_{i}, and an id $i \geq k$ identifies coding device C_{i-k}.

A schedule for encoding using the bit-matrix in Figure 5 is shown in Figure 6.

$<0,0,0,3,0>,<1,1,1,3,0>,<1,2,2,3,0>$,	$c_{0,0}=d_{0,0} \oplus d_{1,1} \oplus d_{2,2}$
$<0,0,1,3,1>,<1,1,2,3,1>,<1,2,3,3,1>$,	$c_{0,1}=d_{0,1} \oplus d_{1,2} \oplus d_{2,3}$
$<0,0,2,3,2>,<1,1,2,3,2>,<1,1,3,3,2>,<1,2,4,3,2>$,	$c_{0,2}=d_{0,2} \oplus d_{1,2} \oplus d_{1,3} \oplus d_{2,4}$
$<0,0,3,3,3>,<1,1,4,3,3>,<1,2,0,3,3>$	$c_{0,3}=d_{0,3} \oplus d_{1,4} \oplus d_{2,0}$
$<0,0,4,3,4>,<1,1,0,3,4>,<1,2,0,3,4>,<1,2,1,3,4>$.	$c_{0,4}=d_{0,4} \oplus d_{1,0} \oplus d_{2,0} \oplus d_{2,1}$
(a)	

Figure 6: A schedule of bit-matrix operations for the bit-matrix in Figure 5. (a) shows the schedule, and (b) shows the dot-product equations corresponding to each line of the schedule.

As noted in [HDRT05, Pla08b], one can derive schedules for bit-matrix encoding and decoding that make use of common expressions in the dot products, and therefore can perform the bit-matrix-vector product with fewer XOR operations than simply traversing the bit-matrix. This is how RDP encoding works with optimal performance [CEG $\left.{ }^{+} 04\right]$, even though there are more than $k w$ ones in the last w rows of its BDM. We term such scheduling smart scheduling, and scheduling by simply traversing the matrix dumb scheduling.

5 MDS Codes

A code is MDS if it can recover the data following the failure of any m devices. If a matrix-vector product is used to define the code, then it is MDS if every combination of k rows composes an invertible matrix. If a bit-matrix is used, then we define a super-row to be a row's worth of $w \times w$ submatrices. The code is MDS if every combination of k super-rows composes an invertible matrix. Again, one may generate an MDS code using standard techniques such as employing a Vandermonde matrix [PD05] or Cauchy matrix [Rab89, BKK ${ }^{+} 95$]. However, there are other constructions that also yield MDS matrices, such as EVENODD coding [BBBM95], RDP coding [CEG ${ }^{+} 04$], the STAR code [HX05], Feng's codes [FDBS05a, FDBS05b] and the minimal density RAID-6 codes [BR99, Pla08a, Pla08b].

6 Part 1 of the Library: Galois Field Arithmetic

The files galois.h and galois.c contain procedures for Galois Field arithmetic in $G F\left(2^{w}\right)$ for $1 \leq w \leq 32$. It contains procedures for single arithmetic operations, for XOR-ing a region of bytes, and for performing multiplication of a region of bytes by a constant in $G F\left(2^{8}\right), G F\left(2^{16}\right)$ and $G F\left(2^{32}\right)$. The procedures are defined in a separate technical report which focuses solely on Galois Field arithmetic [Pla07].

For the purposes of jerasure, the following procedures from galois.h and galois.c are used:

- galois_single_multiply(int \mathbf{a}, int \mathbf{b}, int \mathbf{w}) and galois_single_divide(int \mathbf{a}, int \mathbf{b}, int \mathbf{w}): These perform multiplication and division on single elements \mathbf{a} and \mathbf{b} of $G F\left(2^{\mathbf{w}}\right)$.
- galois_region_xor(char *r1, char *r2, char *r3, int nbytes): This XORs two regions of bytes, $\mathbf{r} \mathbf{1}$ and $\mathbf{r} 2$ and places the sum in $\mathbf{r 3}$. Note that $\mathbf{r} 3$ may be equal to $\mathbf{r} \mathbf{1}$ or $\mathbf{r} \mathbf{2}$ if we are replacing one of the regions by the sum. Nbytes must be a multiple of the machine's long word size.
- galois_w08_region_multiply(char *region, int multby, int nbytes, char *r2, int add): This multiplies an entire region of bytes by the constant multby in $G F\left(2^{8}\right)$. If $\mathbf{r} \mathbf{2}$ is NULL then region is overwritten. Otherwise, if add is zero, the products are placed in $\mathbf{r} 2$. If add is non-zero, then the products are XOR'd with the bytes in $\mathbf{r} 2$.
- galois_w16_region_multiply() and galois_w32_region_multiply() are identical to galois _w08 region multiply(), except they are in $G F\left(2^{16}\right)$ and $G F\left(2^{32}\right)$ respectively.

7 Part 2 of the Library: Kernel Routines

The files jerasure.h and jerasure.c implement procedures that are common to many aspects of coding. We give example programs that make use of them in Section 7.7 below.

Before describing the procedures that compose jerasure.c, we detail the arguments that are common to multiple procedures:

- int \mathbf{k} : The number of data devices.
- int $\mathbf{~ m}$: The number of coding devices.
- int w: The word size of the code.
- int packetsize: The packet size as defined in section 1. This must be a multiple of sizeof(long).
- int size: The total number of bytes per device to encode/decode. This must be a multiple of sizeof(long). If a bit-matrix is being employed, then it must be a multiple of packetsize $* \mathbf{w}$. If one desires to encode data blocks that do not conform to these restrictions, than one must pad the data blocks with zeroes so that the restrictions are met.
- int *matrix: This is an array with $\mathbf{k} * \mathbf{m}$ elements that represents the coding matrix - i.e. the last \mathbf{m} rows of the distribution matrix. Its elements must be between 0 and $2^{\mathbf{w}}-1$. The element in row i and column j is in matrix $[\mathbf{i} \mathbf{k} \mathbf{k} \mathbf{j}]$.
- int *bitmatrix: This is an array of $\mathbf{w}^{*} \mathbf{m}^{*} \mathbf{w} * \mathbf{k}$ elements that compose the last $\mathbf{w m}$ rows of the BDM. The element in row i and column j is in bitmatrix $[\mathbf{i} * \mathbf{k} * \mathbf{w}+\mathbf{j}]$.
- char ${ }^{* *}$ data_ptrs: This is an array of \mathbf{k} pointers to size bytes worth of data. Each of these must be long word aligned.
- char ${ }^{* *}$ coding_ptrs: This is an array of \mathbf{m} pointers to size bytes worth of coding data. Each of these must be long word aligned.
- int *erasures: This is an array of id's of erased devices. Id's are numbers between 0 and $\mathbf{k} \mathbf{+ m} \mathbf{- 1}$ as described in Section 4.1. If there are e erasures, then elements 0 through $e-1$ of erasures identify the erased devices, and erasures $[e]$ must equal -1 .
- int *erased: This is an alternative way of specifying erasures. It is a $\mathbf{k}+\mathbf{m}$ element array. Element i of the array represents the device with id i. If erased[i] equals 0 , then device i is working. If erased $[i]$ equals 1 , then it is erased.
- int ${ }^{* *}$ schedule: This is an array of 5-element integer arrays. It represents a schedule as defined in Section 4.1. If there are o operations in the schedule, then schedule must have at least $o+1$ elements, and schedule[$o][0]$ should equal -1 .
- int $* * *$ cache: When \mathbf{m} equals 2 , there are few enough combinations of failures that one can precompute all possible decoding schedules. This is held in the cache variable. We will not describe its structure - just that it is an (int $* * *$).
- int row_k_ones: When $m>1$ and the first row of the coding matrix is composed of all ones, then there are times when we can improve the performance of decoding by not following the methodology described in Section 3. This is true when coding device zero is one of the survivors, and more than one data device has been erased. In this case, it is better to decode all but one of the data devices as described in Section 3, but decode the last data device using the other data devices and coding device zero. For this reason, some of the decoding procedures take a paramater row_k_ones, which should be one if the first row of matrix is all ones. The same optimization is available when the first w rows of bitmatrix compose k identity matrices - row \mathbf{k} _ones should be set to one when this is true as well.
- int *decoding_matrix: This is a $k \times k$ matrix or $w k \times w k$ bit-matrix that is used to decode. It is the matrix constructed by employing relevant rows of the distribution matrix and inverting it.
- int *dm_ids: As described in Section 3, we create the decoding matrix by selecting k rows of the distribution matrix that correspond to surviving devices, and then inverting that matrix. This yields decoding matrix. The product of decoding_matrix and these survivors is the original data. dm jds is a vector with k elements that contains the id's of the devices corresponding to the rows of the decoding matrix. In other words, this contains the id's of the survivors. When decoding with a bit-matrix dm ids still has k elements - these are the id's of the survivors that correspond to the k super-rows of the decoding matrix.

7.1 Matrix/Bitmatrix/Schedule Creation Routines

When we use an argument from the list above, we omit its type for brevity.

