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Abstract

Recent  developments  is  cognitive  science,  artificial  intelligence  (AI),  and 
robotics promise a new generation of intelligent agents exhibiting more of the 
capabilities of naturally intelligent agents.  These new approaches are based on 
neuroscience research and improved understanding of the role of the body in ef-
ficient cognition.  Although these approaches present many advantages and op-
portunities, they also raise issues in the testing and evaluation of future AI sys-
tems and robots.  We discuss the problems and possible solutions.

* This  report  is  an  unedited  draft  of  “Challenges  of  Embodied  Artificial  Intelligence  and 
Robotics,” an article invited for  The ITEA Journal of Test and Evaluation of The International 
Test and Evaluation Association.  It may be used for any non-profit purpose provided that the 
source is credited.
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1 Introduction 
Recent research into human  and animal cognition has improved our understanding of 

natural intelligence, and has opened a path forward toward artificially intelligent agents, 
including robots, with much greater capabilities than those implemented to date.  Im-
proved understanding of the neural mechanisms underlying natural intelligence is provid-
ing a basis for implementing an efficient, robust, and adaptable artificial intelligence (AI). 
However, the nature of these mechanisms and the inherent characteristics of an AI based 
on them, raise significant issues in the test and evaluation of this new generation of artifi-
cially intelligent agents.  This article briefly discusses the limitations of the “old AI,” the 
means by which the “new AI” aims to transcend them to achieve an AI comparable to 
natural intelligence, the test and evaluation issues raised by the new AI, and possible 
means for dealing with these issues in order to deploy robust and reliable systems capable 
of achieving mission objectives. 

2 The Nature of Expertise 
It used to be supposed that human expertise consists of internalized rules representing 

both knowledge and inference.  Knowledge was considered a collection of (general or 
specific) facts that could, in principle, be expressed as sentences in a natural language. 
Similarly, the process of thought was supposed to be represented by rules of inference, 
such as the laws of logic, also expressible in natural language.  It was granted that natural 
language was vague, ambiguous, and imprecise, and so artificial languages, such as sym-
bolic logic, were proposed as more adequate vehicles for knowledge representation in the 
brain.  Knowledge representation languages, which were often used in AI, were effec-
tively programming languages for operating on knowledge represented by language-like 
data structures. 

A full critique of this model of knowledge and cognition is beyond the scope of this 
article, so I will just mention a few key points (for more, see, e.g., Dreyfus 1979; Dreyfus 
and Dreyfus 1986).  One objection was that neuroscience provides no evidence that the 
brain is structured like a stored-program computer.  In answer it was argued that the ab-
stract idea of a general-purpose computer (i.e., of a universal Turing machine) could be 
implemented in many radically different ways, and so the brain could be such a machine 
even though it is very different from ordinary computers, and it was argued that in any 
case there was no reason for artificial intelligence to slavishly imitate the brain; we could 
use our technologically superior digital computers.  Another objection was that, while we 
are sometimes conscious of following verbalizable rules, much of our intelligent behavior 
takes place without conscious rule following.  In answer it was argued that well-learned 
behaviors were “compiled”  into unconscious neural operations, much as programs writ-
ten in high-level languages are compiled into machine code.  A third objection was that, 
while it might be plausible that human knowledge and inference were represented in lan-
guage-like rules, this was implausible as a model for nonhuman animal cognition, espe-
cially in simpler animals with no language-using ability.  One answer was that nonhuman 
animals don’t have conceptual knowledge, which is “true knowledge,” as opposed to con-
crete memory and instinctive stimulus-response behaviors; only humans exhibit “true” 
cognition.  An overarching defense of rule-based models of knowledge and inference was 
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that they are “the only game in town,” that is, that there were no defensible alternative 
models.  Nevertheless, there are additional objections to rule-based approaches.

