
Fully Dynamic Scheduler for Numerical Computing
on Multicore Processors

– LAPACK Working Note 220

Jakub Kurzak
Department of Electrical Engineering and Computer Science, University of Tennessee

Jack Dongarra
Department of Electrical Engineering and Computer Science, University of Tennessee
Computer Science and Mathematics Division, Oak Ridge National Laboratory
School of Mathematics & School of Computer Science, University of Manchester

ABSTRACT

The dataflow model is gaining popularity as
a paradigm for programming multicore pro-
cessors and multi-socket systems of such pro-
cessors. This work proposes a program-
ming interface and an implementation for
a dataflow-based scheduler, which dispatches
tasks dynamically at runtime. The scheduler
relies on data dependency analysis between
tasks in a sequential representation of an algo-
rithm, which provides productivity and facil-
itates rapid prototyping for developers. Also,
through the application of dataflow principles,
it ensures efficient scheduling with provisions
for data reuse. Although designed with gener-
ality in mind, the scheduler is mainly intended
for handling computational tasks in dense lin-
ear algebra in the PLASMA framework. Some
customizations specific to that area are pre-
sented. Similarities and differences with other
existing solutions are also discussed and pre-
liminary performance results are given.

KEYWORDS: task graph, dataflow, multicore,
dense linear algebra

Contents

1 Introduction & Motivation 2

2 Existing Frameworks 2
2.1 Cilk 2
2.2 SMPSs 3
2.3 PLASMA’s Static Schedule 4

3 Scheduler API 4
3.1 Creating a Task 4
3.2 Invoking a Task 4

4 Scheduler Implementation 5
4.1 Types of Data Hazards 6
4.2 Scheduler Inner Workings 6

4.2.1 Populating Task Pool 7
4.2.2 Executing Tasks from the Pool 7

5 Performance Results 7

6 Conclusions 8

7 Future Directions 8

8 Acknowledgements 8

1

1 Introduction & Motivation

The current trend in the semiconductor industry to
double the number of execution units on a single die is
commonly referred to as the multicore discontinuity.
This term reflects the fact that existing software is
inadequate for the new architectures, and the existing
code base will be incapable of delivering increased
performance, possibly not even capable of sustaining
current performance.

This problem has already been observed with state-
of-the-art dense linear algebra libraries, LAPACK [1]
and ScaLAPACK [2], which deliver only a small frac-
tion of peak performance on current multicore proces-
sors and multi-socket systems of multicore processors,
mostly following Symmetric Multi-Processor (SMP)
architecture. Although the benefits of dynamic
data-driven scheduling were discovered in the early
80’s [3], recently they are being rediscovered as tools
for exploiting the performance of multicore proces-
sors.

The problem is twofold. Achieving good perfor-
mance on emerging chip designs is a serious prob-
lem, calling for new algorithms and data structures.
Reimplementing an existing code base using a new
programming paradigm is another major challenge,
specifically in the area of high performance scientific
computing, where the level of required skills makes
the programmer a scarce resource and millions of
lines of code might be needed.

In mainstream server and desktop computing that
targets mainly shared memory systems, the well
known dataflow model is rapidly gaining popularity.
The computation is expressed as a Direct Acyclic
Graph (DAG), with nodes representing computa-
tional tasks and edges representing data dependen-
cies among them.

2 Existing Frameworks

The coarse-grain dataflow model is the main prin-
ciple behind emerging multicore programming envi-
ronments such as Cilk/Cilk++ [4], Intel R© Thread-
ing Building Blocks (TBB) [5, 6], Tasking in
OpenMP 3.0 [7, 8, 9, 10] and SMP Super-

scalar (SMPSs) [11]. All these frameworks rely on
a very small set of extensions to common imperative
programming languages such as C/C++ and Fortran
and involve a relatively simple compilation stage and
potentially much more complex runtime system.

The following sections provide a brief overview
of these frameworks, as well as some comments on
the static scheduling technique, currently utilized by
the PLASMA framework and implemented “man-
ually” using POSIX threads. Since tasking facil-
ities available in Threading Building Blocks and
OpenMP 3.0 closely resemble the ones provided by
Cilk, Cilk is chosen as a representative framework for
all three (also due to the fact that it is available in
open-source).