- int *jerasure_matrix_to_bitmatrix(k, m, w, matrix): This converts a $m \times k$ matrix in $G F\left(2^{w}\right)$ to a $w m \times w k$ bit-matrix, using the technique described in $\left[\mathrm{BKK}^{+} 95\right]$. If matrix is a coding matrix for an MDS code, then the returned bit-matrix will also describe an MDS code.
- int $* *$ jerasure_dumb_bitmatrix_to_schedule($\mathbf{k}, \mathbf{m}, \mathbf{w}$, bitmatrix): This converts the given bit-matrix into a schedule of coding operations using the straightforward technique of simply traversing each row of the matrix and scheduling XOR operations whenever a one is encountered.
- int $* * \mathbf{j}$ erasure_smart_bitmatrix_to_schedule(k, m, w, bitmatrix): This converts the given bit-matrix into a schedule of coding operations using the optimization described in [Pla08b]. Basically, it tries to use encoded bits (or decoded bits) rather than simply the data (or surviving) bits to reduce the number of XORs. Note, that when a smart schedule is employed for decoding, we don't need to specify row \mathbf{k} ones, because the schedule construction technique automatically finds this optimization.
- int $* * *$ jerasure_generate_schedule_cache $(\mathbf{k}, \mathbf{m}, \mathbf{w}$, bitmatrix, int smart): This only works when $m=2$. In this case, it generates schedules for every combination of single and double-disk erasure decoding. It returns a cache of these schedules. If smart is one, then jerasure smart bitmatrix to schedule() is used to create the schedule. Otherwise, jerasure_dumb_bitmatrix_to_schedule() is used.
- void jerasure_free_schedule(schedule): This frees all allocated memeory for a schedule that is created by either jerasure_dumb_bitmatrix_to_schedule() or jerasure_smart_bitmatrix_to_schedule().
- void jerasure_free_schedule_cache(k, m, cache): This frees all allocated data for a schedule cache created by jerasure_generate_schedule_cache().

7.2 Encoding Routines

- void jerasure_do_parity (\mathbf{k}, data_ptrs, char *parity ptr, size): This calculates the parity of size bytes of data from each of k regions of memory accessed by data ptrs. It puts the result into the size bytes pointed to by parity_ptr. Like each of data_ptrs, parity ptr must be long word aligned, and size must be a multiple of sizeof(long).
- void jerasure_matrix_encode(k, m, w, matrix, data ptrs, coding_ptrs, size): This encodes with a matrix in $G F\left(2^{w}\right)$ as described in Section 3 above. w must be $\in\{8,16,32\}$.
- void jerasure_bitmatrix_encode(\mathbf{k}, \mathbf{m}, w, bitmatrix, data ptrs, coding ptrs, size, packetsize): This encodes with a bit-matrix. Now w may be any number between 1 and 32 .
- void jerasure_schedule_encode(k, m, w, schedule, data_ptrs, coding_ptrs, size, packetsize): This encodes with a schedule created from either jerasure _dumb bitmatrix to schedule() or jerasure smart bitmatrix to_schedule().

7.3 Decoding Routines

Each of these returns an integer which is zero on success or -1 if unsuccessful. Decoding can be unsuccessful if there are too many erasures.

- int jerasure_matrix_decode(\mathbf{k}, \mathbf{m}, w matrix, row_k_ones, erasures, data ptrs, coding ptrs, size): This decodes using a matrix in $G F\left(2^{w}\right), w \in\{8,16,32\}$. This works by creating a decoding matrix and performing the matrix/vector product, then re-encoding any erased coding devices. When it is done, the decoding matrix is discarded. If you want access to the decoding matrix, you should use jerasure make decoding matrix() below.
- int jerasure_bitmatrix_decode $(k, m, w$ bitmatrix, row_k_ones, erasures, data ptrs, coding ptrs, size, packetsize): This decodes with a bit-matrix rather than a matrix. Note, it does not do any scheduling - it simply creates the decoding bit-matrix and uses that directly to decode. Again, it discards the decoding bit-matrix when it is done.
- int jerasure_schedule_decode」lazy(\mathbf{k}, m, w bitmatrix, erasures, data_ptrs, coding_ptrs, size, packetsize, int smart): This decodes by creating a schedule from the decoding matrix and using that to decode. If smart is one, then jerasure_smart_bitmatrix_to_schedule() is used to create the schedule. Otherwise, jerasure dumb_bitmatrix_to_schedule() is used. Note, there is no row $\mathbf{k} _$_ones, because if smart is one, the schedule created will find that optimization anyway. This procedure is a bit subtle, because it does a little more than simply create the decoding matrix - it creates it and then adds rows that decode failed coding devices from the survivors. It derives its schedule from that matrix. This technique is also employed when creating a schedule cache using jerasure_generate_schedule_cache(). The schedule and all data structures that were allocated for decoding are freed when this procedure finishes.
- int jerasure_schedule_decode_cache(\mathbf{k}, \mathbf{m}, w cache, erasures, data_ptrs, coding_ptrs, size, packetsize): This uses the schedule cache to decode when $m=2$.
- int jerasure_make_decoding_matrix(k, m, w matrix, erased, decoding_matrix, dm_ids): This does not decode, but instead creates the decoding matrix. Note that both decoding matrix and dm jds should be allocated and passed to this procedure, which will fill them in. Decoding matrix should have k^{2} integers, and dm_ids should have k integers.
- int jerasure_make_decoding_bitmatrix(k, m, w matrix, erased, decoding_matrix, dm jids): This does not decode, but instead creates the decoding bit-matrix. Again, both decoding matrix and dm jds should be allocated and passed to this procedure, which will fill them in. This time decoding matrix should have $k^{2} w^{2}$ integers, while dm_ids still has k integers.
- int *jerasure_erasures_to_erased(\mathbf{k}, \mathbf{m}, erasures): This converts the specification of erasures defined above into the specification of erased also defined above.

7.4 Dot Product Routines

- void jerasure_matrix_dotprod(k, w, int *matrix_row, int *src jds, int dest id, data ptrs, coding ptrs, size): This performs the multiplication of one row of an encoding/decoding matrix times data/survivors. The id's of the source devices (corresponding to the id's of the vector elements) are in src ids. The id of the destination device is in dest_id. w must be $\in\{8,16,32\}$. When a one is encountered in the matrix, the proper XOR/copy operation is performed. Otherwise, the operation is multiplication by the matrix element in $G F\left(2^{w}\right)$ and an XOR into the destination.
- void jerasure_bitmatrix_dotprod(k, w, int *bitmatrix row, int *src jds, int dest id, data ptrs, coding ptrs, size, packetsize): This is the analogous procedure for bit-matrices. It performs w dot products according to the w rows of the matrix specified by bitmatrix row.
- void jerasure_do_scheduled_operations(char **ptrs, schedule, packetsize): This performs a schedule on the pointers specified by ptrs. Although w is not specified, it performs the schedule on w (packetsize) bytes. It is assumed that ptrs is the right size to match schedule. Typically, this is $k+m$.

7.5 Basic Matrix Operations

- int jerasure_invert_matrix(int *mat, int *inv, int rows, int w): This inverts a (rows \times rows) matrix in $G F\left(2^{w}\right)$. It puts the result in inv, which must be allocated to contain rows ${ }^{2}$ integers. The matrix mat is destroyed after the inversion. It returns 0 on success, or -1 if the matrix was not invertible.
- int jerasure_invert_bitmatrix(int *mat, int *inv, int rows): This is the analogous procedure for bit-matrices. Obviously, one can call jerasure invert matrix() with $w=1$, but this procedure is faster.
- int jerasure_invertible_matrix(int *mat, int rows, int w): This does not perform the inversion, but simply returns 1 or 0 , depending on whether mat is invertible. It destroys mat.
- int jerasure_invertible_bitmatrix(int *mat, int rows): This is the analogous procedure for bit-matrices.
- void jerasure_print_matrix(int *matrix, int rows, int cols, int w): This prints a matrix composed of elements in $G F\left(2^{w}\right)$ on standard output. It uses w to determine spacing.
- void jerasure_print_bitmatrix(int *matrix, int rows, int cols, int w): This prints a bit-matrix on standard output. It inserts a space between every w characters, and a blank line after every w lines. Thus super-rows and super-columns are easy to identify.
- int *jerasure_matrix_multiply(int *m1, int *m2, int r1, int $\mathbf{c} 1$, int $\mathbf{r 2}$, int $\mathbf{c 2}$, int \mathbf{w}): This performs matrix multiplication in $G F\left(2^{w}\right)$. The matrix $\mathbf{m} \mathbf{1}$ should be a $(\mathbf{r} 1 \times \mathbf{c} 1)$ matrix, and $\mathbf{m} \mathbf{2}$ should be a $(\mathbf{r} \mathbf{2} \times \mathbf{c} 2)$ matrix. Obviously, $\mathbf{c 1}$ should equal $\mathbf{r} 2$. It will return a $(\mathbf{r} 1 \times \mathbf{c} 2)$ matrix equal to the product.

7.6 Statistics

Finally, jerasure.c keeps track of three quantities:

- The number of bytes that have been XOR'd using galois region xor().
- The number of bytes that have been multiplied by a constant in $G F\left(2^{w}\right)$, using galois_w08_region_multiply(), galois_w16_region_multiply() or galois_w32 region_multiply().
- The number of bytes that have been copied using memcpy().

There is one procedure that allows access to those values:

- void jerasure_get_stats(double *fill_in): The argument fillin should be an array of three doubles. The procedure will fill in the array with the three values above in that order. The unit is bytes. After calling jerasure get_stats(), the counters that keep track of the quantities are reset to zero.

The procedure galois_w08_region_multiply() and its kin have a parameter that causes it to XOR the product with another region with the same overhead as simply performing the multiplication. For that reason, when these procedures are called with this functionality enabled, the resulting XORs are not counted with the XOR's performed with galois_region_xor().

7.7 Example Programs to Demonstrate Use

In the Examples directory, there are eight programs that demonstrate nearly every procedure call in jerasure.c. They are as follows:

- jerasure_01.c: This takes three parameters: r, c and w. It creates an $r \times c$ matrix in $G F\left(2^{w}\right)$, where the element in row i, column j is equal to $2^{c i+j}$ in $G F\left(2^{w}\right)$. Rows and columns are zero-indexed. Example:

```
UNIX> jerasure_01 3 15 8
    1
    38
    96
UNIX>
```

This demonstrates usage of jerasure_print_matrix() and galois single multiply().