Even  for  humans,  who  have  complex  and  expressive  linguistic  abilities,  research 
shows that rules don’t account well for expert behavior.  As an example, I will use the 
book of Hubert L. and Stuart E. Dreyfus (1986), who summarize  much of the research. 
Based on characteristic  cognitive processes,  they identify five levels  of expertise:  (1) 
novice, (2) advanced beginner, (3) competence, (4) proficiency, and (5) expertise (Drey-
fus and Dreyfus 1986, 16–51).  They apply this classification to “expert systems,” which 
are rule-based AI systems incorporating a large knowledge-base, oriented toward some 
domain of knowledge, and appropriate inference rules.  They argue that these systems op-
erate at best at the “competence” level, which is characterized by goal-directed selection 
and application of rules (Dreyfus and Dreyfus 1986, 23–27, 101–121).  However, expert 
systems cannot perform at the “proficient” level, which is characterized by unconscious, 
similarity-based apprehension of the situational context in which cognition should occur, 
rather than by conscious, rational “calculation” (rule-based determination) of the context 
(Dreyfus and Dreyfus 1986, 27–30).  This apprehension of context is critical to proficient 
behavior, since it allows cognition to focus on stimuli that are relevant to the situation, 
without wasting time considering and rejecting those that aren’t.  Experts apply rules, if 
at all, in a flexible, nonrigid, context-sensitive way, which is why it is difficult to capture 
expertise in rules (Dreyfus and Dreyfus 1986, 30–36, 105–109).  How, then, can we de-
sign artificially intelligent agents that exhibit true expertise? 

3 Connectionism 
The rule-based approach to knowledge representation and inference continued to dom-

inate AI so long as there did not seem to be any viable alternative.  However H.L. Drey-
fus (1979) and others pointed the way to a different approach.  First, since human and an-
imal intelligence is realized in the physical brain, it seemed apparent that an artificial in-
telligence would be possible, although the AI system might have to be more like a brain 
than a conventional computer.  Second, in the 1960s and ‘70s, Pribram, Dreyfus, and oth-
ers had observed that human pattern recognition and memory seemed to have properties 
similar to optical holograms, as did simple models of neural networks (e.g., Anderson, 
Pellionisz and Rosenfeld 1990, ch. 7; Dreyfus 1979, 20, 25, 51; Dreyfus and Dreyfus 
1986, 58–63, 90–92, 109; Haugeland 1978; Hinton and Anderson 1989; Pribram, Nuwer, 
and Baron 1974).  These considerations helped to revitalize, in the early 1980s, the study 
of neural network computation, which had been languishing for about a decade (for more 
on the history of neural networks and connectionism, see MacLennan 2001; seminal pa-
pers are collected in Anderson and Rosenfeld 1988; Anderson, Pellionisz and Rosenfeld 
1990; Haugeland 1997). 

Connectionism is used to refer to approaches to knowledge representation and infer-
ence that are based on simple neural-network models.  In rule-based approaches, knowl-
edge is represented in language-like discrete structures, the smallest units of which are 
features: predicates for which many languages have words (e.g., “feathered,” “winged,” 
“two-legged,” “egg-laying” are some features of birds). Connectionist representations, in 
contrast, are based on large, unstructured arrays of  microfeatures.  A microfeature is a 
property localized to one of a large number of parts of a sensory or memory image (e.g., a 
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green pixel  at  a  particular  location in  an image),  which generally  does  not  have any 
meaning in isolation.  They are not the sorts of things for which natural languages have 
words, because they are not normally significant, or even perceptible, in isolation.  In a 
typical  neural-net  representation,  the  activity  level  of  a  neuron (usually  a  continuous 
quantity) represents the relative degree of presence of a corresponding microfeature in the 
representation (e.g., the amount of green at that location in the image).  As a consequence 
of the foregoing, connectionist representations are typically holistic in that individual ele-
ments have meaning only in the context of the whole representation. 