2.1 Cilk

Cilk was developed at the MIT Laboratory for Com-
puter Science starting in 1994 [4]. and is an exten-
sion of the C language, with a handful of keywords
(cilk, spawn, sync, inlet, abort) aimed at provid-
ing general-purpose programming language designed
for multithreaded parallel programming. When Cilk
keywords are removed from its source code, the re-
sult is a valid C program, called the serial elision (or
C elision) of the full Cilk program. The Cilk envi-
ronment employs a source-to-source compiler, which
compiles Cilk code to C code, a standard C compiler,
and a runtime system linked with the object code to
provide an executable.

The main principle of Cilk is that the program-
mer is responsible for exposing parallelism by iden-
tifying functions free of side effects (e.g., access to
global variables causing race conditions), which can
be treated as independent tasks and executed in par-
allel. Such functions are annotated with the cilk
keyword and invoked with the spawn keyword. The
sync keyword is used to indicate that execution of
the current procedure cannot proceed until all pre-
viously spawned procedures have completed and re-
turned their results to the parent.

Distribution of work to multiple processors is han-
dled by the runtime system, and the Cilk scheduler
uses the policy called work-stealing to schedule execu-
tion of tasks to multiple processors. At run time, each

2

processor fetches tasks from the top of its own stack
- in First In First Out (FIFO) order. However, when
a processor runs out of tasks, it picks another proces-
sor at random and “steals” tasks from the bottom of
its stack - in Last In First Out (LIFO) order. This
way the task graph is consumed in a depth-first or-
der, until a processor runs out of tasks, in which case
it steals tasks from other processors in a breadth-first
order.

Cilk also provides the mechanism of locks. The
use of locks can, however, easily lead to a dead-
lock. “Even if the user can guarantee that his pro-
gram is deadlock-free, Cilk may still deadlock on the
user’s code because of some additional scheduling
constraints imposed by Cilk’s scheduler” [12]. In par-
ticular locks cannot be used to enforce parent-child
dependencies between tasks.

Cilk is very well suited for expressing algorithms
that easily render themselves to recursive formula-
tion, e.g., divide-and-conquer algorithms. Since the
stack is the main structure for controlling parallelism,
the model allows for straightforward implementations
on shared memory multiprocessor systems (e.g., mul-
ticore/SMP systems). The simplicity of the model
provides for execution of parallel code with virtually
no overhead from scheduling.

It has been shown that Cilk is not capable of ef-
ficiently scheduling workloads in dense linear alge-
bra [13], which is due to the fact that Cilk does not
rely on data dependency analysis and is, basically,
mainly suitable for algorithms rendering themselves
to recursive formulations.

2.2 SMPSs

SMP Superscalar (SMPSs) [11] is a parallel pro-
gramming framework developed at the Barcelona
Supercomputer Center (Centro Nacional de Super-
computación), part of the STAR Superscalar family,
which also includes Grid Supercalar and Cell Super-
scalar [14, 15]. While Grid Superscalar and Cell Su-
perscalar address parallel software development for
Grid environments and the Cell processor respec-
tively, SMP Superscalar is aimed at “standard” (x86
and like) multicore processors and symmetric multi-
processor systems.

The principles of SMP Superscalar are similar to
the ones of Cilk. Similarly to Cilk, the programmer is
responsible for identifying parallel tasks, which have
to be side-effect-free (atomic) functions. Addition-
ally, the programmer needs to specify the direction-
ality of each parameter (input, output, inout). If
the size of a parameter is missing in the C declara-
tion (e.g., the parameter is passed by pointer) then
the programmer also needs to specify the size of the
memory region affected by the function. Unlike Cilk,
however, the programmer is not responsible for ex-
posing the structure of the task graph. The task
graph is built automatically, based on the informa-
tion from task parameters and their directionality.

Similarly to Cilk, the programming environment
consists of a source-to-source compiler and a support-
ing runtime library. The compiler translates C code
with pragma annotations to standard C99 code with
calls to the supporting runtime library and compiles
it using the platform’s native compiler.

