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Abstract

Enormous progress has been made in recent years in the nanostructuring of 
materials, and a variety of techniques are available for fabricating bulk materials 
with a desired nanostructure.  However, the higher levels of organization have 
been neglected,  and nanostructured materials  are assembled into macroscopic 
structures using techniques that are not essentially different from those used for 
conventional materials.  We argue that the creation of complex hierarchical sys-
tems, with specific structures from the nanoscale up through the macroscale, and 
especially post-Moore’s Law nanocomputers, will require a close alignment of 
computational and physical processes.

* This report is an unedited draft of portions of the Editorial Preface, “Computation and Nan-
otechnology,” for the International Journal of Nanotechnology and Molecular Computation 1, 1 
(January 2009).
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1 Hierarchical Assembly
Enormous progress has been made in recent years in the nanostructuring of materials, 

and a variety of techniques are available for fabricating bulk materials with a desired 
nanostructure.   However,  the  higher  levels  of  organization  have  been  neglected,  and 
nanostructured materials are assembled into macroscopic structures using techniques that 
are not essentially different from those used for conventional materials.  For example, 
nanostructured materials may be shaped by machining or molding and assembled by con-
ventional manufacturing techniques.  Thus we may have self-assembly at the nanoscale 
and conventional manufacturing at the macroscale, but no systematic fabrication technol-
ogy applicable to all scales.  Is there an alternative? 

Fortunately nature provides a suggestive example, for embryological morphogenesis 
creates highly complex hierarchical systems, with structures ranging from the nanoscale 
within cells up through multicellular tissues to the level of gross anatomy.  As a signifi-
cant example, we may take the mammalian nervous system.  The brain comprises a num-
ber of anatomical regions (the lobes), each comprising hundreds of smaller functional re-
gions (e.g.,  Brodmann’s areas, computational maps), which are structured into macro-
columns, which in turn contain minicolumns, each with a half-dozen or so layers.  The 
minicolumns comprise about one hundred neurons with dendritic trees of characteristic 
shape (and tens of thousands of synapses), all interconnected in specific ways.  At the 
other end of the scale, the brain itself is part of a nervous system, which includes a highly 
ramified but organized network of nerves. Thus, embryological morphogenesis provides 
an inspiring example of how self-organized growth, differentiation, and interaction can 
produce these complex macroscopic structures from microscopic components.  Similarly, 
the mathematical principles of morphogenesis may be applicable to the fabrication of 
complex hierarchically-structured artificial  systems.  The physical  realization of these 
mathematical principles is closely connected to computation, which I will consider next. 

2 Post-Moore’s Law Computing
The reign of Moore’s Law is near its end, and so we must consider the implications of 

a new regime in computing.  Whatever the specifics of new technologies, it is apparent 
that the quest for greater densities and greater speeds will dictate a closer assimilation be-
tween computational processes and the physical processes that implement them.  This is 
because greater densities will require us to use fewer physical devices to implement each 
element of the computational state (e.g.,  each number), and because achieving greater 
speeds will preclude us from using sequences of physical processes to implement elemen-
tary computational operations (such as addition).  That is, the space and time scales of el-
ementary computational processes will have to approach the space and time scales of the 
physical systems that realize them. 

Nanoscale  physical  processes  have  different  characteristics  from the  computational 
processes on which contemporary computer technology is built (binary digital logic).  For 
example, these physical processes are often continuous in both time and physical quanti-
ty.  Even discrete phenomena (such as molecular interactions within a cell) may be best 
treated as continuous stochastic processes.
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Further, natural processes are fundamentally parallel and asynchronous.  In traditional 
computer design, however, we have arranged physical processes so that they are synchro-
nized and sequential — because we understand such systems better — but that is waste-
ful,  and in the long run it  will  be more efficient  to learn to take advantage of asyn-
chronous parallel processes for computation.

Contemporary computing, including logic design, is often done in a sort of abstract 
realm in which there are logical dependencies, but spatial arrangement is ignored.  At 
small time and space scales, however, the spatial organization of computational elements 
becomes much more important.  For example, the propagation time of signals is always 
relevant, but may be exploited for information processing.  More generally, the spatial or-
ganization of computational elements becomes an essential element in information sys-
tems design.  Also, molecular computation is not a purely abstract process, but we must 
consider steric factors, diffusion rates, etc., which may be treated as  problems, but are 
better viewed as potential computational resources.

Nondeterminism is pervasive at the nanoscale.  For example, thermal noise is signifi-
cant in magnitude and unavoidable, defects and faults are inevitable, and quantum phe-
nomena are often relevant.  We may view these characteristics as problems — as implied 
by such terms as “noise,” “defect,” and “fault” — or we may view them as free sources 
of useful randomness, variability, etc.