Connectionism derives its name from the fact that knowledge is encoded in the con-
nections between neurons.  Because these are connections among (typically large) num-
bers  of  neurons  representing microfeatures,  connectionist  knowledge representation  is 
characteristically distributed and nonlocal.  It is  distributed in that the representation of 
what we normally think of as one fact or behavior is distributed across many connections, 
which affords connectionist knowledge representations a high degree of useful redundan-
cy.  It is  nonlocal in that each connection participates in the representation of a large 
number of facts and behaviors.  Therefore, a large number of connections in a neural net-
work can represent a large number of facts and behaviors, but not in a one-to-one manner. 
Rather, the entirety of the connections represents the entirety of the facts and behaviors. 

Biological neurons are notoriously slow compared to contemporary electronics; their 
maximum impulse rate is less than 1 KHz.  And yet  brains, even of comparatively simple 
animals, solve problems and coordinate activities that are beyond the capabilities of state-
of-the-art computers, such as reliable face recognition and locomotion through rough and 
complex natural environments.  How is this possible?  Part of the answer is revealed by 
the “100-Step Rule” (Feldman and Ballard 1982).  This is based on the simple observa-
tion that if we take the time for a simple cognitive action, such as recognizing a face (≪ 
1 sec.) and divide it by the time it takes a neuron to fire (≫ 1 msec.), we find that there 
can be at most about 100 sequential processing steps between sensation and action.  This 
reveals that brains process information very differently from contemporary computers. 
Information processing on traditional computers is narrow-but-deep, that is, it depends on 
the sequential execution of very large numbers of very rapid operations; even if execution 
is  not  completely  sequential,  the  degree  of  parallelism is  very  small  compared  to  a 
brain’s.  In contrast, information processing in brains is shallow-but-wide: there are rela-
tively few sequential layers of information processing, as reflected in the 100-Step Rule, 
but each layer is massively parallel on a scale that is qualitatively different from contem-
porary parallel computers.  For example, even in the retina approximately 100 million 
retinal cells preprocess visual data in order to be transmitted by approximately one mil-
lion optic nerve fibers, which indicates the degree of parallel processing in visual infor-
mation processing.  Since neural density is at least 146 000/mm2 throughout human cor-
tex (Changeux 1985, 51), most neural modules operate with degrees of parallelism on the 
order of hundreds of thousands or millions.

Another difference between most contemporary computers and biological neural net-
works is that neurons are fundamentally analog computing devices.  Continuous quanti-
ties are represented by the frequency, and in some cases the phase, of neural impulses 
propagating down a neuron’s axon (output fiber).  Knowledge is stored in “strength” of 
the connections between neurons, which depends on diffusion of chemical signals from a 
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variable number of sources to a variable number of receptors, and is best treated as a real-
valued “weight.”  The resulting electrical signals propagate continuously down the den-
drites (input fibers) of a neuron, obeying electrical “cable equations” (Anderson 1995, 
25–31), and are integrated in the cell body into a continuous membrane potential, which 
governs the frequency and phase of the neuron’s spiking behavior (Gerstner and Kistler 
2002).

It should be noted that analog signal processing in the brain is low-precision: generally 
continuous quantities are estimated to be represented with a precision of less one digit. 
Paradoxically, humans and other animals can perform perceptual discriminations and co-
ordinate sensorimotor behaviors with great precision, but brains use statistical representa-
tions, such as “coarse coding” and other population codes (Rumelhart, McClelland, et al. 
1986, 91–96; Sanger 1996), to achieve high-precision representations with low-precision 
components.  These techniques, which exploit large numbers of neurons, have additional 
benefits in terms of reliability, robustness, and redundancy.

Similarly, artificial neural networks are usually based on analog computing elements 
(artificial neurons or units) interconnected by real-valued weights.  Of course these con-
tinuous computational systems, like other continuous physical systems, can be simulated 
on ordinary digital computers, and that is the way many artificial neural networks are im-
plemented.  However, many advantages can be obtained by implementing artificial neural 
networks directly in massively-parallel, low-precision analog computing devices (Mead 
1989), a topic outside the scope of this article (MacLennan in press). 