At runtime the main thread creates worker threads,
as many as necessary to fully utilize the system, and
starts constructing the task graph (populating its
ready list). Each worker thread maintains its own
ready list and populates it while executing tasks. A
thread consumes tasks from its own ready list in
LIFO order. If that list is empty, the thread con-
sumes tasks from the main ready list in FIFO order,
and if that list is empty, the thread steals tasks from
the ready lists of other threads in FIFO order.

The SMPSs’ scheduler attempts to exploit locality
by scheduling dependent tasks to the same thread,
such that output data is reused immediately. Also, in
order to reduce dependencies, SMPSs’ runtime is ca-
pable of renaming data, leaving only the true depen-
dencies, which is the same technique used by super-
scalar processors [16] and optimizing compilers [17].

The main difference between Cilk and SMPSs is
that, while the former allows mainly for expression
of nested parallelism, the latter handles computation
expressed as an arbitrary DAG. Also, while Cilk re-
quires the programmer to create the DAG by means
of the spawn keyword, SMPSs creates the DAG auto-
matically. Construction of the DAG does, however,
introduce overhead, which is virtually nonexistent in
the Cilk environment.

3

The scheduler presented here is identical to SMPSs
in philosophy. The main difference is expression of
parallel code through an API instead of language
extensions, which eliminates the need for a special-
ized compiler. Another difference is introduction of
specialized hinting mechanisms, allowing for closer
tweaking of dense linear algebra workloads. Also,
since the scheduler presented here is developed “from
scratch,” it most likely shares little with SMPSs in
terms of implementation.

2.3 PLASMA’s Static Schedule

The first version of the PLASMA library relies on
static schedules, where each core’s workload is prede-
termined and synchronization is enforced by a global
progress table. These schedules proved to deliver the
highest performance in comparison to Cilk, SMPSs,
and other schedulers developed at the University of
Tennessee [13, 18, 19]. Also, these schedules can eas-
ily be adapted for distributed memory implementa-
tions.

The static scheduling technique has two important
shortcomings. First is the difficulty of development.
It requires full understanding of the data dependen-
cies in the algorithm, which is hard to acquire even by
an experienced developer. The road to a functional
schedule is often paved with deadlocks and forces the
developer to repeatedly trace the execution until the
point of the deadlock. The second shortcoming is the
inability to schedule dynamic algorithms, where the
complete task graph is not know beforehand. This
is the common situation for eigenvalue algorithms,
which are iterative in nature.

It can be noted that static schedules were also
developed for two-sided factorizations, such as re-
duction to block Hessenberg or band bidiagonal
form [20, 21, 22]. These factorizations are signifi-
cantly more complex to schedule than one-sided fac-
torizations, such as LU, Cholesky and QR, and the
effort to build the static schedules was considerably
higher. Section 4 describes our current fully dynamic
scheduler.

3 Scheduler API

Defining programmer interactions with the sched-
uler through an API is an alternative to SMPSs’
compiler-based approach. Both approaches have
their strengths and weaknesses. While the latter is
probably more intuitive, the former is more flexible,
allowing for greater control over the program and
its execution, which makes it more suitable for the
development of numerical libraries. It is also easier
to provide APIs to different languages and platform
portability is less of an issue.

Following is the description of the current state of
the API, subject to extensions / improvements in the
near future. Parallelization relies on two steps: trans-
forming functions into task definitions and transform-
ing function calls into task queueing constructs. Fig-
ure 1 shows the first step and Figure 2 shows the
second one. Figure 3 shows the implementation of
the tile LU algorithm.

3.1 Creating a Task

Similarly to Cilk and SMPSs, functions implementing
parallel tasks have to be side-effect free, which means
they cannot use global variables, etc. In order to
change a regular function call to a task definition,
one needs to:

• declare the function with empty argument list,
• declare the arguments as local variables, and
• get their values by using a macro unpack args X,

where X is the number of arguments.

The above is a solution “borrowed” from the
PLASMA library, where it is used to pass arguments
between the serial, master, routines and the parallel,
worker routines.