Chemical  reactions  always  have  a  nonzero  probability  of  going  backward,  and  so 
molecular computation cannot be assumed to go monotonically forward.  Similarly, many 
other nanocomputational processes get their direction from energy differences, barriers, 
etc. and have some probability of reversal.  Thus models of nanocomputation must take 
reversibility into account.  Again, we can treat it as a problem to be solved (an imperfect 
realization of an idealized unidirectional process), or we can treat it as a free resource to 
be exploited.  For example, simulated annealing and similar optimization algorithms de-
pend on low-priority uphill transitions to escape from local minima (Kirkpatrick, Gelatt 
& Vecchi, 1983).

Although  we  have  been  inclined  to  think  of  computation  as  an  abstract  process, 
nanocomputation requires us to recognize that computation is a dissipative or nonequilib-
rium physical process: potentially nonterminating computation cannot continue without a 
source of matter or energy.  Therefore, in nanocomputation, much more so than in tradi-
tional computation, the flow of matter and energy becomes a central factor in information 
system design.  The nanoscale presents novel problems for energy supply, but also new 
opportunities for sources of matter  and energy, including electrical,  chemical,  optical, 
thermal, and vibrational energy.  Similarly, there are novel problems and opportunities for 
dissipation of waste energy and matter.  At the nanoscale, entropy is both a physical and 
information-theoretic quantity.

Self-assembly is often treated as an equilibrium process (analogous to a terminating 
computation), but in a more general sense an assembled nanostructure can be a stationary 
state (or dynamic equilibrium) in a nonequilibrium process, as is often the case in natural, 
especially living, systems.  In effect such a system is continually regenerating its station-
ary state,  so that  if  it  is  perturbed (e.g.,  damaged) it  will  restore the stationary state. 
Therefore such systems may be self-healing without an explicit self-repair mechanism. 
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Further, since a stationary state may be a result of the system’s interaction with its envi-
ronment, as well as of its internal dynamics, a change in the environment can cause a 
shift to a new stationary state.  In this way many natural systems adapt automatically to 
changes in their environments.  Therefore we can exploit the physical medium to imple-
ment implicitly important characteristics such as healing and adaptation.

Finally, quantum effects are inevitable when dealing with small space scales, time in-
tervals, energies, etc.  Thus we need a fundamentally quantum-oriented approach to com-
putation, including techniques to make productive use of quantum phenomena, such as 
tunneling, exchange interactions, entanglement, and superposition (the goal, of course, of 
quantum computation).

All these characteristics of nanocomputation can be considered problems to be solved, 
and this is the approach taken in contemporary computer technology, where devices and 
circuits are designed to operate “correctly” (i.e.,  to implement binary digital logic) in 
spite of these physical characteristics.  However, arranging physical processes to imple-
ment preconceived ideas of computation is costly in density, speed, and power.  Therefore 
we should, as is sometimes said, “respect the medium” and view its characteristics as re-
sources to be exploited rather than as problems to be avoided.  For example, thermal 
noise may be used as a “free” source of randomness, which is useful for many algorithms 
(e.g., simulated annealing, stochastic resonance: Benzi, Parisi, Sutera & Vulpiani, 1982; 
Kirkpatrick, Gelatt & Vecchi, 1983).  Low precision real numbers may be represented di-
rectly by continuous physical quantities, rather than indirectly, as we do now, with a sin-
gle number being represented by multiple bits, each implemented by operating one or 
more continuous physical devices (transistors)  in saturated mode.  Thus post-Moore’s 
Law computing should seek to make productive use of physical properties and processes 
in the computational medium. 

This increased dependence on physical properties might seem to turn computation into 
a kind of applied physics, but there is still an important role for computational abstrac-
tions.  We can see this from the history of contemporary computing technology, for the 
same mathematical abstraction — Boolean logic — has been used as a model of compu-
tation since Boole’s Investigation of the Laws of Thought (1854), through successive gen-
erations of implementation technology, from the mechanical logic of Jevon’s logical pi-
ano (1869), through relays,  vacuum tubes, discrete transistors, integrated circuits,  and 
several generations of VLSI.  This stable theoretical background has permitted a cumula-
tive investment in Boolean logic and circuit design, providing continuity from one tech-
nological generation to the next, and saving us from having to reinvent computer design 
with each new technology.  This is possible because Boolean logic is physically realiz-
able, yet sufficiently abstract that it can be realized by a variety of physical systems. 

Therefore, in laying the foundation for post-Moore’s Law computing we should seek 
new models of computation that combine physical realism with sufficient abstractness to 
be implementable in a variety of physical media.  Our models of computation need to be 
close to the underlying physical realization, but not so close that only one realization is 
possible.  Therefore we should adopt as fundamental computational operations those pro-
cesses that occur in a wide variety of physical systems or that can be fairly directly imple-
mented in them.  For example, diffusion is a common physical process, which occurs in a 
variety of media, from charge carriers diffusing in a semiconductor to molecules diffus-
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ing in a fluid, and it has proved useful for information processing and control in natural 
and artificial systems; therefore it is a good candidate as an operation in post-Moore’s 
Law computing. 

