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Abstract—1 Computational Fluid Dynamics (CFD) is an active
field of research where the development of faster and more
accurate methods is linked to the continuous demand for ever
higher computational power. And indeed, for at least two decades,
high-performance computing (HPC) programmers have taken
for granted that each successive generation of microprocessors
would, either immediately or after minor adjustments, make
their software run substantially faster. But recent microprocessor
design trends including the introduction of multi/many-core
designs and the increasingly popular use in HPC of accelerators
such as General Purpose Graphics Processing Units (GPGPU)
and Field Programmable Gate Arrays (FPGAs), present an
unprecedented challenge, namely how to update and enhance the
existing large CFD software infrastructure to efficiently use these
new architectures. In this paper we address some main issues in
this transition and present ideas on using the new architectures
to accelerate CFD applications that are of interest to the Air
Force. We consider not only multi/many-core but also special
purpose (e.g. GPUs) and reconfigurable computing (e.g. FPGAs)
architectures. Moreover, we demonstrate benefits of using hybrid
combinations where the strengths of each platform can be used to
better map algorithm requirements and underlying architecture.

I. INTRODUCTION

Computing technology is currently undergoing a transition
driven by power and performance limitations and genera-
tional technology advances that provide more and more on-
die real estate each year. The past 25 years have seen five
orders of magnitude growth in the number of transistors on
semiconductor logic devices, and the industry has realized
regular performance gains from each technology generation.
Steady incremental advances in manufacturing have resulted in
shrinking feature size and have allowed more and faster parts
roughly every two years. The gains from this development
pathway have now saturated and, as is painfully clear, clock
speeds have stalled at about 3GHz for the last 4 years. As
feature size continues to shrink and the gains realized by
increasing core complexity have diminished, microprocessor
companies have turned to alternative uses of the on-die silicon.
Companies such as Intel and AMD naturally have taken a
multi-core approach, i.e. using the additional on-die space as
a result of technology advances to place additional instances
of their key product, the microprocessor core. The current
standard is quad core chips and the development roadmap
indicates that 8, 16 and 32 core chips will follow in the
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Fig. 1. Moore’s vs DeHon’s law [16].

coming years. In the past where the market could expect
clock doubling every two years it can now expect core-
doubling in that period. There is no larger scalar processor
under development or even in the planning stage at Intel or
AMD. Multi-core is here to stay and will be the predominant
mechanism for improved performance for the foreseeable
future. The transition is dramatic and significant and will have
implications for developers of all types including those in high
performance computing science and engineering fields [19],
[5]. There is now widespread recognition that performance
improvement on CPU-based systems in the near future will
primarily come from the use of multi-core platforms.

Populating the new chips with additional x86 architecture
microprocessor cores is not the only solution proposed for
going forward. IBM, for example, is seizing the opportunity
presented by the transition to introduce its own heterogeneous
multi-core architecture, the CELL Broadband Engine. Other
innovative solutions proposed include GPUs, FPGAs, and
ASICs. In fact, trends show that floating point performance
on both FPGAs and GPUs has outpaced that of CPUs in
recent years. Figure 1 shows data from Underwood et. al.
[16] indicating the trends in CPU and FPGA floating point
performance over a period of 15 years. Field Programmable
Gate Arrays or FPGAs are chips that contain homogeneous
programmable circuitry that can be configured and rapidly
reconfigured into custom hardware. The scaling of FPGA
performance is governed by DeHon’s law in a manner similar
to Moore’s law for CPUs. Dehon demonstrates that FPGA
floating point computational density is increasing at a faster



Fig. 2. Floating point performance of CPU vs GPU [14].

rate than that of CPUs [9].
GPU companies such as NVIDIA and ATI are leveraging

the inherent parallelism of their powerful processors to provide
solutions to general computing applications. Figure 2 from the
NVIDIA CUDA programming guide shows the recent progress
of GPU floating point performance vs. CPU performance.
The NVIDIA CUDA development environment provides a
traditional and familiar C interface for developers to tap into
the GPU SIMD machine.