- jerasure_02.c: This takes three parameters: r, c and w. It creates the same matrix as in jerasure 01, and then converts it to a $r w \times c w$ bit-matrix and prints it out. Example:

```
UNIX> jerasure_01 3 10 4
    1
    7
    6
UNIX> jerasure_02 3 10 4
1000 0001 0010-0100 1001 0011 0110 1101 1010 0101
0100 1001 0011 0110 1101 1010 0101 1011 0111 1111
0010 0100 1001 0011 0110 1101 1010 0101 1011 0111
0 0 0 1 0 0 1 0 0 1 0 0 ~ 1 0 0 1 ~ 0 0 1 1 ~ 0 1 1 0 ~ 1 1 0 1 ~ 1 0 1 0 ~ 0 1 0 1 ~ 1 0 1 1
1011 0111 1111 1110 1100 1000 0001 0010 0100 1001
1110 1100 1000 0001 0010 0100 1001 0011 0110 1101
1111 1110 1100 1000 0001 0010 0100 1001 0011 0110
0111 1111 1110 1100 1000 0001 0010 0100 1001 0011
0011 0110 1101 1010 0101 1011 0111 1111 1110 1100
1010 0101 1011 0111 1111 1110 1100 1000 0001 0010
1101 1010 0101 1011 0111 1111 1110 1100 1000 0001
0110 1101 1010 0101 1011 0111 1111 1110 1100 1000
UNIX>
```

This demonstrates usage of jerasure_print 」bitmatrix() and jerasure matrix to bitmatrix().

- jerasure_03.c: This takes three parameters: k and w. It creates a $k \times k$ Cauchy matrix in $G F\left(2^{w}\right)$, and tests invertibility.
The parameter k must be less than 2^{w}. The element in row i, column j is set to:

$$
\frac{1}{i \oplus\left(2^{w}-j-1\right)}
$$

where division is in $G F\left(2^{w}\right), \oplus$ is XOR and subtraction is regular integer subtraction. When $k>2^{w-1}$, there will be i and j such that $i \oplus\left(2^{w}-j-1\right)=0$. When that happens, we set that matrix element to zero.
After creating the matrix and printing it, we test whether it is invertible. If $k \leq 2^{w-1}$, then it will be invertible. Otherwise it will not. Then, if it is invertible, it prints the inverse, then multplies the inverse by the original matrix and prints the product which is the identity matrix. Examples:

```
UNIX> jerasure_03 4 3
The Cauchy Matrix:
4 3 2 7
3474
274 3
7 2 3 4
Invertible: Yes
Inverse:
125}
2 1 3 5
5 3 1 2
3 2 1
Inverse times matrix (should be identity):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
UNIX> jerasure_03 5 3
The Cauchy Matrix:
4 3 2 7 6
34725
2 7 4 3 1
7 2 3 4 0
6 5 1 0 4
Invertible: No
UNIX>
```

This demonstrates usage of jerasure print_matrix(), jerasure invertible matrix(), jerasure invert matrix() and jerasure_matrix_multiply().

- jerasure_04.c: This does the exact same thing as jerasure_03, except it uses jerasure matrix to bitmatrix() to convert the Cauchy matrix to a bit-matrix, and then uses the bit-matrix operations to test invertibility and to invert the matrix. Examples:

```
UNIX> jerasure_04 4 3
The Cauchy Bit-Matrix:
010 101 001 111
011 111 101 100
101 011 010 110
101 010 111 001
111 011 100 101
011 101 110 010
001 111 010 101
101 100 011 111
010110 101 011
111001 101 010
100 101 111 011
110 010 011 101
```

```
Invertible: Yes
Inverse:
100 001 110 101
010101 001 111
001 010 100 011
001 100 101 110
101 010 111 001
010 001 011 100
110101 100 001
001 111 010 101
1 0 0 0 1 1 0 0 1 0 1 0
101 110 001 100
111001 101 010
011 100 010 001
Inverse times matrix (should be identity):
100 000 000 000
010000 000 000
001 000 000 000
000 100 000 000
000 010 000 000
000 001 000 000
000 000 100 000
000 000 010 000
000 000 001 000
000 000 000 100
000 000 000 010
000 000 000 001
UNIX> jerasure 04 5 3
The Cauchy Bit-Matrix:
010 101 001 111 011
011 111 101 100 110
101 011 010 110 111
101 010 111 001 110
111 011 100 101 001
011 101 110 010 100
001 111 010 101 100
101 100 011 111 010
010 110 101 011 001
111001 101 010 000
100 101 111 011 000
110 010 011 101 000
011 110 100 000 010
110 001 010 000 011
111 100 001 000 101
```

```
Invertible: No
UNIX>
```

This demonstrates usage of jerasure _print _bitmatrix(), jerasure matrix to bitmatrix(), jerasure invertible = bitmatrix(), jerasure_invert_bitmatrix() and jerasure matrix _multiply().

- jerasure_05.c: This takes four parameters: k, m, w and $s i z e$, and performs a basic Reed-Solomon coding example in $G F\left(2^{w}\right)$. w must be either 8,16 or 32 , and the sum $k+m$ must be less than or equal to 2^{w}. The total number of bytes for each device is given by size which must be a multiple of sizeof(long). It first sets up an $m \times k$ Cauchy coding matrix where element i, j is:

$$
\frac{1}{i \oplus(m+j)}
$$

where division is in $G F\left(2^{w}\right), \oplus$ is XOR, and addition is standard integer addition. It prints out these m rows. The program then creates k data devices each with size bytes of random data and encodes them into m coding devices using jerasure_matrix_encode(). It prints out the data and coding in hexadecimal- one byte is represented by 2 hex digits. Next, it erases m random devices from the collection of data and coding devices, and prints the resulting state. Then it decodes the erased devices using jerasure matrix decode() and prints the restored state. Next, it shows what the decoding matrix looks like when the first m devices are erased. This matrix is the inverse of the last k rows of the distribution matrix. And finally, it uses jerasure matrix dotprod() to show how to explicitly calculate the first data device from the others when the first m devices have been erased. Here is an example for $w=8$ with 3 data devices and 4 coding devices each with a size of 4 bytes:

```
UNIX> jerasure_05 3 4 8 4
The Coding Matrix (the last m rows of the Distribution Matrix):
71 167 122
Encoding Complete:
Data Coding
D0 : 13 e6 54 d3 C0 : 42 99 56 f0
D1 : 14 fd 2d cc C1 : ed f2 c1 94
D2 : 1d b9 a1 a6 C2 : 80 2d 8d 6f
    C3 : 48 bf 18 b5
Erased 4 random devices:
Data Coding
D0 : 13 e6 54 d3 C0 : 00 00 00 00
D1 : 00 00 00 00 C1 : 00 00 00 00
D2 : 00 00 00 00 C2 : 80 2d 8d 6f
    C3 : 48 bf 18 b5
State of the system after decoding:
Data Coding
D0 : 13 e6 54 d3 C0 : 42 99 56 f0
D1 : 14 fd 2d cc C1 : ed f2 c1 94
```

```
D2 : 1d b9 a1 a6 C2 : 80 2d 8d 6f
    C3 : 48 bf 18 b5
Suppose we erase the first 4 devices. Here is the decoding matrix:
130
252 221 25
108 252 130
And dm_ids:
    4 5 6
After calling jerasure_matrix_dotprod, we calculate the value of device 0 to be:
DO : 13 e6 54 d3
UNIX>
```

Referring back to the conceptual model in Figure 3, it should be clear in this encoding how the first w bits of C_{0} are calculated from the first w bits of each data device:

$$
\text { byte } 0 \text { of } C_{0}=\left(71 \times \text { byte } 0 \text { of } D_{0}\right) \oplus\left(167 \times \text { byte } 0 \text { of } D_{1}\right) \oplus\left(122 \times \text { byte } 0 \text { of } D_{2}\right)
$$

where multiplication is in $G F\left(2^{8}\right)$.
However, keep in mind that the implementation actually performs dot products on groups of bytes at a time. So in this example, where each device holds 4 bytes, the dot product is actually:

$$
4 \text { bytes of } C_{0}=\left(71 \times 4 \text { bytes of } D_{0}\right) \oplus\left(167 \times 4 \text { bytes of } D_{1}\right) \oplus\left(122 \times 4 \text { bytes of } D_{2}\right)
$$

This is accomplished using galois_w08_region_multiply().
Here is a similar example, this time with $w=16$ and each device holding 12 bytes:

```
UNIX> jerasure_05 3 4 16 12
The Coding Matrix (the last m rows of the Distribution Matrix):
5223120482 30723
2048252231 27502
307232750252231
2750230723 20482
Encoding Complete:
Data
D0 : 13e6 54d3 14fd 2dcc 1db9 a1a6
D1 : 60c0 cc12 36eb 7fa1 5f96 41b5 C1 : e47a ed35 3391 e02b 5e0c bcf8
D2 : b26b 4631 aa21 0772 3b47 8df8 C2 : b419 73ce af12 f7a2 a943 d33a
    Coding
    C0 : 28a1 71c9 f807 4440 dbaa 2cc2
    C3 : 2a9a 3548 e424 ba90 ef76 dfe6
Erased 4 random devices:
Data
D0 : 13e6 54d3 14fd 2dcc 1db9 ala6
Coding
    C0 : 0000 0000 0000 0000 0000 0000
D1 : 0000 0000 0000 0000 0000 0000 C1 : e47a ed35 3391 e02b 5e0c bcf8
```

```
D2 : 0000 0000 0000 0000 0000 0000 C2 : 0000 0000 0000 0000 0000 0000
    C3 : 2a9a 3548 e424 ba90 ef76 dfe6
State of the system after decoding:
Data
D0 : 13e6 54d3 14fd 2dcc 1db9 a1a6
D1 : 60c0 cc12 36eb 7fa1 5f96 41b5 C1 : e47a ed35 3391 e02b 5e0c bcf8
    Coding
    C0 : 28a1 71c9 f807 4440 dbaa 2cc2
D2 : b26b 4631 aa21 0772 3b47 8df8 C2 : b419 73ce af12 f7a2 a943 d33a
    C3 : 2a9a 3548 e424 ba90 ef76 dfe6
Suppose we erase the first 4 devices. Here is the decoding matrix:
    130 260 427
    252 448 260
    108 252 130
And dm_ids:
    4 5 6
After calling jerasure_matrix_dotprod, we calculate the value of device 0 to be:
D0 : 13e6 54d3 14fd 2dcc 1db9 a1a6
UNIX>
```

In this encoding, the 616 -bit half-words of C_{0} are calculated as:

$$
\left(52231 \times 6 \text { half-words of } D_{0}\right) \oplus\left(20482 \times 6 \text { half-words of } D_{1}\right) \oplus\left(30723 \times 6 \text { half-words of } D_{2}\right)
$$

using galois_w16_region_multiply().