3.2 Invoking a Task

The second step is changing the function call into a
task invocation, which puts the task in the task pool
and returns immediately, leaving the task execution
for later (when dependencies are met and the sched-
uler decides to run the task). In order to change a
function call into a task invocation, one needs to:

4

void CORE_dgetrf(
 int M, int N, int IB,
 double *A,
 int LDA, int *IPIV)
{
 ...
}

void CORE_dgetrf()
{
 int M, N IB;
 double *A;
 int LDA, *IPIV;
 unpack_args_6(M, N, IB, A, LDA, IPIV);

 ...
}

Figure 1: Example of transforming a function into a
task definition.

• replace the function call with a call to the
Insert Task() function,

• pass the task name (pointer) as the first param-
eter, and

• follow each original parameter with its size and
direction.

Array arguments have to be followed by the size of
memory they occupy in bytes and one of the following
directions: INPUT, OUTPUT or INOUT. Scalar ar-
guments have to be passed by reference, followed by
the size of their datatype and VALUE in the place
of direction. Although scalar arguments are passed
by reference, passing of scalars has the pass by value
semantics (a copy of each scalar argument is made at
the time of call to the Insert Task() function).

4 Scheduler Implementation

Currently the scheduler targets small-scale,
multi-socket shared memory systems based on
multicore processors. The main design principle
behind the scheduler is implementation of the
dataflow model, where scheduling is based on data
dependencies between tasks in the task graph. The
second principle is constrained use of resources with
strict bounds on space and time complexity.

 CORE_dgetrf(
 NB ,
 NB ,
 IB ,
 A(k, k),
 NB ,
 IPIV(k, k));

 Insert_Task(CORE_dgetrf,
 &NB , sizeof(int) , VALUE ,
 &NB , sizeof(int) , VALUE ,
 &IB , sizeof(int) , VALUE ,
 A(k, k) , NB*NB*sizeof(double), INOUT ,
 &NB , sizeof(int) , VALUE ,
 IPIV(k, k), NB*sizeof(double) , OUTPUT,
 NULL);

Figure 2: Example of transforming a function call
into a task invocation.

for (k = 0; k < BB; k++) {
 Insert_Task(CORE_dgetrf,
 A(k, k), NB*NB*sizeof(double), INOUT,
 IPIV(k, k), NB*sizeof(double), OUTPUT,

 for (n = k+1; n < BB; n++)
 Insert_Task(CORE_dgessm,
 IPIV(k, k), NB*sizeof(double), INPUT,
 A(k, k), NB*NB*sizeof(double), NODEP,
 A(k, n), NB*NB*sizeof(double), INOUT,

 for (m = k+1; m < BB; m++) {
 Insert_Task(CORE_dtstrf,
 A(k, k), NB*NB*sizeof(double), INOUT,
 A(m, k), NB*NB*sizeof(double), INOUT,
 L(m, k), NB*IB*sizeof(double), OUTPUT,
 IPIV(m, k), NB*sizeof(double), OUTPUT,

 for (m = k+1; m < BB; m++)
 Insert_Task(CORE_dssssm,
 A(k, n), NB*NB*sizeof(double), INOUT,
 A(m, n), NB*NB*sizeof(double), INOUT,
 L(m, k), NB*IB*sizeof(double), INPUT,
 A(m, k), NB*NB*sizeof(double), INPUT,
 IPIV(m, k), NB*sizeof(double), INPUT,
 }
}

Figure 3: Implementation of the tile LU algorithm
(scalar arguments are skipped for clarity).

The dataflow model is implemented through anal-
ysis of data hazards discussed in the following sub-
section. The constrained use of resources is accom-
plished by exploration of the task graph via a sliding
window (Figure 4).

5

Figure 4: Task graph of a tile LU factorization of a
7 × 7 tiles matrix with dark nodes representing the
sliding window of execution (104 total tasks, 40 tasks
in the window).

Even relatively small problems in dense linear al-
gebra (such that can be handled by a laptop or a
desktop computer) can easily generate DAGs with
hundreds of thousands or even millions of tasks. Gen-
eration and exploration of the entire DAG of such
size would not be feasible. Instead, as execution pro-
ceeds, tasks are continuously generated and executed.
However, at any given point in time only a relatively
small number of tasks (on the order of one thousand)
is stored in the task pool. The size of such a sliding
window is a tunable parameter, allowing for trading
the time and space overhead of scheduling for the
quality of the schedule.