The problem and the challenge for developers in the new
computational landscape is daunting. Developers must pro-
duce software for moving targets, some of which do not
conform to traditional programming models in any meaningful
way. Developers considering next generation software need
to understand the inherent parallelism in their problems and
then understand the programming model presented by the
hardware platform, e.g. multi-core, GPU or FPGA. Devel-
opers will need guidance to help map the core algorithmic
complexity of their problems to the correct next generation
platform. FPGAs excel on problems that can be expressed
in moderate levels of task parallelism with significant levels
of instruction level parallelism, deep computational pipelines
and access to multiple fast independent caches. They are
particularly effective on non-floating point problems where
their massive reconfigurable fabric can be effectively used
for computational processing on integers, fixed point, boolean
or custom representations. GPU’s are particularly strong with
SIMD problems that have significant levels of task paral-
lelism operating on independent data sets. CPU multi-cores
are still excellent general purpose platforms that have the
most advanced programming model that is most familiar to
developers. Processes that have significant branching or are not
easily expressed as SIMD methods would map well to CPU
multi-cores. Developers are not accustomed to thinking about
the strengths and weaknesses of their hardware platforms
beyond simple metrics that concern contiguous cache access.
In many cases, the optimal solution may well be a hybrid
solution combining strengths of each platform. And indeed, as
we demonstrate in this paper, some of the CFD acceleration
techniques that we address make use of hybrid architectures.

II. CFD FOR AIR FORCE APPLICATIONS

Aerospace applications are one of the main drivers and users
of CFD technology. CFD simulations are used to predict fluid
flows, which in turn are heavily used in Air Force applica-
tions such as design of wing and body configurations for
aircrafts, design of gas turbine engines, missiles, spacecraft,
etc. CFD simulations consist of three main parts, namely (1)
a mathematical model for the particular flow being simulated,
(2) numerical methods for solving the model, and finally (3)
software tools and libraries.

The mathematical model is based on partial differential
equations (PDEs). The main PDEs here are the Navier-Stokes
(NS) equations [3], which are known to correctly simulate
single-phase fluid flows in various regimes. These equations
can be simplified for particular flows. For example, com-
pressible inviscid flow corresponds to NS with zero viscosity
where the equations are known as Euler equations. Moreover,
the NS equations in CFD simulations are often enhanced
with supplemental equations to capture various fluid effects.
For example, flow with small viscosities and large velocities
develops turbulence. Resolving turbulence using just the NS
equations (known also as Direct numerical simulation or DNS)
requires such a fine mesh resolution that the computational
time becomes prohibitively high making the correct calcula-
tion impossible even on current supercomputers. Therefore,
approximations have been developed to treat turbulence, such
as Reynolds-Averaged NS equations (plus turbulence mod-
eling), Large Eddy Simulations (LES), and Detached Eddy
Simulations (DES). Other flow effects have spurred up yet
more methods. For example, for flows near surfaces there are
panel methods and lifting surface methods, convective (i.e.
Euler) parts of NS are treated with flux-vector-splitting (FVS)
methods, Godunov-type schemes, etc.

The numerical methods used in CFD application encompass
various PDE discretization and solution techniques. The main
PDE discretization methods are the finite volume method
(FVM), the finite element method (FEM), and the finite
difference method. All of these standard discretization meth-
ods can be enhanced with additional techniques to ensure
numerical stability of the solution and at the same time capture
discontinuity and other singularity features of the true solution.
Some of these techniques are incorporated in the various fluid
simulations mentioned above.

By briefly mentioning the various mathematical models and
numerical methods used in CFD we want to stress the diversity
and complexity of the various computational techniques of
interest to Air Force. The field is truly multidisciplinary and
over the years a large CFD software infrastructure has been
created. In order for our work to have a broader impact in
the field our current goal is not to accelerate a specific fluid
flow problem, but to concentrate on techniques accelerating
certain reoccurring in the field computational kernels. Those
are identified in subsection III-A below.



III. ACCELERATING CFD CODES ON NEW ARCHITECTURES

To broaden the impact of our work we concentrate on
identification and consequently acceleration of computational
kernels that recur in Air Force applications, and that are
performance bottlenecks for new architectures. Another use-
ful generalization of this approach is to group and analyze
together kernels that share the same pattern of computation
and communication. Collela [8] introduced 7 patterns (called
“dwarfs”), also described and extended in [1]:

• Dense Linear Algebra
• Sparse Linear Algebra
• Spectral methods
• N-body methods
• Structured grids
• Unstructured grids
• Monte Carlo

All these can be found in Air Force applications and overlap
nicely, especially the first two, with our findings.

A. Main computational kernels

We selected the following computational kernels for the
focus of our efforts.