Fortunately nature provides many examples of the use of physical processes for infor-
mation processing, and these can often be abstracted from their specific physical embodi-
ment and realized in other physical systems.  Examples include neural network models of 
computation, excitable media and reaction-diffusion systems used to control spatial orga-
nization, molecular regulatory circuits in cells, intracellular DNA/RNA computing, and 
embryological pattern formation and morphogenesis.  Understanding these systems in in-
formation processing terms will show how common physical processes may be exploited 
to more directly realize information-processing functions, and thus show the way to post-
Moore’s Law computing technologies. 

3 Computational Control of Matter
Nanotechnology and computation interact in another important way, but to see it we 

have to step back and look at computation from a general perspective.  Computation uses 
physical processes to realize abstract processes.  For example, in manual computation the 
beads on an abacus or the scales of a slide rule are manipulated to realize abstract mathe-
matical operations, such as addition and multiplication.  In an analog computer, electrical 
processes realize a system of differential equations, and in digital computers electrical 
switches implement binary logic, in order to process numbers, matrices, characters, se-
quences, trees, and other abstract objects.  What distinguishes these physical processes as 
computation is that their purpose is to realize an abstract (mathematical) process, which is 
in principle  multiply realizable, that is, realizable by any physical process that has the 
same abstract structure (MacLennan, 1994, 2004). 

There is a tendency to confuse the physical process of computation with the abstract 
processes it realizes, and to think of computation as an abstract process itself.  This ten-
dency is reinforced by the theory of computation, which is based on abstract (mathemati-
cal) machine models (such as the Turing machine), whose purpose is generally expressed 
as the evaluation of mathematical functions.  Therefore it is important to recall that com-
putation is a physical process during which real matter and energy are controlled.  This is 
easiest to recognize in analog computers, but even in digital computation an abstract pro-
cess governs the flow of currents, the movement of electrons, etc. 

Computation bridges the abstract and the physical (or, as we might say, the formal and 
the material).  Normally we use the physical processes as a means of realizing an abstract 
purpose, but we can turn the tables and view the abstract process as a means of achieving 
a physical effect.  This is already the case for a computer’s output transducers, which are 
intended to have a physical effect, but we can extend the idea so that the entire computa-
tion is designed for the sake of the corresponding physical processes.  While the physical 
processes in an electronic computer might not seem very useful for purposes other than 
computing,  other  computing  technologies,  such  as  molecular  computation,  reorganize 
matter in ways that can be useful for nanotechnology.  An example is algorithmic self-as-
sembly, which can be implemented with DNA (e.g., Winfree, 1998; Reif, 1999; Rothemu-
nd, Papadakis, & Winfree, 2004; Rothemund & Winfree, 2000).
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In this context the idea of a general-purpose computation is especially intriguing, since 
it implies that a wide variety of physical processes could be programmed much like a dig-
ital computer is programmed, and provide a systematic methodology for nanostructure 
synthesis and control (MacLennan, 2003; von Neumann, 1966; Winfree, 1996). 

Computation  applied  to  nanotechnology  has  different  standards  and tradeoffs  from 
conventional computation.  In traditional applications we want the computation to go as 
fast as possible (and to dissipate as little power as possible, and to store information as 
densely as possible), so the common goal is to move as little matter and energy as possi-
ble in each computational operation.  (This progress can be traced from the movement of 
relay contacts and changes of magnetization in core storage, through vacuum tubes, dis-
crete transistors, and CMOS, to a possible terminus in single-electron transistors.)  We 
have strived to decrease the matter (and energy) of computation as much as possible in 
order to approximate pure (immaterial) form.  

However, if our purpose is to move matter and to create nanostructures with specified 
physical dimensions, then we may want our computations to move more matter rather 
than less.  (Again, output transducers and actuators provide a familiar example from con-
ventional computing, but here we consider the physical characteristics of the entire com-
putation.)  Similarly, we will want our computation to proceed at a rate compatible with 
its intended physical effect. 

Molecular computation, especially DNA self-assembly, provides one of the best con-
temporary examples of the computational control of matter for nanotechnological purpos-
es (e.g., LaBean, Winfree & Reif, 2000; Reif, 1999; Rothemund, 2006; Rothemund, Pa-
padakis, & Winfree, 2004; Rothemund & Winfree, 2000; Seeman, 1999; Winfree, 1998; 
Yan, Finkelstein, Reif & LaBean, 2003).  Therefore IJNMC especially seeks papers re-
porting progress in molecular computation, but welcomes work on other computational 
and non-computational approaches to nanotechnology. 