The ability to adapt to changing circumstances and to learn from experience are hall-
marks of intelligence.  Further, learning and adaptation are critical to many important ap-
plications of robotics and artificial intelligence.  Autonomous robots, by their very auton-
omy, may find themselves confronting situations for which they were not prepared, and 
they will be more effective if they can adapt appropriately to them.  Autonomous robots 
should also be able to adapt as the parameters and circumstances of their missions evolve. 
It is also valuable if AI systems and robots can be trained in the field to perform new 
tasks and if they can generalize previous training to new, unanticipated situations.  How 
can learning, training, and adaptation be accomplished?

An important capability of connectionist AI systems is that they can learn how to do 
things that we do not know how to do.  This is the reason that connectionist systems are 
said to be trained, but not programmed.  In order to program a process, you need to un-
derstand it so well that it can be reduced to explicit rules (an algorithm).  Unfortunately, 
there are many important problems that are not sufficiently well understood to be pro-
grammed, and in these cases connectionist  learning may offer an alternative solution. 
Many connectionist  (or neural network) learning algorithms have been developed and 
studied over the last several decades.  In supervised learning, a network is presented with 
desired input-output pairs (e.g., digital images and their correct classifications), and the 
learning algorithm adjusts the network’s interconnection weights so it will produce the 
correct outputs.  If the training is done properly the network will be able to generalize 
from the training inputs to novel inputs.  In  reinforcement learning, the network is told 
only whether it has performed correctly or not; it is not told the correct behavior.  There is 
a very large literature on neural network learning, which is beyond the scope of this arti-
cle (see, e.g., Haykin 1999). 
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One characteristic of connectionist learning is that, while connectionist systems can 
sometimes adapt very quickly, they can also adapt gradually, by subtle tuning of the inter-
connection weights.  Rule-based systems can also adapt, but the fundamental process is 
the addition or deletion of a complete rule, a more brittle procedure.  Thus connectionist 
systems are better able to modulate their behavior as they adapt and to avoid instability. 

4 Embodied Cognition 
An important recent development is the theory of embodied cognition and the related 

theories of embodied AI and embodied robotics.  The theory of embodied cognition ad-
dresses the important — indeed essential — role that the body and its physical environ-
ment plays in efficient cognition.  As Dreyfus (1979, 248–250, 253) observed long ago 
(1972), there are many things that humans know simply by virtue of having a body.  That 
is, there is much knowledge that is implicit in the body’s state, processes, and relation to 
its physical environment, and therefore this knowledge does not need to be represented 
explicitly in the brain.  The theory of embodied intelligence has its roots in phenomeno-
logical philosophy (e.g., Dreyfus 1979, 235–255) and the pragmatism of William James 
and John Dewey (Johnson and Rohrer 2007). 

For example, we swing our arms while we walk, which helps maintain balance for 
bipedal locomotion, but our brains do not have to calculate the detailed kinematics of our 
limbs.  Rather, our limbs, joints, etc. have their characteristic frequencies etc., and all our 
brain must do is generate relatively low-dimensional signals to modulate these physical 
processes to maintain balance, as monitored by bodily sensors (inner ear, skin pressure, 
joint extension, etc.).  The brain’s goal is not to simulate the physical body in motion (a 
computationally intensive task), but to  control the physical body in interaction with its 
physical environment in real time by means of neurally efficient computation.  As op-
posed to a computer simulation of a robot, the brain’s computations constitute a complete 
description of the body’s motion only in the context of a specific physical body in its en-
vironment. 

Because, in effect, an animal’s brain can depend on the fact that it is controlling a body 
of a specific form, it can offload some information processing tasks to its physical body. 
For example, rather than calculating from first principles the muscle forces that will move 
its limb to a particular location, it can leave this “calculation” to the physical limb itself 
by learning correlations between effector signals and corresponding sensory responses 
(for which neural networks are ideally suited). Therefore also, if a weight (such as a cast) 
is put on a limb, or its motion is restricted by pain or an injury, an animal can adapt 
quickly to the change (an important goal for our robots too). 