• Sparse Iterative solvers: Sparse matrices arise in a
wide range of computational disciplines, including CFD,
where the physics is dominated by local interactions. The
solution of Ax = b where A is sparse is a particularly
difficult problem for conventional computing architec-
tures. It therefore presents a high value opportunity for
acceleration using for example FPGAs.

• Dense Linear Algebra: In the situations where sparse
matrices do not apply, dense matrices often take their
place. When physical interaction are long range or the
basis set is extended globally, dense matrices naturally ap-
pear. Our current focus here is on one sided factorizations
like LU, QR, and Cholesky (and linear solvers based on
them). These are of interest and can be accelerated using
either multi-core, GPUs, FPGAs, or hybrid combinations.

• Lattice Boltzmann Method: LBM is representative of
the class of cellular automata methods. Techniques for its
solution are also applicable to finite-difference type codes
as they have the same pattern of computation and commu-
nication. LBM is another method which may present an
advantage on reconfigurable hardware over conventional
computing architectures because of its inherent simplicity
and massive parallelism.

In summary, while the various computational techniques
considered to be of interest to the Air Force are very diverse
and complex, their bottlenecks are frequently reduced to
solving a sparse linear system (e.g. discretization of PDEs with
FEM, finite volume, or implicit finite differences methods),
dense linear system (e.g. boundary element methods in panel
and lifting surface CFD methods, spectral methods, Schur-
complement in domain decomposition, subspace diagonaliza-
tion for eigensolvers or subspace minimization in iterative
solvers, etc.), or to a scheme of repeatedly updating certain

cells’ state based on rules (e.g. cellular automata, explicit finite
differences, LBM, certain Monte-Carlo type simulations, etc.).
Therefore, accelerating these kernels on the new architectures
addressed in this paper will have a significant and broad impact
on a wide variety of important Air Force applications. Our
stress is on dense and sparse linear algebra kernels as they
form the core of most of the Air Force numerical simulations.

B. Some general acceleration ideas

Here we list several general ideas for accelerating kernels
for sparse and dense linear algebra. For some of these ideas
we have specific numerical results, as shown in Section IV,
others are of current research interest and under development.

1) Accelerating algorithms of low CI: The idea here is to
try to accelerate algorithms that are not efficient for current
architectures (e.g. multi-core). For example, algorithms of low
computational intensity (CI: ratio of computations to data
required) like Level 1 or 2 BLAS would be bandwidth limited.
Indeed, consider for example the Intel Clovertown processor. It
is equipped with four cores each capable of a double precision
peak performance of 10.64 GFlop/s (or 42.56 GFlop/s for four
cores) while the bus bandwidth peak is only 10.64 GB/s, or
1.33 GWords/s. As a result, since one core is largely enough
to saturate the bus, using two or more cores on Level 1 or 2
BLAS does not provide any significant benefit. This processor
to memory gap is expected to grow by 50% per year according
to some estimates.

The same problem is even more important for sparse matrix-
vector products due to the irregular memory accesses where
performance is often less then 3% of the peak [21]. Recon-
figurable computing, with its flexibility in designing parallel
memory accesses, presents an opportunity to speed this very
large class of problems (see subsection IV-C for a specific
example).

2) Accelerating DLA algorithms using hybrid systems:
We want to use current advances in accelerating dense linear
algebra (DLA) on multi-cores (see subsection IV-A) and
achieve further acceleration by using GPUs and FPGAs.
In particular, the computations in DLA algorithms can be
reorganized by splitting them into tasks that operate on smaller
blocks of data, resulting in so-called “tiled” algorithms. The
DLA algorithm at hand can then be represented as a Directed
Acyclic Graph (DAG) where nodes represent tasks, and edges
represent dependencies between them. The execution of the
algorithm is performed by asynchronously scheduling the tasks
in a way that dependencies are not violated [4]. Scheduling the
execution of certain tasks, e.g. so called panel factorizations,
as soon as possible may be crucial for the performance as
those tasks clear up dependencies for many other tasks that can
be executed in parallel, e.g. so called trailing matrix update.
Therefore, panel factorization, especially if not overlapped
with other work, would be a sequential part of many DLA
algorithms, and should be highly optimized. One idea is to
have the possibility to accelerate small kernels like panel
factorizations using FPGAs, and to accelerate the rich in Level