This program demonstrates usage of jerasure matrix encode(), jerasure matrix decode(), jerasure print = matrix(), jerasure_make_decoding_matrix() and jerasure matrix dotprod().

- jerasure_06.c: This takes four parameters: k, m, w and packetsize, and performs a similar example to jerasure_05, except it uses Cauchy Reed-Solomon coding in $G F\left(2^{w}\right)$, converting the coding matrix to a bit-matrix. $k+m$ must be less than or equal to 2^{w} and packetsize must be a multiple of sizeof(long). It sets up each device to hold a total of $w *$ packetsize bytes. Here, packets are numbered p_{0} through p_{w-1} for each device. It then performs the same encoding and decoding as the previous example but with the corresponding bit-matrix procedures.
Here is a run with 3 data devices and 4 coding devices with $w=3$ and a packetsize of 4 bytes. (Each device will hold $3 * 4=12$ bytes.)

```
UNIX> jerasure_06 3 4 3 4
Last (m * w) rows of the Binary Distribution Matrix:
111001 101
100 101 111
110 010 011
001 111 010
101 100 011
```

010110101						
101	010	111				
111	011	100				
011	101	110				
010	101	001				
011	111	101				
101	011	010				
Encoding Complete:						
Data			Coding			
D0	p0 :	: 15ddb16e	C0	p0	:	15a44685
	p1 :	: 5ffcc9c0		p1		0655bb70
	p2 :	: 0c55e80a		p2		432bc16a
D1	p0 :	: 6f6b6791	C1	p0	:	617d3117
	p1 :	: 49e514d0		p1	:	360c93e1
	p2 :	: 649511f2		p2		4e377d52
D2	p0 :	: 5899d169	C2	p0	:	481b31c9
	p1 :	: 2f33bbae		p1	:	339d44ef
	p2 :	: 6fdc16ba		p2	:	2ffd3d6e
			C3	p0	:	3bdea919
				p1		26f784aa
				p2	:	1bcbe7e8
Erased 4 random devices:						
Data			Coding			
D0	p0 :	: 00000000	C0	p0	:	00000000
	p1 :	: 00000000		p1	:	00000000
	p2 :	: 00000000		p2	:	00000000
D1	p0 :	: 6f6b6791	C1	p0	:	617 d 3117
	p1 :	: 49e514d0		p1	:	360c93e1
	p2 :	: 649511f2		p2	:	4e377d52
D2	p0 :	: 00000000	C2	p0	:	481b31c9
	p1 :	: 00000000		p1	:	339d44ef
	p2 :	: 00000000		p2	:	2ffd3d6e
			C3	p0	:	00000000
				p1	:	00000000
				p2		00000000

State of the system after decoding:
Data Coding

D0 p0 : 15ddb16e C0 p0 : 15a44685 p1 : 5ffcc9c0 p1 : 0655bb70 p2 : 0c55e80a p2 : 432bc16a
D1 p0 : 6f6b6791 C1 p0 : 617d3117 p1 : 49e514d0 p1 : 360c93e1 p2 : 649511f2 p2 : 4e377d52
D2 p0 : 5899d169 p1 : 2f33bbae p1 : 339d44ef p2 : 6fdc16ba p2 : 2ffd3d6e

C3 p0 : 3bdea919
p1 : 26f784aa
p2 : 1bcbe7e8

```
Suppose we erase the first 4 devices. Here is the decoding matrix:
101 011 010
111 110 011
011 111 101
0 0 1 0 1 1 0 1 1
101 110 110
010111 111
110 001 101
001 101 111
100 010 011
And dm_ids:
456
After calling jerasure_matrix_dotprod, we calculate the value of device 0, packet 0 to be:
D0 p0 : 15ddb16e
UNIX>
```

In this encoding, the first packet of C_{0} is computed according to the six ones in the first row of the coding matrix:

$$
C_{0} p_{0}=D_{0} p_{0} \oplus D_{0} p_{1} \oplus D_{0} p_{2} \oplus D_{1} p_{2} \oplus D_{2} p_{0} \oplus D_{2} p_{2}
$$

These dotproducts are accomplished with galois region xor().
This program demonstrates usage of jerasure bitmatrix encode(), jerasure bitmatrix decode(), jerasure = print_bitmatrix(), jerasure_make_decoding_bitmatrix() and jerasure bitmatrix dotprod().

- jerasure_07.c: This takes three parameters: k, m and w. It performs the same coding/decoding as in jerasure_06, except it uses bit-matrix scheduling instead of bit-matrix operations. The packetsize is set at sizeof(long) bytes. It creates a "dumb" and "smart" schedule for encoding, encodes with them and prints out how many XORs each took. The smart schedule will outperform the dumb one.
Next, it erases m random devices and decodes using jerasure schedule decode Jazy(). Finally, it shows how to use jerasure_do_scheduled_operations() in case you need to do so explicitly.
Example:

```
UNIX> jerasure_07 3 4 3
Last m rows of the Binary Distribution Matrix:
```

111	001	101
100	101	111
110	010	011
001	111	010
101	100	011
010	110	101
101	010	111

Smart Encoding Complete: - 132 XOR'd bytes

Data		Coding		
D0	p0 : 15ddb16e	C0	p0	: 15a44685
	p1 : 5ffcc9c0		p1	: 0655bb70
	p2 : 0c55e80a		p2	: 432bc16a
D1	p0 : 6f6b6791	C1	p0	: 617d3117
	p1 : 49e514d0			: 360c93e1
	p2 : 649511f2		p2	: 4e377d52
D2	p0 : 5899d169	C2	p0	: 481b31c9
	p1 : 2f33bbae			: 339d44ef
	p2 : 6fdc16ba		p2	: 2ffd3d6e
		C3	p0	: 3bdea919
				: 26f784aa
			p2	: 1bcbe7e8

Erased 4 random devices:

Dat			Cod	ing	
D0	p0	: 00000000	C0	p0	: 00000000
		: 00000000		p1	: 00000000
		: 00000000			: 00000000
D1		: 6f6b6791	C1	p0	: 617d3117
		: 49e514d0		p1	: 360c93e1
		: 649511f2		p2	: 4e377d52
D2	p0	: 00000000	C2	p0	: 481b31c9
		: 00000000		p1	: 339d44ef
		: 00000000		p2	: 2ffd3d6e
			C3	p0	: 00000000
				p1	: 00000000
				p2	: 00000000

Data		Coding	
D0	p0 : 15ddb16e	C0	p0 : 15a44685
	p1 : 5ffcc9c0		p1 : 0655bb70
	p2 : 0c55e80a		p2 : 432bc16a
D1	p0 : 6f6b6791	C1	p0 : 617d3117
	p1 : 49e514d0		p1 : 360c93e1
	p2 : 649511f2		p2 : 4e377d52
D2	p0 : 5899d169	C2	p0 : 481b31c9
	p1 : 2f33bbae		p1 : 339d44ef
	p2 : 6fdc16ba		p2 : 2ffd3d6e
		C3	p0 : 3bdea919
			p1 : 26f784aa
			p2 : 1bcbe7e8
State of the system after deleting the coding devices and using jerasure_do_scheduled_operations(): 124 XOR'd bytes			
Data		Coding	
D0	p0 : 15ddb16e	C0	p0 : 15a44685
	p1 : 5ffcc9c0		p1 : 0655bb70
	p2 : 0c55e80a		p2 : 432bc16a
D1	p0 : 6f6b6791	C1	p0 : 617d3117
	p1 : 49e514d0		p1 : 360c93e1
	p2 : 649511f2		p2 : 4e377d52
D2	p0 : 5899d169	C2	p0 : 481b31c9
	p1 : 2f33bbae		p1 : 339d44ef
	p2 : 6fdc16ba		p2 : 2ffd3d6e
		C3	p0 : 3bdea919
			p1 : 26f784aa
			p2 : 1bcbe7e8

UNIX>

This demonstrates usage of jerasure_dumb_bitmatrix to schedule(), jerasure smart bitmatrix to schedule(), jerasure_schedule_encode(), jerasure_schedule_decode_lazy(), jerasure_do _scheduled_operations() and jerasure_get_stats().