The power and efficiency of embodied cognition is exemplified by insects and other 
simple animals that behave very competently in their environments but that have very 
small brains.  Understanding how they exploit embodiment for information processing — 
or, more precisely, how they obviate the need for information processing — will help us 
to design more competent autonomous robots, especially insect-size or smaller robots. 

Studies of natural intelligence, and in particular of how the brain exploits the physical 
characteristics of the body and of its environment to control the body in its environment, 
has contributed to and will continue to contribute to the design of future robots (Brooks 
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1991; Pfeifer and Bongard 2007; Pfeifer, Lungarella, and Iida 2007). We are inclined to 
think of these problems in terms of equations and calculations (i.e., rule-like information 
representation and processing), but natural intelligence teaches how to use neural net-
works for efficient and competent behavior in real-world environments.  This is a critical 
goal for future autonomous robots and indeed for artificial intelligence embedded in other 
physical systems. 

5 Challenges 
We have  argued  that  connectionist  artificial  intelligence,  based  on  neural  network 

models and embodied cognition, provides a sounder, more effective basis for future AI 
and robotic systems than does rule-based knowledge representation and processing.  In-
deed there is widespread (though not universal) agreement on this, and many projects are 
pursuing these approaches.  Therefore it is important to acknowledge that connectionism 
and embodiment present challenges for the test and evaluation of the systems in which 
they are used. 

One problem is the opacity of neural networks.  In a rule-based system the rules are 
expressed in an artificial language with some similarity to natural languages or to sym-
bolic logic.  The basic terms and predicates, in terms of which the rules are expressed, are 
generally those of the problem domain.  Therefore the knowledge and rules of inference 
used by the system are transparent, that is, potentially intelligible to human beings.  In a 
neural network, in contrast, the knowledge and inferential processes are implicit in real-
valued connection weights among myriads of microfeatures. Further, representations are 
nonlocal and distributed.   Therefore,  individual  microfeatures and connections  do not 
usually have meanings that can be expressed in the terms of the problem domain. 

Many people are troubled by the opacity of neural networks compared to the (poten-
tial) transparency of rule-based systems.  With a rule-based system, they argue, you can 
look at the knowledge base and inferential rules, understand them, and see if they make 
sense.  A human can, in effect, see if the system is making its decisions for the right rea-
sons, or at least that it is not making them for the wrong reasons (e.g., on the basis of ir-
relevant factors).  In contrast, a trained neural network might perform some task very 
well,  but we will  be unable to understand — in human-comprehensible terms — the 
bases on which it is doing its job.  Perhaps it has found some totally irrelevant cues in the 
training and test data that allow it to perform well on them, but it will fail dismally when 
deployed. 

These are legitimate concerns, but unavoidable.  As we have seen, rule-following is 
characteristic of merely “competent” behavior, and therefore behavior that  can be ex-
pressed  in  human-comprehensible  rules  will  not  surpass  the  merely  competent  level. 
Conversely, expert behavior — which is our goal for AI and autonomous robotics — will 
entail subtle discriminations, integrative perceptions, and context sensitivities that cannot 
be expressed in human-comprehensible terms.  How then can we come to trust a connec-
tionist AI system?  In the same way we come to trust a human expert: by observing their 
reliably expert behavior in wide variety of contexts and situations.  The situation is simi-
lar to that with the use of unsupervised trained animals to perform some mission.  We 
cannot look into their heads either, but we can test their behavior in a variety of mission-
relevant situations until we have sufficient confidence. 
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Much of the inflexibility and brittleness of rule-based systems — and indeed of many 
digital computer programs — is a consequence of their behaving the same in all contexts, 
whereas natural intelligence is sensitive to context and can modulate its behavior appro-
priately.  Due to the ability of artificial neural networks to integrate a very large number 
of microfeatures, which may be individually insignificant, they can exhibit valuable con-
text sensitivity.  However, this presents a test and evaluation challenge for connectionist 
systems, since we cannot test such a system in a single or simple context (e.g., in a labo-
ratory) and assume that it will work in all contexts.  Rather, it is important to identify the 
contexts in which the system may find itself and ensure that it operates acceptably in all 
of them. 