4 Embodied Computation
This more intimate relation between information processing and physical processes is 

characteristic of embodied computation, which refers to the synergistic interaction of for-
mal  computation and its  material  embodiment  (cf.,  Hamann & Wörn, 2007;  Stepney, 
2004, in press).  This concept is inspired by embodied cognition, an important recent de-
velopment  in  cognitive  science  and robotics  (Brooks,  1991;  Clark,  1997;  Johnson & 
Rohrer, 2007; Pfeifer & Bongard, 2007; Pfeifer, Lungarella & Iida, 2007), which address-
es the critical role that the body and its physical environment play in cognition (in hu-
mans and other animals).  One of the insights of embodied cognition is that there is much 
information that the brain does not have to represent because, in effect, the body and its 
environment represent themselves, and further that there are many information process-
ing tasks that the brain does not have to carry out because they are effectively realized by 
physical processes in the body and its environment (Dreyfus, 1979).  As a consequence, 
the cognitive load on the brain is decreased enormously.  Embodied computation general-
izes this approach to all sorts of information processing and control.   Thus embodied 
computation is an attractive strategy for post-Moore’s Law computing in that it supports a 
greater assimilation between computational and physical processes. 
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In embodied computation, many useful computational processes come “for free” as 
physical processes.  For example, simulated diffusion has proved useful in a number of 
applications, including path finding, optimization, and constraint satisfaction (e.g., Miller, 
Roysam, Smith & O’Sullivan, 1991; Steinbeck, Tóth & Showalter, 1995; Ting & Iltis 
1994); in effect it is massively parallel breadth-first search.  However, simulating diffu-
sion can be expensive on serial or modestly parallel computers, but it is simple to imple-
ment physically, and the parallelism comes for free as a consequence of the parallelism of 
the physical  process.   Therefore it  is  not  surprising that  nature exploits  diffusion (of 
chemicals or the agents themselves) to solve complex information processing and control 
problems (e.g., Camazine, Deneubourg, Franks, Sneyd, Theraulaz & Bonabeau, 2001). 
Further, as mentioned previously, noise is unavoidable, especially at the nanoscale.  We 
can view these stochastic processes negatively, as noise corrupting otherwise perfect rep-
resentations, and which we strive to eliminate or mitigate, or we can “respect the medi-
um” and exploit them as useful sources of randomness that can be applied to information 
processing (e.g., in stochastic resonance and simulated annealing: Benzi, Parisi, Sutera & 
Vulpiani, 1982; Kirkpatrick, Gelatt & Vecchi, 1983).  Similarly, unavoidable “error” in 
the  realization  of  idealized  computational  processes  can  be  turned  to  our  advantage. 
Again, nature is a useful model; for example, ants follow their trails imperfectly, and 
there is variability among ants in trail following, which maintains a certain degree of un-
biased search and adaptability in their activity (Camazine & al., 2001).

Nature also provides informative examples of how the physical system may be its own 
representation, which are relevant to the application of computational ideas in nanotech-
nology.  For example, stigmergy refers to the process wherein the “project” undertaken by 
one or more organisms embodies the information required to continue and complete the 
project  (Camazine  &  al.,  2001).   The  best-known  example  is  wasp  nest  building 
(Bonabeau, Dorigo & Theraulaz, 1999).  The partially completed nest itself provides the 
stimuli that guide the individual wasps in the construction process.  Therefore there is no 
need for the wasps to have representations of the completed nest or of the current state of 
its construction, or to have an internal “program” for nest construction.  In this way, rela-
tively simple agents (with modest information processing capacity) can construct com-
plex, functional structures. 

The greatest degree of integration between a computation and its realization occurs 
when the computation is  not controlling some separate physical  system, but is  rather 
modifying or constructing the physical realization of itself.  That is, the computer and the 
computation co-create each other.  So stated, such a process might seem impossible, but it 
is the basis of embryological morphogenesis, in which embodied computation creates the 
physical substrate for later embodied computation.  Cells signal each other in order to co-
ordinate the creation and differentiation of new cells, which extend the morphogenetic 
process.  Further, in later developmental stages, neural processes create the nervous sys-
tem, including the brain.  (Thus living systems are described as autopoietic, or self-mak-
ing: Maturana & Varela, 1980; Mingers, 1994.)  Similarly, in some DNA-based algorith-
mic self-assembly processes, molecular computation creates the physical structure that 
supports further computation and assembly (e.g., Barish, Rothemund & Winfree, 2005; 
Cook, Rothemund & Winfree, 2004; Rothemund & Winfree, 2000).
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Therefore we may conclude that the creation of complex hierarchical systems, with 
specific structures from the nanoscale up through the macroscale, and especially post-
Moore’s Law nanocomputers, will require a close alignment of computational and physi-
cal processes.  
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