- jerasure_08.c: This takes two parameters: k and w, and performs a simple RAID-6 example using a schedule cache. Again, packetsize is sizeof(long). It sets up a RAID-6 coding matrix whose first row is composed of ones, and where the element in column j of the second row is equal to 2^{j} in $G F\left(2^{w}\right)$. It converts this to a bit-matrix and creates a smart encoding schedule and a schedule cache for decoding.
It then encodes twice - first with the smart schedule, and then with the schedule cache, by setting the two coding devices as the erased devices. Next it deletes two random devices and uses the schedule cache to decode them. Next, it deletes the first coding devices and recalculates it using jerasure do parity() to demonstrate that procedure. Finally, it frees the smart schedule and the schedule cache.
Example:

```
UNIX> jerasure_08 5 3
Encoding Complete: - 124 XOR'd bytes
Data Coding
D0 p0 : 15ddb16e C0 p0 : 20b37529
    p1 : 5ffcc9c0 p1 : 217c9aaa
    p2 : 0c55e80a p2 : 18222f93
```

```
D1 p0 : 6f6b6791
    p1 : 49e514d0
    p2 : 649511f2
D2 p0 : 5899d169
    p1 : 2f33bbae
    p2 : 6fdc16ba
D3 p0 : 5f5f46b4
    p1 : 39180848
    p2 : 2d46f73b
D4 p0 : 5dc3340b
    p1 : 214ef45c
    p2 : 327837ea
```

Encoding Using the Schedule Cache: - 124 XOR'd bytes

Data			Coding		
D0	p0	: 15ddb16e	C0		: 20b37529
	p1	: 5ffcc9c0			: 217c9aaa
	p2	: 0c55e80a			: 18222f93
D1	p0	: 6f6b6791	C1		: 3f54690b
	p1	: 49e514d0			: 23616b27
	p2	: 649511f2			: 285e33c7
D2	p0	: 5899d169			
	p1	: 2f33bbae			
	p2	: 6fdc16ba			
D3	p0	: 5f5f46b4			
		: 39180848			
		: 2d46f73b			
D4		: 5dc3340b			
		: 214ef45c			
		: 327837ea			

Erased 2 random devices:

Data		Coding		
D0	p0 : 15ddb16e	C0		20b37529
	p1 : 5ffcc9c0			217c9aaa
	p2 : 0c55e80a			18222f93
D1	p0 : 00000000	C1		3f54690b
	p1 : 00000000		p1	23616b27
	p2 : 00000000			285e33c7
D2	p0 : 5899d169			
	p1 : 2f33bbae			
	p2 : 6fdc16ba			
D3	p0 : 00000000			
	p1 : 00000000			
	p2 : 00000000			
D4	p0 : 5dc3340b			
	p1 : 214ef45c			
	p2 : 327837ea			

State of the system after decoding: 124 XOR'd bytes

Data		Coding		
D0 p0	15ddb16e	C0	p0	: 20b37529
p1	5ffcc9c0			: 217c9aaa
p2	0c55e80a			18222f93

```
D1 p0 : 6f6b6791 C1 p0 : 3f54690b
    p1 : 49e514d0 p1 : 23616b27
    p2 : 649511f2 p2 : 285e33c7
D2 p0 : 5899d169
    p1 : 2f33bbae
    p2 : 6fdc16ba
D3 p0 : 5f5f46b4
    p1 : 39180848
    p2 : 2d46f73b
D4 p0 : 5dc3340b
    p1 : 214ef45c
    p2 : 327837ea
State of the system after deleting coding device 0 and using
jerasure_do_parity to re-encode it:
Data Coding
D0 p0 : 15ddb16e C0 p0 : 20b37529
    p1 : 5ffcc9c0 p1 : 217c9aaa
    p2 : 0c55e80a p2 : 18222f93
D1 p0 : 6f6b6791 C1 p0 : 3f54690b
    p1 : 49e514d0 p1 : 23616b27
    p2 : 649511f2 p2 : 285e33c7
D2 p0 : 5899d169
    p1 : 2f33bbae
    p2 : 6fdc16ba
D3 p0 : 5f5f46b4
    p1 : 39180848
    p2 : 2d46f73b
D4 p0 : 5dc3340b
    p1 : 214ef45c
    p2 : 327837ea
Smart schedule and cache freed
UNIX>
```

This demonstrates usage of jerasure generate_schedule_cache(), jerasure_smart bitmatrix to schedule(), jerasure_schedule_encode(), jerasure_schedule_decode_cache(), jerasure_free_schedule(), jerasure free _ schedule_cache(), jerasure_get_stats() and jerasure_do parity().

8 Part 3 of the Library: Classic Reed-Solomon Coding Routines

The files reed_sol.h and reed_sol.c implement procedures that are specific to classic Vandermonde matrix-based ReedSolomon coding, and for Reed-Solomon coding optimized for RAID-6. Refer to [Pla97, PD05] for a description of classic Reed-Solomon coding and to [Anv07] for Reed-Solomon coding optimized for RAID-6. Where not specified, the parameters are as described in Section 7.

8.1 Vandermonde Distribution Matrices

There are three procedures for generating distribution matrices based on an extended Vandermonde matrix in $G F\left(2^{w}\right)$. It is anticipated that only the first of these will be needed for coding applications, but we include the other two in case a user wants to look at or modify these matrices.

- int *reed_sol_vandermonde_coding_matrix $(\mathbf{k}, \mathbf{m}, \mathbf{w})$: This returns the last m rows of the distribution matrix in $G F\left(2^{w}\right)$, based on an extended Vandermonde matrix. This is a $m \times k$ matrix that can be used with the matrix routines in jerasure.c. The first row of this matrix is guaranteed to be all ones. The first column is also guaranteed to be all ones.
- int *reed_sol_extended_vandermonde_matrix(int rows, int cols, w): This creates an extended Vandermonde matrix with rows rows and cols columns in $G F\left(2^{w}\right)$.
- int *reed_sol_big_vandermonde_distribution_matrix(int rows, int cols, w): This converts the extended matrix above into a distribution matrix so that the top cols rows compose an identity matrix, and the remaining rows are in the format returned by reed sol_vandermonde_coding matrix().

8.2 Procedures Related to Reed-Solomon Coding Optimized for RAID-6

In RAID-6, m is equal to two. The first coding device, P is calculated from the others using parity, and the second coding device, Q is calculated from the data devices D_{i} using:

$$
Q=\sum_{i=0}^{k-1} 2^{i} D_{i}
$$

where all arithmetic is in $G F\left(2^{w}\right)$. The reason that this is an optimization is that one may implement multiplication by two in an optimized fashion. The following procedures facilitate this optimization.

- int reed_sol_r6_encode(\mathbf{k}, \mathbf{w}, data_ptrs, coding_ptrs, size): This encodes using the optimization. w must be 8,16 or 32 . Note, m is not needed because it is assumed to equal two, and no matrix is needed because it is implicit.
- int *reed_sol_r6_coding_matrix(k, w): Again, w must be 8,16 or 32. There is no optimization for decoding. Therefore, this procedure returns the last two rows of the distribution matrix for RAID-6 for decoding purposes. The first of these rows will be all ones. The second of these rows will have 2^{j} in column j.
- reed_sol_galois_w08_region_multby_2(char *region, int nbytes): This performs the fast multiplication by two in $G F\left(2^{8}\right)$ using Anvin's optimization [Anv07]. region must be long-word aligned, and nbytes must be a multiple of the word size.
- reed_sol_galois_w16_region_multby_2(char *region, int nbytes): This performs the fast multiplication by two in $G F\left(2^{16}\right)$.
- reed_sol_galois_w32_region_multby_2(char *region, int nbytes): This performs the fast multiplication by two in $G F\left(2^{32}\right)$.

8.3 Example Programs to Demonstrate Use

There are four example programs to demonstrate the use of the procedures in reed sol.

- reed_sol_01.c: This takes three parameters: k, m and w. It performs a classic Reed-Solomon coding of k devices onto m devices, using a Vandermonde-based distribution matrix in $G F\left(2^{w}\right)$. w must be 8,16 or 32 . Each device is set up to hold sizeof(long) bytes. It uses reed_sol_vandermonde coding matrix() to generate the distribution matrix, and then procedures from jerasure.c to perform the coding and decoding.
Example:

```
UNIX> reed_sol_01 7 7 8
Last m rows of the Distribution Matrix:
    1
    1 199 210 240 105 121 248
    1
    1 170 114 42 87 78 231
    1
    1 64 174 232 52 237}3
    1 187 104 210 211 105 186
Encoding Complete:
Data Coding
D0 : 6e b1 dd 15 C0 : 7e 23 f6 5c
D1 : c0 c9 fc 5f C1 : 4e 9a cc 16
D2 : 0a e8 55 0c C2 : eb 3b 82 7d
D3 : 91 67 6b 6f C3 : 3f e0 c8 71
D4 : d0 14 e5 49 C4 : 0f 7b 21 eb
D5 : f2 11 95 64 C5 : ca d1 11 5d
D6 : 69 d1 99 58 C6 : 6b e1 0e 16
Erased 7 random devices:
Data Coding
DO : 00 00 00 00 C0 : 00 00 00 00
D1 : c0 c9 fc 5f C1 : 4e 9a cc 16
D2 : 00 00 00 00 C2 : 00 00 00 00
D3 : 91 67 6b 6f C3 : 00 00 00 00
D4 : 00 00 00 00 C4 : 0f 7b 21 eb
D5 : f2 11 95 64 C5 : ca d1 11 5d
D6 : 00 00 00 00 C6 : 6b e1 0e 16
State of the system after decoding:
Data Coding
D0 : 6e b1 dd 15 C0 : 7e 23 f6 5c
D1 : c0 c9 fc 5f C1 : 4e 9a cc 16
D2 : 0a e8 55 0c C2 : eb 3b 82 7d
D3 : 91 67 6b 6f C3 : 3f e0 c8 71
D4 : d0 14 e5 49 C4 : 0f 7b 21 eb
D5 : f2 11 95 64 C5 : ca d1 11 5d
D6 : 69 d1 99 58 C6 : 6b e1 0e 16
UNIX>
```

This demonstrates usage of jerasure matrix _encode(), jerasure matrix decode(), jerasure print matrix() and reed_sol_vandermonde_coding_matrix().

- reed_sol_02.c: This takes three parameters: k, m and w. It creates and prints three matrices in $G F\left(2^{w}\right)$:

1. A $(k+m) \times k$ extended Vandermonde matrix.
2. The $(k+m) \times k$ distribution matrix created by converting the extended Vandermonde matrix into one where the first k rows are an identity matrix. Then row k is converted so that it is all ones, and the first column is also converted so that it is all ones.
3. The $m \times k$ coding matrix, which is last m rows of the above matrix. This is the matrix which is passed to the encoding/decoding procedures of jerasure.c. Note that since the first row of this matrix is all ones, you may set int row_k_ones of the decoding procedures to one.