Context sensitivity and embodied cognition both necessitate use of the  implemented 
robotic or AI system in almost all phases of test and evaluation.  As previously men-
tioned, one of the advantages of connectionist AI is that it can be sensitive to the context 
of its behavior, but this implies an early transition of the test and evaluation activity into 
realistic physical contexts (i.e., field testing).  Since we want and expect the system to 
make subtle contextual discriminations, it cannot be adequately tested or evaluated in ar-
tificially constructed situations that do not demand this subtlety.  The same applies to the 
system’s (hopefully robust) response to novelty.  Further, embodied intelligence depends 
crucially on the physical characteristics of the system in which it is embedded and on its 
physical relationships to its environment.  While preliminary testing and evaluation can 
make use of simulations of the physical system and its environment, such simulations are 
always incomplete, and are more computationally expensive the more complete they are. 
Whereas to some extent conventional AI systems can be tested and evaluated offline, em-
bodied AI systems cannot.  Therefore physical prototypes must be integrated earlier into 
the development cycle.

In effect, test and evaluation of embodied connectionist AI and robotic systems is no 
different from that of vehicles, weapons systems, and other physical devices and equip-
ment.  The difference is in our expectations, for we are used to being able to test and 
evaluate software systems offline, except in the later stages in the case of embedded soft-
ware. 

Finally,  as  discussed   above,  embodied  connectionist  systems  are  to  some degree 
opaque, that is, their cognitive processes are not fully transparent (intelligible) to humans. 
Of course, neural networks and their embodiments obey the laws of physics, and are in-
telligible in physical terms, but that level of explanation is of limited use in understanding 
the intelligent behavior of a system.  This seems like a distinct disadvantage compared to 
abstract, rule-based systems but, as we have argued, it is a necessary consequence of ex-
pert behavior.  In this regard, the test and evaluation of embodied connectionist systems is 
not much different from that of other physical systems, for which abstract models and 
simulations are insufficient in the absence of field testing.

Further, the deployment of embodied connectionist systems is not qualitatively differ-
ent from the deployment of trained animals or humans.  Being able to recite memorized 
rules of procedure or to perform well in laboratory environments does not substitute for 
performance testing and evaluation in real, or at least realistic, situations. 
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6 Conclusions 
We have argued that embodied connectionist AI and robotics promises a new genera-

tion of intelligent agents able to behave with fluent expertise in natural operational envi-
ronments.  Such systems will be able to modulate their perception and behavior according 
to context and to respond flexibly and appropriately to novelty, unpredictability, and un-
certainty in their environments.  These capabilities will be achieved by understanding 
natural intelligence, its realization in neural networks, and its exploitation of embodi-
ment, and by applying this understanding to the design of autonomous robots and other 
intelligent agents. 

However, a more natural intelligence is also an intelligence that responds more subtly 
to its environment, and guides its body in a fluent dance with its physical environment. 
As a consequence, such systems cannot be adequately tested or evaluated independently 
of their physical embodiment and the physical environment in which they act.  Naturally 
intelligent systems typically lack both  transparency of behavior and independence of in-
formation processing from physical realization, which we have come to expect in artifi-
cial intelligence. 

Nevertheless,  such systems  may be  tested  and evaluated  by similar  approaches  to 
those applied to other inherently physical systems; it is really only a shift of emphasis 
from abstract rules and programs to concrete physical interaction with the operational en-
vironment.  
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