4.1 Types of Data Hazards

• Read After Write (RAW) hazard, often re-
ferred to as true dependency is the most com-
mon dependency. It defines the relation between

a task writing (“creating”) the data and the
task reading (“consuming”) the data afterwards,
which has to wait until the former completes.

• Write After Read (WAR) hazard is caused
by a situation where a task attempts to write
(modify) data before a preceding task is finished
reading the data. In such a case the writer has to
wait until the reader completes. The dependency
is not referred to as a true dependency, because it
can be eliminated by renaming (making a copy)
of the data. Although the dependency is unlikely
to appear often in dense linear algebra, is has
been encountered and had to be handled by the
scheduler to ensure correctness.

• Write After Write (WAW) hazard is caused
by a situation where a task attempts to write
data before a preceding task is finished writing
the data. The final result is expected to be the
output of the latter task, but if the dependency
is not preserved (and the former task completes
after the latter one), incorrect output will result.
This is an important dependency in hardware de-
sign of processor pipelines, where resource con-
tention can be caused by a limited number of
registers. The situation is, however, quite un-
likely for a software scheduler, where the occur-
rence of the WAW hazard would mean that data
is produced, which is never consumed, before it
is overwritten. The same as the WAR hazard,
the WAW hazard can be removed by renaming.

Although unlikely, the WAR hazard may be caused
by a situation where partially overlapping regions are
considered. Consider a situation where one task pro-
duces a large data set and a subsequent task replaces
a small portion of that data set. Although the sit-
uation can be avoided, convenience of programming
may dictate such a solution.

4.2 Scheduler Inner Workings

Figure 5 shows a simplified diagram of the sched-
uler implementation. The scheduler consists of a task
pool, which is a static array of a fixed size and con-
tains slots for tasks, being filled-in serially by one
thread and emptied by all threads in parallel.

6

.....

● function
● arguments
●

● direction (IN or OUT or INOUT)
● start address
● end address
● RAW writer
● #WAR readers
● child / descendant
●

task pool

task slice

Figure 5: Simplified diagram of the scheduler imple-
mentation.

A task contains a unique task id, a function pointer
and and a copy of its call arguments (stored at the
time of task invocation). It also contains a fixed num-
ber of slices. Slice is a code-word for a continuous
region of memory being subject to dependency anal-
ysis.

Each slice is defined by its start address, end ad-
dress and direction (INPUT, OUTPUT, INOUT).
Associated with each slice is information necessary
for dependency resolution, such as:

• RAW hazard writer id,
• RAW hazard writer pointer,
• WAR hazard reader’s count, and
• WAR hazard writer’s counter pointer.

Also, associated with each slice is a pointer to one
descendant in the DAG, to assist with data reuse.
The exact use of all this information is explained in
more detail in the sections to follow.

4.2.1 Populating Task Pool

Since the user’s code is expressed through a sequen-
tial definition, the process of populating the task pool
is inherently sequential. The process can be repli-
cated on multiple cores, but in principle it cannot be
distributed to multiple cores for a performance ad-
vantage. For that reason, one thread takes care of the
job of going through the user’s code and populating

the task pool. In principle, this thread can also par-
ticipate in task execution (it is the case for SMPSs).
However, the implementation presented here is some-
what suboptimal and one thread is solely devoted to
creating tasks.

Currently, the process of inserting a task involves
a scan through the entire task window in order to
identify all dependencies. RAW hazards are iden-
tified by checking all INPUT and INOUT slices of
the new task for overlap with all INOUT and OUT-
PUT slices of existing tasks. If overlap is detected,
information about the writer task is stored with the
reader’s slice. WAW hazards are identified by check-
ing all OUTPUT and INOUT slices of the new task
for overlap with all INOUT and INPUT slices of ex-
isting tasks. If overlap is detected, the reader’s slice
stores the information about the writer and the writer
increments its reader’s counter.