Note also that w may have any value from 1 to 32 .
Example:

```
UNIX> reed_sol_02 6 4 11
Extended Vandermonde Matrix:
\begin{tabular}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 & 16 & 32 \\
1 & 3 & 5 & 15 & 17 & 51 \\
1 & 4 & 16 & 64 & 256 & 1024 \\
1 & 5 & 17 & 85 & 257 & 1285 \\
1 & 6 & 20 & 120 & 272 & 1632 \\
1 & 7 & 21 & 107 & 273 & 1911 \\
1 & 8 & 64 & 512 & 10 & 80 \\
0 & 0 & 0 & 0 & 0 & 1
\end{tabular}
Vandermonde Distribution Matrix:
\begin{tabular}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1879 & 1231 & 1283 & 682 & 1538 \\
1 & 1366 & 1636 & 1480 & 683 & 934 \\
1 & 1023 & 2045 & 1027 & 2044 & 1026
\end{tabular}
Vandermonde Coding Matrix:
```

1	1	1	1	1	1
1	1879	1231	1283	682	1538
1	1366	1636	1480	683	934
1	1023	2045	1027	2044	1026

UNIX>
This demonstrates usage of reed_sol_extended_vandermonde matrix(), reed_sol big _vandermonde coding _ matrix(), reed_sol_vandermonde_coding_matrix() and jerasure print matrix().

- reed_sol_03.c: This takes two parameters: k and w. It performs RAID-6 coding using Anvin's optimization [Anv07] in $G F\left(2^{w}\right)$, where w must be 8,16 or 32. It then decodes using jerasure matrix decode().
Example:

```
UNIX> reed_sol_03 9 8
Last }2\mathrm{ rows of the Distribution Matrix:
```

1	1	1	1	1	1	1	1	1
1	2	4	8	16	32	64	128	29

```
Encoding Complete:
Data Coding
DO : 6e b1 dd 15 C0 : 6a 8e 19 1c
D1 : c0 c9 fc 5f C1 : e1 c3 fa 8e
D2 : 0a e8 55 0c
D3 : 91 67 6b 6f
D4 : d0 14 e5 49
D5 : f2 11 95 64
D6 : 69 d1 99 58
D7 : ae bb 33 2f
D8 : ba 16 dc 6f
Erased 2 random devices:
Data Coding
D0 : 6e b1 dd 15 C0 : 6a 8e 19 1c
D1 : c0 c9 fc 5f C1 : e1 c3 fa 8e
D2 : 0a e8 55 0c
D3 : 00 00 00 00
D4 : 00 00 00 00
D5 : f2 11 95 64
D6 : 69 d1 99 58
D7 : ae bb 33 2f
D8 : ba 16 dc 6f
State of the system after decoding:
Data Coding
D0 : 6e b1 dd 15 C0 : 6a 8e 19 1c
D1 : c0 c9 fc 5f C1 : e1 c3 fa 8e
D2 : 0a e8 55 0c
D3 : 91 67 6b 6f
D4 : d0 14 e5 49
D5 : f2 11 95 64
D6 : 69 d1 99 58
D7 : ae bb 33 2f
D8 : ba 16 dc 6f
UNIX>
```

This demonstrates usage of reed_sol_r6_encode(), reed_sol_r6_coding_matrix(), jerasure matrix decode() and jerasure_print_matrix().

- reed_sol_04.c: This simply demonstrates doing fast multiplication by two in $G F\left(2^{w}\right)$ for $w \in\{8,16,32\}$. It has one parameter: w.
UNIX> reed_sol_04 16
Short 0: $8562 * 2=17124$
Short 1: $11250 * 2=22500$
Short 2: $16429 * 2=32858$
Short 3: $37513 * 2=13593$
Short 4: $57579 * 2=53725$
Short 5: $24136 * 2=48272$
Short 6: $59268 * 2=57091$
Short $7: 41368 * 2=21307$

UNIX>
This demonstrates usage of reed_sol_galois_w08_region_multby 2() , reed sol galois _w 16 region multby 2() and reed_sol_galois_w32_region_multby_2().

9 Part 4 of the Library: Cauchy Reed-Solomon Coding Routines

The files cauchy.h and cauchy.c implement procedures that are specific to Cauchy Reed-Solomon coding. See [BKK ${ }^{+} 95$, PX06] for detailed descriptions of this kind of coding. The procedures in jerasure.h/jerasure.c do the coding and decoding. The procedures here simply create coding matrices. We don't use the Cauchy matrices described in [PX06], because there is a simple heuristic that creates better matrices:

- Construct the usual Cauchy matrix M such that $M[i, j]=\frac{1}{i \oplus(m+j)}$, where division is over $G F\left(2^{w}\right), \oplus$ is XOR and the addition is regular integer addition.
- For each column j, divide each element (in $G F\left(2^{w}\right)$) by $M[0, j]$. This has the effect of turning each element in row 0 to one.
- Next, for each row $i>0$ of the matrix, do the following:
- Count the number of ones in the bit representation of the row.
- Count the number of ones in the bit representation of the row divided by element $M[i, j]$ for each j.
- Whichever value of j gives the minimal number of ones, if it improves the number of ones in the original row, divide row i by $M[i, j]$.

While this does not guarantee an optimal number of ones, it typically generates a good matrix. For example, suppose $k=m=w=3$. The matrix M is as follows:

$$
\left|\begin{array}{lll}
6 & 7 & 2 \\
5 & 2 & 7 \\
1 & 3 & 4
\end{array}\right|
$$

First, we divide column 0 by 6 , column 1 by 7 and column 2 by 2 , to yield:

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
4 & 3 & 6 \\
3 & 7 & 2
\end{array}\right|
$$

Now, we concentrate on row 1. Its bitmatrix representation has $5+7+7=19$ ones. If we divide it by 4 , the bitmatrix has $3+4+5=12$ ones. If we divide it by 3 , the bitmatrix has $4+3+4=11$ ones. If we divide it by 6 , the bitmatrix has $6+7+3=16$ ones. So, we replace row 1 with row 1 divided by 3 .

We do the same with row 2 and find that it will have the minimal number of ones when it is divided by three. The final matrix is:

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
5 & 1 & 2 \\
1 & 4 & 7
\end{array}\right|
$$

This matrix has 34 ones, a distinct improvement over the original matrix that has 46 ones. The best matrix in [PX06] has 39 ones. This is because the authors simply find the best X and Y, and do not modify the matrix after creating it.

9.1 The Procedures in cauchy.c

The procedures are:

- int *cauchy_original_coding_matrix(k, m,w): This allocates and returns the originally defined Cauchy matrix from $\left[\mathrm{BKK}^{+} 95\right]$. This is the same matrix as defined above: $M[i, j]=\frac{1}{i \oplus(m+j)}$.
- int *cauchy_xy_coding_matrix $(\mathbf{k}, \mathbf{m}, \mathbf{w}, \mathbf{i n t} * \mathbf{X}$, int $* \mathbf{Y})$: This allows the user to specify sets X and Y to define the matrix. Set X has m elements of $G F\left(2^{w}\right)$ and set Y has k elements. Neither set may have duplicate elements and $X \cap Y=\emptyset$. The procedure does not double-check X and Y - it assumes that they conform to these restrictions.
- void cauchy_improve_coding_matrix(k, m, w, matrix): This improves a matrix using the heuristic above, first dividing each column by its element in row 0 , then improving the rest of the rows.
- int *cauchy_good_general_coding_matrix(): This allocates and returns a good matrix. When $m=2, w \leq 11$ and $k \leq 1023$, it will return the optimal RAID-6 matrix. Otherwise, it generates a good matrix by calling cauchy_original_coding_matrix() and then cauchy improve coding matrix(). If you need to generate RAID6 matrices that are beyond the above parameters, see Section 9.3 below.
- int cauchy_n_ones(int \mathbf{n}, \mathbf{w}): This returns the number of ones in the bit-matrix representation of the number n in $G F\left(2^{w}\right)$. It is much more efficient than generating the bit-matrix and counting ones.

9.2 Example Programs to Demonstrate Use

There are four example programs to demonstrate the use of the procedures in cauchy.h/cauchy.c.

- cauchy_01.c: This takes two parameters: n and w. It calls cauchy \mathbf{n} _ones() to determine the number of ones in the bit-matrix representation of n in $G F\left(2^{w}\right)$. Then it converts n to a bit-matrix, prints it and confirms the number of ones:

```
UNIX> cauchy_01 01 5
# Ones: 5
Bitmatrix has 5 ones
10000
01000
00100
00010
00001
UNIX> cauchy_01 31 5
# Ones: 16
Bitmatrix has 16 ones
11110
11111
10001
11000
11100
UNIX>
```

This demonstrates usage of cauchy $_$_ones(), jerasure_matrix to bitmatrix() and jerasure print bitmatrix().