3 BLAS matrix updates using GPUs (see subsections IV-C and
IV-B).

3) Acceleration by developing algorithms of higher CI:
This (also very general) idea is to develop new algorithms
that compared to current/old algorithms have higher computa-
tional intensity. This has been and currently still is an area
of extensive research in the field. Examples from the past
is the transition from algorithms based on optimized Level
1 BLAS (from the LINPACK and EISPACK libraries) to
reorganized DLA algorithms that use block matrix operations
in their innermost loops, which actually formed LAPACK’s
design philosophy. Current examples are work on QR and LU
factorizations as their LAPACK implementations have panels
involving Level 2 BLAS. For QR, certain out-of-core versions
[11] lead to entirely Level 3 BLAS algorithms (see subsection
IV-A). For LU a so called randomization technique lead to
entirely Level 3 BLAS algorithms (see [2] where we used the
technique to develop optimized LU implementation for hybrid
CPU-GPU platforms). We point out that algorithms of high
computational intensity can be efficiently implemented on the
architectures of interest in this paper.

4) Acceleration using mixed precision arithmetic: Finally,
as lower precision floating point arithmetic is in general faster
than higher precision arithmetic, there is the acceleration
idea of mixed precision iterative refinement where the faster
lower precision arithmetic is involved for the bulk of the
computation, and higher precision only at critical stages, while
overall providing results in the higher precision [7], [6], [18].
These techniques are applicable to a wide range of algorithms
for solving linear equations and least square problems as well
as singular and eigenvalue problems, both dense and sparse
matrices (see subsection IV-D).

IV. SOME SPECIFIC EXAMPLES

A. Acceleration using multi-core architectures

There is a common understanding on how to design certain
DLA algorithms for current multicore chips. As mentioned
in [4], algorithms should satisfy the following criteria to take
advantage of multicore processors:

- fine granularity, as cores are associated with relatively
small local memories,

- asynchronicity, to hide the latency of access to memory.
These ideas are applied in current efforts for developing
efficient DLA algorithms for multicore [4], [15]. The fine
granularity is achieved by splitting the operations into tasks
that operate on smaller blocks while asynchronicity is achieved
by dynamically scheduling the tasks using a DAG, as already
mentioned in subsection III-B2 and as illustrated on Figure
3. On the left we give a typical graph where the nodes in
orange represent the sequential parts of an algorithm and in
green the tasks that can be done in parallel. The asynchronous
dynamic scheduling should be such that the execution of the
sequential tasks in orange is overlapped, without violating any
dependencies, with the tasks in green. This is done by defining
a “critical path”, that is the most time-consuming sequence

Fig. 3. LU factorization with part of its associated DAG (left) and task
splitting showing the sequential panel factorization and parallel trailing matrix
update (right).

Fig. 4. Performance of a QR factorization (from [4]).

of basic operations that must be carried out sequentially
even allowing for all possible parallelism, and scheduling for
execution the tasks from the critical path as soon as possible
(i.e. when all dependencies have been computed). This ensures
that the sequential part of the algorithm will be optimally
overlapped with tasks outside the critical path. Note also that
no matter the number of cores available an algorithm will be
always limited by the time needed to execute its critical path
on a single core. As the performance of a single core is already
limited this is one more motivation that further speedups may
be expected in using hybrid approaches, where the critical path
may be executed for example on FPGAs.

Data storage is also essential for effective computations
and Block Data Layout [12] can be successfully applied to
tiled algorithms. Results of these techniques are encouraging,
as shown on Figure 4 for the case of QR factorization [4].
Variations of these ideas can be also recognized in algorithms
for GPUs [2], the CELL BE [13], and even FPGAs (e.g. in
the case of out-of-core FPGA problems or multi-FPGA use).



B. Acceleration using GPUs

GPUs, especially with the introduction of CUDA[14], are
getting much easier to use for general purpose computing. And
indeed, there is a very easy and efficient way of using them for
DLA, described as follows. First, as GPUs are better suited for
data-parallel computations, the tasks splitting has to be done
within the BLAS level (BLAS level parallelism). This gives us
one obvious way of using them for any LAPACK algorithm,
namely by just replacing BLAS calls with BLAS for GPUs
(e.g. CUBLAS 2). In this approach memory is allocated on the
GPU, the CPU runs the LAPACK code which is a sequence
of BLAS calls that get executed on the GPU. There are no
large memory transfers as the matrix to be factored and the
work space stay only on the GPU throughout the computation.
There are no programming efforts in this approach and we get
a good performance for large problems, but still, we are not
getting close to the sgemm performance peak (see [2]).