4.2.2 Executing Tasks from the Pool

While one thread is inserting the tasks, a number
of parallel worker threads continuously scan the task
pool and pick tasks for execution. The process of
fetching a task involves scanning the task pool in or-
der to find a task without dependencies. A task is
free of dependencies if all its slices are free of depen-
dencies. An INPUT or INOUT slice if free of RAW
dependency if its RAW writer does not exist in the
task pool (the pointer is NULL, or points to a task
with a different task id). An OUTPUT or INOUT
slice is free of WAR dependency if its counter of WAR
readers is zero. After executing, the reader task in
the WAR hazard decrements the writer’s counter of
readers.

5 Performance Results

The tile LU algorithm was chosen for preliminary
performance experiments. Figure 6 shows perfor-
mance numbers for the scheduler versus SMPSs and
the static schedule, utilized by the PLASMA library,
on a 2.4 GHz quad-socket quad-core (16 cores total)
Intel Tigerton system. A relatively large task granu-
larity was chosen. The tile size of 200 was used with

7

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

80

90

Tile LU Factorization Performance
2.4 GHz quad−socket, quad−core Intel x86

Matrix Size

G
flo

p/
s

Static
SMPSs
ICL

Figure 6: Performance comparison for the tile LU
algorithm.

inner-blocking of 40. These are typical values for
achieving good asymptotic performance. They do,
however, render suboptimal performance for small
problem sizes.

One can observe that, for this particular problem,
SMPSs loses marginally to the static schedule for
smaller problem sizes and eventually catches up for
larger problems. The scheduler presented in this ar-
ticle performs as good as SMPSs for smaller prob-
lem sizes, but eventually drops below SMPSs’ per-
formance by a margin of roughly 6 %, which is due
to one core devoted to inserting the tasks and not
participating in executing them.

6 Conclusions

It has been demonstrated that with relatively small
effort a data-driven scheduler can be built for effi-
cient execution of non-trivial workloads in dense lin-
ear algebra on small-scale multicore systems. The
main advantage of this scheduler is sequential repre-
sentation of the algorithm, providing for very high
productivity and allowing for rapid prototyping of
new algorithms. Due to reliance on data dependency
analysis, the scheduler has tremendous performance

advantage over alternative solutions, such as Cilk, In-
tel TBB and OpenMP. The scheduler also has a great
portability advantage by reliance on an API instead
of language extensions.

Dynamic scheduling of code expressed through se-
quential representation has tremendous programma-
bility advantage, but can also provide performance
advantage in situation where optimal static sched-
ules cannot be easily constructed. A common fac-
tor preventing the effectiveness of static schedules is
fluctuation in task execution times caused by unpre-
dictable behavior of the memory system, commonly
consisting of multiple levels of caches with different
bandwidths and latencies.

The ultimate limitation of the approach presented
here is the serial nature of the process of unfolding
the DAG from a serial definition of the algorithm.
Due to that, the centralized implementation of the
task pool is the most natural one and most likely it
would be very hard to efficiently decentralize it.

7 Future Directions

Currently, the most important goal is further opti-
mization of the scheduler in an attempt to close the
gap between its performance and the performance of
statically scheduled operations in the PLASMA li-
brary. One part of accomplishing this goal is the
introduction of data structures for speeding up the
scheduler’s operations, such as hash tables for ad-
dress lookups. Another part is the introduction of
extensions allowing for further tweaking of the sched-
uler, such as the prioritization of a data path. Fur-
ther down the line is the objective of extending the
scheduler to small scale distributed memory systems.
Using the scheduler for workloads beyond the field of
dense linear algebra is also an interesting possibility.

8 Acknowledgements

The authors would like to thank Rosa Badia for help
with understanding of inner workings of SMPSs and
Julien Langou for comments on implementing exten-
sions specific to problems in dense linear algebra.

8

References

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Black-
ford, J. W. Demmel, J. J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKen-
ney, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, PA, 1992. http://www.
netlib.org/lapack/lug/.