- cauchy_02.c: This takes three parameters: k, m and w. (In this and the following examples, packetsize is sizeof(long).) It calls cauchy_original_coding_matrix() to create an Cauchy matrix, converts it to a bit-matrix then encodes and decodes with it. Smart scheduling is employed. Lastly, it uses cauchy xy coding matrix() to create the same Cauchy matrix. It verifies that the two matrices are indeed identical.
Example:

```
UNIX> cauchy_02 3 3 3
Matrix has 4\overline{6}}\mathrm{ ones
672
5 2 7
144
Smart Encoding Complete: - }112\mathrm{ XOR'd bytes
Data Coding
D0 p0 : 15ddb16e C0 p0 : 7e6e55c3
    p1 : 5ffcc9c0 p1 : 120fd8ec
    p2 : 0c55e80a p2 : 4fc9584b
D1 p0 : 6f6b6791 C1 p0 : 36c21521
    p1 : 49e514d0 p1 : 5f 324f00
    p2 : 649511f2 p2 : 2b92cf79
D2 p0 : 5899d169 C2 p0 : 31107ca3
    p1 : 2f33bbae p1 : 5d080667
    p2 : 6fdc16ba p2 : 16602afb
Erased 3 random devices:
Data Coding
D0 p0 : 15ddb16e C0 p0 : 00000000
    p1 : 5ffcc9c0 p1 : 00000000
    p2 : 0c55e80a p2 : 00000000
D1 p0 : 00000000 c1 p0 : 36c21521
    p1 : 00000000 p1 : 5f324f00
    p2 : 00000000 p2 : 2b92cf79
D2 p0 : 00000000 C2 p0 : 31107ca3
    p1 : 00000000 p1 : 5d080667
    p2 : 00000000 p2 : 16602afb
State of the system after decoding: 96 XOR'd bytes
Data Coding
D0 p0 : 15ddb16e c0 p0 : 7e6e55c3
    p1 : 5ffcc9c0 p1 : 120fd8ec
    p2 : 0c55e80a p2 : 4fc9584b
D1 p0 : 6f6b6791 C1 p0 : 36c21521
    p1 : 49e514d0 p1 : 5f324f00
    p2 : 649511f2 p2 : 2b92cf79
D2 p0 : 5899d169 C2 p0 : 31107ca3
    p1 : 2f33bbae p1 : 5d080667
    p2 : 6fdc16ba p2 : 16602afb
Generated the identical matrix using cauchy_xy_coding_matrix()
UNIX>
```

This demonstrates usage of cauchy _original coding matrix (), cauchy xy coding matrix(), cauchy n $\boldsymbol{\rho}$ nes(), jerasure_smart_bitmatrix_to schedule $($), jerasure schedule_encode $($), jerasure schedule decode Jazy (), jerasure_print_matrix() and jerasure get_stats().

- cauchy_03.c: This is identical to cauchy_02.c, except that it improves the matrix with cauchy improve codingmatrix().
Example:

```
UNIX> cauchy_03 3 3 3 | head -n 8
The Original Matrix has 46 ones
The Improved Matrix has 34 ones
1 1 1
5 1 2
147
Smart Encoding Complete: - 96 XOR'd bytes
UNIX>
```

This demonstrates usage of cauchy _original coding matrix(), cauchy improve coding matrix(), cauchy n_ones(), jerasure_smart_bitmatrix_to_schedule(), jerasure _schedule_encode(), jerasure schedule decodeJazy(), jerasure print_matrix() and jerasure get stats().

- cauchy_04.c: Finally, this is identical to the previous two, except it calls cauchy good general coding matrix(). Note, when $m=2, w \leq 11$ and $k \leq 1023$, these are optimal Cauchy encoding matrices. That's not to say that they are optimal RAID-6 matrices (RDP encoding [CEG ${ }^{+} 04$], and Liberation encoding [Pla08b] achieve this), but they are the best Cauchy matrices.

```
UNIX> cauchy_04 10 2 8 | head -n 6
Matrix has 2\overline{29}}\mathrm{ ones
\begin{tabular}{rrrrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}
Smart Encoding Complete: - }836\mathrm{ XOR'd bytes
UNIX> cauchy_03 10 2 8 | head -n 6
The Original Matrix has 608 ones
The Improved Matrix has 354 ones
    1
```



```
UNIX> cauchy_02 10 2 8 | head -n 6
Matrix has 608 ones
142 244 71 167 122 186 173 157 221 152
```



```
Smart Encoding Complete: - }1876\mathrm{ XOR'd bytes
UNIX>
```

This demonstrates usage of cauchy_original_coding_matrix(), cauchy n_ones(), jerasure smart bitmatrix_to_schedule(), jerasure_schedule_encode(), jerasure_schedule_decode_lazy(), jerasure print matrix() and jerasure_get_stats().

9.3 Extending the Parameter Space for Optimal Cauchy RAID-6 Matrices

It is easy to prove that as long as $k<2^{w}$, then any matrix with all ones in row 0 and distinct non-zero elements in row 1 is a valid MDS RAID-6 matrix. Therefore, the best RAID-6 matrix for a given value of w is one whose k elements in row 1 are the k elements with the smallest number of ones in their bit-matrices. Cauchy.c stores these elements in global variables for $k \leq 1023$ and $w \leq 11$. The file cauchy best $\mathbf{r 6 . c}$ is identical to cauchy.c except that it includes these values for $w \leq 32$. You will likely get compilation warnings when you use this file, but in my tests, all runs fine. The reason that these values are not in cauchy.c is simply to keep the object files small.

10 Part 5 of the Library: Minimal Density RAID-6 Coding

Minimal Density RAID-6 codes are MDS codes based on binary matrices which satisfy a lower-bound on the number of non-zero entries. Unlike Cauchy coding, the bit-matrix elements do not correspond to elements in $G F\left(2^{w}\right)$. Instead, the bit-matrix itself has the proper MDS property. Minimal Density RAID-6 codes perform faster than Reed-Solomon and Cauchy Reed-Solomon codes for the same parameters. Liberation coding, Liber8tion coding, and Blaum-Roth coding are three examples of this kind of coding that are supported in jerasure.

With each of these codes, m must be equal to two and k must be less than or equal to w. The value of w has restrictions based on the code:

- With Liberation coding, w must be a prime number [Pla08b].
- With Blaum-Roth coding, $w+1$ must be a prime number [BR99].
- With Liber8tion coding, w must equal 8 [Pla08a].

The files liberation.h and liberation.c implement the following procedures:

- int *liberation_coding_bitmatrix(k, w): This allocates and returns the bit-matrix for liberation coding. Although w must be a prime number greater than 2, this is not enforced by the procedure. If you give it a non-prime w, you will get a non-MDS coding matrix.
- int *liber8tion_coding_bitmatrix(int k): This allocates and returns the bit-matrix for liber8tion coding. There is no w parameter because w must equal 8 .
- int *blaum_roth_coding_bitmatrix(int \mathbf{k}, int \mathbf{w}): This allocates and returns the bit-matrix for Blaum Roth coding. As above, although $w+1$ must be a prime number, this is not enforced.

10.1 Example Program to Demonstrate Use

liberation_01.c: This takes two parameters: k and w, where w should be a prime number greater than two and k must be less than or equal to w. As in other examples, packetsize is sizeof(long). It sets up a Liberation bit-matrix and uses it for encoding and decoding. It encodes by converting the bit-matrix to a dumb schedule. The dumb schedule is used because that schedule cannot be improved upon. For decoding, smart scheduling is used as it gives a big savings over dumb scheduling.

```
UNIX> liberation_01 3 7
Coding Bit-Matrix:
1000000 1000000 1000000
```

```
0100000 0100000 0100000
0010000 0010000 0010000
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0000100 0000100 0000100
0000010 0000010 0000010
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
10000000100000 0010000
0100000 0010000 0001000
0010000 0001000 0000100
0001000 0001100 0000010
0000100 0000010 0000001
0000010 0000001 1000000
0000001 1000000 1100000
Smart Encoding Complete: - }120\mathrm{ XOR'd bytes
Data Coding
D0 p0 : 15ddb16e C0 p0 : 08963d2a
    p1 : 5ffcc9c0 p1 : 534d051c
    p2 : 0c55e80a p2 : 3f20b23d
    p3 : 6f6b6791 p3 : 1fc00258
    p4 : 49e514d0 p4 : 3f352723
    p5 : 649511f2 p5 : 33c9c7ec
    p6 : 5899d169 p6 : 438f5f67
D1 p0 : 2f33bbae c1 p0 : 162bbb57
    p1 : 6fdc16ba p1 : 4910e2f5
    p2 : 5f5f46b4 p2 : 6edb248a
    p3 : 39180848 p3 : 71aa7af7
    p4 : 2d46f73b p4 : 2e7e5a89
    p5 : 5dc3340b p5 : 77a3d244
    p6 : 214ef45c p6 : 26bf874b
D2 p0 : 327837ea
    p1 : 636dda66
    p2 : 6c2a1c83
    p3 : 49b36d81
    p4 : 5b96c4c8
    p5 : 0a9fe215
    p6 : 3a587a52
Erased 2 random devices:
Data Coding
D0 p0 : 00000000 C0 p0 : 08963d2a
    p1 : 00000000 p1 : 534d051c
    p2 : 00000000 p2 : 3f20b23d
    p3 : 00000000 p3 : 1fc00258
    p4 : 00000000 p4 : 3f352723
    p5 : 00000000 p5 : 33c9c7ec
    p6 : 00000000 p6 : 438f5f67
D1 p0 -00000000
    C1 p0 : 162bbb57
    p1 : 00000000 p1 : 4910e2f5
    p2 : 00000000 p2 : 6edb248a
    p4 : 00000000 p4 : 2e7e5a89
    p5 : 00000000 p5 : 77a3d244
    p6 : 00000000 p6 : 26bf874b
```

```
D2 p0 : 327837ea
    p1 : 636dda66
    p2 : 6c2alc83
    p3 : 49b36d81
    p4 : 5b96c4c8
    p5 : 0a9fe215
    p6 : 3a587a52
```

State of the system after decoding: 120 XOR'd bytes
Data Coding
D0 p0 : 15ddb16e C0 p0 : 08963d2a
p1 : 5ffcc9c0 p1 : 534d051c
p2 : 0c55e80a p2 : 3f20b23d
p3 : 6f6b6791 p3 : 1fc00258
p4 : 49e514d0 p4 : 3f352723
p5 : 649511f2 p5 : 33c9c7ec
p6 : 5899d169 p6 : 438f5f67
D1 p0 : 2f33bbae C1 p0 : 162bbb57
p1 : 6fdc16ba p1 : 4910e2f5
p2 : 5f5f46b4 p2 : 6edb248a
p3 : 39180848 p3 : 71aa7af7
p4 : 2d46f73b p4 : 2e7e5a89
p5 : 5dc3340b p5 : 77a3d244
p6 : 214ef45c p6 : 26bf874b
D2 p0 : 327837ea
p1 : 636dda66
p2 : 6c2a1c83
p3 : 49b36d81
p4 : 5b96c4c8
p5 : 0a9fe215
p6 : 3a587a52
UNIX>

This demonstrates usage of liberation_coding_bitmatrix(), jerasure dumb bitmatrix to schedule(), jerasure_schedule_encode(), jerasure_schedule_decode_lazy(), jerasure_print bitmatrix() and jerasure get stats().