Fig. 5. Performance of Cholesky factorizations using an NVIDIA Quadro
FX 5600 GPU in single precision floating point arithmetic.

Similar to designing algorithms for multi-core, we can
design GPU algorithms that use asynchronous task execution.
An easy way to do it is for hybrid GPU-CPU/FPGA platforms.
Let us consider for example the left-looking block Cholesky
factorization [10, p. 86]. A step of the algorithm involves
two tasks that are independent and can be asynchronously
scheduled, namely a “large” sgemm-type update of the trailing
matrix can be started on the GPU and at the same time a
Cholesky factorization of a small block (from the diagonal of
the matrix) on the CPU (using LAPACKs spotf2), resulting
in overlapping (or hiding) the sequential small task with the
large highly parallel task. Adding this optimization more than
doubles overall performance on smaller problems compared
to the purely BLAS level parallelism. Figure 5 shows the
performance in single precision floating point arithmetic on
an NVIDIA Quadro FX 5600 and NVIDIA’s next generation
T10P card (this card also supports double precision arith-
metic). Note that although this approach requires insignificant

2See http://www.nvidia.com/object/cuda home.html

development efforts, the achieved 328 GFlop/s is very impres-
sive and moreover this algorithms performance has scaled, in
the sense that performance has doubled by simply using the
new generation card which has double the capabilities of the
previous (e.g. number of cores has increased from 120 to 240).
More detail can be found in [2].

C. Acceleration using FPGAs

We already saw several motivating examples for the need
for highly optimized small DLA kernels. In particular, these
are kernels on the critical path in tiled algorithms designed for
multi-core systems, or algorithms for hybrid GPU-CPU/FPGA
platforms as shown in the example from subsection IV-B
above.

Small kernels indeed can be highly accelerated (compared
to single core) using FPGAs. Figure 6 shows the performance
of an FPGA LU implementation using floating point arithmetic
of various precisions. The blue bars give the LU factorization
time on matrices of size 128×128. For more details see [18].

Fig. 6. Performance of LU factorizations on an FPGA enhanced Cray-XD1
in various precision floating point arithmetic [18].

Another example that we want to point out is FPGA designs
for sparse matrix-vector multiplication (SMVM). We ported a
blocking SMVM algorithm to a Virtex-2 (XC2V3000) FPGA
using an assembly implementation. Although this FPGA is
two generations behind in current technology the results were
encouraging, projecting that a modern Virtex-5 FPGA would
boost the performance of our design approximately up to 1.5
GFlop/s. We also want to point out to an earlier design for an
Xilinx XC2VP70-7 FPGA where compared to OSKI [20] on a
Pentium 4 microprocessor, the FPGA implementation achieves
up to 20× speedup [17].

D. Acceleration using mixed precision calculations

Numerical precision on FPGAs can be explicitly designed,
however higher precision designs consume a larger amount of
resources, and run significantly slower than lower precision
designs (see Figure 7).

This allows us to use the mixed precision iterative refine-
ment technique [7], [6], [18] to accelerate FPGA based linear
solvers. Figure 6 illustrates a possible speedup on a particular



Fig. 7. Performance of various precision floating point multipliers on an
XC4LX160-10 FPGA using DSP48 [18].

FPGA. There are limitations to the success of the iterative
refinement technique, such as when the conditioning of the
problem exceeds the reciprocal of the accuracy of the lower
precision computations, in which case the higher precision
algorithm should be used. We have studied the technique also
on conventional microprocessors for both dense [7] and sparse
[6] linear systems.

V. CONCLUSIONS AND FUTURE WORK

Various physical limitations in microprocessor design have
resulted in trends that present an enormous challenge to
software developers on how to create new or update existing
software packages so that they can take advantage of the
new and up-coming architectures. In this paper we presented
solutions on how to accelerate CFD for Air Force applications
not only for multi/many-core but also special purpose and
reconfigurable computing architectures. The approach taken
was not to concentrate on accelerating a specific CFD Air
Force application but to accelerate kernels sharing the same
patterns of computation and communication. Several kernels
were identified, 4 main ideas on accelerating them were
outlined, and specific examples achieving significant speedups
on the new architectures of interest here were given. Hybrid
architectures proved to be a promising direction in accelerating
key classes of problems as it allows us to better map algorithm
requirements and underlying architecture.

Our current and future work is concentrated on developing
algorithms and libraries related to the 4 main acceleration ideas
outlined.
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