[2] L. S. Blackford, J. Choi, A. Cleary,
E. D’Azevedo, J. Demmel, I. Dhillon,
J. J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley. ScaLAPACK Users’
Guide. SIAM, Philadelphia, PA, 1997.
http://www.netlib.org/scalapack/slug/.

[3] R. E. Lord, J. S. Kowalik, and S. P. Ku-
mar. Solving linear algebraic equations on an
MIMD computer. J. ACM, 30(1):103–117, 1983.
DOI: 10.1145/322358.322366.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul,
C. E. Leiserson, K. H. Randall, and Y. Zhou.
Cilk: An efficient multithreaded runtime sys-
tem. In Principles and Practice of Parallel Pro-
gramming, Proceedings of the fifth ACM SIG-
PLAN symposium on Principles and Practice of
Parallel Programming, PPOPP’95, pages 207–
216, Santa Barbara, CA, July 19-21 1995. ACM.
DOI: 10.1145/209936.209958.

[5] Intel Threading Building Blocks. http://www.
threadingbuildingblocks.org/.

[6] J. Reinders. Intel Threading Building Blocks:
Outfitting C++ for Multi-core Processor
Parallelism. O’Reilly Media, Inc., 2007.
ISBN: 0596514808.

[7] OpenMP Architecture Review Board.
OpenMP Application Program Interface,
Version 3.0, 2008. http://www.openmp.org/
mp-documents/spec30.pdf.

[8] The community of OpenMP users, researchers,
tool developers and providers. http://www.
compunity.org/.

[9] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger,
Y. Lin, F. Massaioli, E. Su, P. Unnikrishnan,
and G. Zhang. A proposal for task paral-
lelism in OpenMP. In A Practical Programming
Model for the Multi-Core Era, 3rd International
Workshop on OpenMP, IWOMP 2007, Beijing,
China, June 3-7 2007. Lecture Notes in Com-
puter Science 4935:1-12. DOI: 10.1007/978-3-
540-69303-1 1.

[10] A. Duran, J. M. Perez, R. M. Ayguadé, E.
amd Badia, and J. Labarta. Extending the
OpenMP tasking model to allow dependent
tasks. In OpenMP in a New Era of Paral-
lelism, 4th International Workshop, IWOMP
2008, West Lafayette, IN, May 12-14 2008. Lec-
ture Notes in Computer Science 5004:111-122.
DOI: 10.1007/978-3-540-79561-2 10.

[11] Barcelona Supercomputing Center. SMP Su-
perscalar (SMPSs) User’s Manual, Version 2.0,
2008. http://www.bsc.es/media/1002.pdf.

[12] Supercomputing Technologies Group, MIT Lab-
oratory for Computer Science. Cilk 5.4.6 Refer-
ence Manual, 1998. http://supertech.csail.
mit.edu/cilk/manual-5.4.6.pdf.

[13] J. Kurzak, H. Ltaief, J. J. Dongarra, and
R. M. Badia. LAPACK working note 213:
Scheduling linear algebra operations on multi-
core processors. Technical Report UT-CS-09-
636, Computer Science Department, University
of Tennessee, 2009. http://www.netlib.org/
lapack/lawnspdf/lawn213.pdf.

[14] P. Bellens, J. M. Perez, R. M. Badia, and
J. Labarta. CellSs: A programming model for
the Cell BE architecture. In Proceedings of
the 2006 ACM/IEEE conference on Supercom-
puting, Tampa, Florida, November 11-17 2006.
ACM. DOI: 10.1145/1188455.1188546.

[15] J. M. Perez, P. Bellens, R. M. Badia, and
J. Labarta. CellSs: Making it easier to pro-
gram the Cell Broadband Engine processor.
IBM J. Res. & Dev., 51(5):593–604, 2007.
DOI: 10.1147/rd.515.0593.