11 Example Encoder and Decoder

- encoder.c: This program is used to encode a file using any of the available methods in jerasure. It takes seven parameters:
- inputfile or negative number S : either the file to be encoded or a negative number S indicating that a random file of size $-S$ should be used rather than an existing file
- k : number of data files
- m: number of coding files
- coding technique: must be one of the following:
* reed_sol_van: calls reed_sol_vandermonde_coding_matrix() and jerasure matrix encode()
* reed_sol_r6_op: calls reed_sol_r6_encode()
* cauchy_orig: calls cauchy_original_coding_matrix(), jerasure matrix to bitmatrix, jerasure smart_bitmatrix_to_schedule, and jerasure_schedule_encode()
* cauchy_good: calls cauchy good general _coding_matrix(), jerasure matrix to bitmatrix, jerasure_smart_bitmatrix_to_schedule, and jerasure_schedule_encode()
* liberation: calls liberation_coding_bitmatrix, jerasure_smart bbitmatrix to _schedule, and jerasure_schedule_encode()
* blaum_roth: calls blaum_roth_coding_bitmatrix, jerasure_smart bitmatrix to schedule, and jerasure_schedule_encode()
* liber8tion: calls liber8tion_coding_bitmatrix, jerasure smart _bitmatrix to schedule, and jerasure_schedule_encode()
- w: word size
- packetsize: can be set to 0 if not required by the selected coding method
- buffersize: approximate size of data (in bytes) to be read in at a time; will be adjusted to obtain a proper multiple and can be set to 0 if desired

This program reads in inputfile (or creates random data), breaks the file into k blocks, and encodes the file into m blocks. It also creates a metadata file to be used for decoding purposes. It writes all of these into a directory named Coding. The output of this program is the rate at which the above functions run and the total rate of running of the program, both given in $\mathrm{MB} / \mathrm{sec}$.

```
UNIX> ls -l Movie.wmv
-rwxr-xr-x 1 plank plank 55211097 Aug 14 10:52 Movie.wmv
UNIX> encoder Movie.wmv 6 2 liberation 7 1024 500000
Encoding (MB/sec): 1405.3442614500
En_Total (MB/sec): 5.8234765527
UNIX> ls -l Coding
total 143816
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k1.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k2.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k3.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k4.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k5.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k6.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m1.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m2.wmv
-rw-r--r-- 1 plank plank 54 Aug 14 10:54 Movie_meta.txt
UNIX> echo "" | awk '{ print 9203712*6 }'
55222272
UNIX>
```

In the above example a 52.7 MB movie file is broken into six data and two coding blocks using Liberation codes with $w=7$ and packetsize of 1 K . A buffer of 500000 bytes is specified but encoder modifies the buffer size so that it is a multiple of $w * \operatorname{packetsize}(7 * 1024)$.

The new directory, Coding, contains the six files Movie k1.wmv through Movie k6.wmv (which are parts of the original file) plus the two encoded files Movie m1.wmv and Movie m2.wmv. Note that the file sizes are multiples of 7 and 1024 as well - the original file was padded with zeros so that it would encode properly. The metadata file, Movie_meta.txt contains all information relevant to decoder.

- decoder.c: This program is used in conjunction with encoder to decode any files remaining after erasures and reconstruct the original file. The only parameter for decoder is inputfile, the original file that was encoded. This file does not have to exist; the file name is needed only to find files created by encoder, which should be in the Coding directory.
After some number of erasures, the program locates the surviving files from encoder and recreates the original file if at least k of the files still exist. The rate of decoding and the total rate of running the program are given as output.

Continuing the previous example, suppose that Movie $\mathrm{k} 2 . \mathrm{wmv}$ and Movie m1.wmv are erased.

```
UNIX> rm Coding/Movie_k1.wmv Coding/Movie_k2.wmv
UNIX> mv Movie.wmv Ol\overline{d}-Movie.wmv
UNIX> decoder Movie.wmv
Decoding (MB/sec): 1167.8230894030
De_Total (MB/sec): 16.0071713224
UNIX> ls -l Coding
total 215704
-rw-r--r-- 1 plank plank 55211097 Aug 14 11:02 Movie_decoded.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k3.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k4.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k5.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k6.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m1.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m2.wmv
-rw-r--r-- 1 plank plank 54 Aug 14 10:54 Movie_meta.txt
UNIX> diff Coding/Movie_decoded.wmv Old-Movie.wmv
UNIX>
```

This reads in all of the remaining files and creates Movie decoded.wmv which, as shown by the diff command, is identical to the original Movie.wmv. Note that decoder does not recreate the lost data files - just the original.

11.1 Judicious Selection of Buffer and Packet Sizes

In our tests, the buffer and packet sizes have as much impact on performance as the code used. Initial performance results are in [SP08]; however these will be fleshed out more thoroughly. To give a compelling example, look at the following coding times for a randomly created 256 M file on a MacBook Pro (2.16 GHz processor, 32 KB L 1 cache, 2MB L2 cache):

```
UNIX> encoder -268435456 6 2 liberation 7 1024 50000000
Encoding (MB/sec): 172.6522847357
En_Total (MB/sec): 141.8509585895
UNIX> encoder -268435456 6 2 liberation 7 1024 5000000
Encoding (MB/sec): 1066.8065148470
En Total (MB/sec): 526.1761192874
UNIX> encoder -268435456 6 2 liberation 7 10240 5000000
Encoding (MB/sec): 1084.6304288755
En_Total (MB/sec): 555.2568545979
UNIX> encoder -268435456 6 2 liberation 7 102400 5000000
Encoding (MB/sec): 943.4553565388
En_Total (MB/sec): 525.2790538399
UNIX>
```

When using these routines, one should pay attention to packet and buffer sizes.

References

[Anv07] H. P. Anvin. The mathematics of RAID-6. http://kernel.org/pub/linux/kernel/people/hpa/ raid6.pdf, 2007.
[BBBM95] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures. IEEE Transactions on Computing, 44(2):192- 202, February 1995.
[BKK $\left.{ }^{+} 95\right]$ J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D. Zuckerman. An XOR-based erasureresilient coding scheme. Technical Report TR-95-048, International Computer Science Institute, August 1995.
[BR99] M. Blaum and R. M. Roth. On lowest density MDS codes. IEEE Transactions on Information Theory, 45(1):46-59, January 1999.
[CEG $\left.{ }^{+} 04\right]$ P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar. Row diagonal parity for double disk failure correction. In 4th Usenix Conference on File and Storage Technologies, San Francisco, CA, March 2004.
[FDBS05a] G. Feng, R. Deng, F. Bao, and J. Shen. New efficient MDS array codes for RAID Part I: Reed-Solomonlike codes for tolerating three disk failures. IEEE Transactions on Computers, 54(9):1071-1080, September 2005.
[FDBS05b] G. Feng, R. Deng, F. Bao, and J. Shen. New efficient MDS array codes for RAID Part II: Rabin-like codes for tolerating multiple (≥ 4) disk failures. IEEE Transactions on Computers, 54(12):1473-1483, Decemeber 2005.
[HDRT05] J. L. Hafner, V. Deenadhayalan, K. K. Rao, and A. Tomlin. Matrix methods for lost data reconstruction in erasure codes. In FAST-2005: 4th Usenix Conference on File and Storage Technologies, pages 183-196, San Francisco, December 2005.
[HX05] C. Huang and L. Xu. STAR: An efficient coding scheme for correcting triple storage node failures. In FAST-2005: 4th Usenix Conference on File and Storage Technologies, pages 197-210, San Francisco, December 2005.
[PD05] J. S. Plank and Y. Ding. Note: Correction to the 1997 tutorial on Reed-Solomon coding. Software Practice \& Experience, 35(2):189-194, February 2005.
[Pla97] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Software Practice \& Experience, 27(9):995-1012, September 1997.
[Pla07] J. S. Plank. Fast Galois Field arithmetic library in C/C++. Technical Report CS-07-593, University of Tennessee, April 2007.
[Pla08a] J. S. Plank. A new minimum density RAID-6 code with a word size of eight. In NCA-08: 7th IEEE International Symposium on Network Computing Applications, Cambridge, MA, July 2008.
[Pla08b] J. S. Plank. The RAID-6 Liberation codes. In FAST-2008: 6th Usenix Conference on File and Storage Technologies, pages 97-110, San Jose, February 2008.
[Pre89] F. P. Preparata. Holographic dispersal and recovery of information. IEEE Transactions on Information Theory, 35(5):1123-1124, September 1989.
[PX06] J. S. Plank and L. Xu. Optimizing Cauchy Reed-Solomon codes for fault-tolerant network storage applications. In NCA-06: 5th IEEE International Symposium on Network Computing Applications, Cambridge, MA, July 2006.
[Rab89] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. Journal of the Association for Computing Machinery, 36(2):335-348, April 1989.
[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics, 8:300-304, 1960.
[SP08] C. D. Schuman and J. S. Plank. A performance comparison of open-source erasure coding libraries for storage applications. Technical Report UT-CS-08-625, University of Tennessee, August 2008.

[^0]: *plank@cs.utk.edu or plank@eecs.utk.edu, 865-974-4397, This material is based upon work supported by the National Science Foundation under grant CNS-0615221.