9

http://www.netlib.org/lapack/lug/
http://www.netlib.org/lapack/lug/
http://www.netlib.org/scalapack/slug/
http://dx.doi.org/10.1145/322358.322366
http://dx.doi.org/10.1145/209936.209958
http://www.threadingbuildingblocks.org/
http://www.threadingbuildingblocks.org/
http://www.amazon.com/exec/obidos/ASIN/0596514808/
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.compunity.org/
http://www.compunity.org/
http://dx.doi.org/10.1007/978-3-540-69303-1_1
http://dx.doi.org/10.1007/978-3-540-69303-1_1
http://dx.doi.org/10.1007/978-3-540-79561-2_10
http://www.bsc.es/media/1002.pdf
http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf
http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf
http://www.netlib.org/lapack/lawnspdf/lawn213.pdf
http://www.netlib.org/lapack/lawnspdf/lawn213.pdf
http://dx.doi.org/10.1145/1188455.1188546
http://dx.doi.org/10.1147/rd.515.0593

[16] J. E. Smith and G. S. Sohi. The microarchitec-
ture of superscalar processors. Proceedings of the
IEEE, 83(12):1609–1624, 1995.

[17] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Lea-
sure, and M. Wolfe. Dependence graphs and
compiler optimizations. In Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on Prin-
ciples of Programming Languages, pages 207–
218, Williamsburg, VA, January 1981. ACM.
DOI: 10.1145/209936.209958.

[18] E. Agullo, B. Hadri, H. Ltaief, and J. J.
Dongarra. LAPACK working note 217:
Comparative study of one-sided factorizations
with multiple software packages on multi-core
hardware. Technical Report UT-CS-09-640,
Computer Science Department, University of
Tennessee, 2009. http://www.netlib.org/
lapack/lawnspdf/lawn217.pdf.

[19] F. Song, A. YarKhan, and J. J. Don-
garra. Dynamic task scheduling for lin-
ear algebra algorithms on distributed-
memory multicore systems. Technical
Report UT-CS-09-638, Computer Sci-
ence Department, University of Tennessee,
2009. http://www.cs.utk.edu/∼library/
TechReports/2009/ut-cs-09-638.pdf.

[20] H. Ltaief, J. Kurzak, and J. J. Dongarra. LA-
PACK working note 208: Parallel block Hessen-
berg reduction using algorithms-by-tiles for mul-
ticore architectures revisited. Technical Report
UT-CS-09-624, Computer Science Department,
University of Tennessee, 2009. http://www.
netlib.org/lapack/lawnspdf/lawn208.pdf.

[21] H. Ltaief, J. Kurzak, and J. J. Dongarra. LA-
PACK working note 209: Parallel band two-
sided matrix bidiagonalization for multicore ar-
chitectures. Technical Report UT-CS-09-631,
Computer Science Department, University of
Tennessee, 2009. http://www.netlib.org/
lapack/lawnspdf/lawn209.pdf.

[22] H. Ltaief, J. Kurzak, and J. J. Dongarra.
LAPACK working note 214: Scheduling two-
sided transformations using algorithms-by-tiles

on multicore architectures. Technical Report
UT-CS-09-637, Computer Science Department,
University of Tennessee, 2009. http://www.
netlib.org/lapack/lawnspdf/lawn214.pdf.

10

http://dx.doi.org/10.1145/209936.209958
http://www.netlib.org/lapack/lawnspdf/lawn217.pdf
http://www.netlib.org/lapack/lawnspdf/lawn217.pdf
http://www.cs.utk.edu/~library/TechReports/2009/ut-cs-09-638.pdf
http://www.cs.utk.edu/~library/TechReports/2009/ut-cs-09-638.pdf
http://www.netlib.org/lapack/lawnspdf/lawn208.pdf
http://www.netlib.org/lapack/lawnspdf/lawn208.pdf
http://www.netlib.org/lapack/lawnspdf/lawn209.pdf
http://www.netlib.org/lapack/lawnspdf/lawn209.pdf
http://www.netlib.org/lapack/lawnspdf/lawn214.pdf
http://www.netlib.org/lapack/lawnspdf/lawn214.pdf

	Introduction & Motivation
	Existing Frameworks
	Cilk
	SMPSs
	PLASMA's Static Schedule

	Scheduler API
	Creating a Task
	Invoking a Task

	Scheduler Implementation
	Types of Data Hazards
	Scheduler Inner Workings
	Populating Task Pool
	Executing Tasks from the Pool

	Performance Results
	Conclusions
	Future Directions
	Acknowledgements

