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Abstract. To exploit the potential of multicore architectures, recent
dense linear algebra libraries have used tile algorithms, which consist in
scheduling a Directed Acyclic Graph (DAG) of tasks of fine granularity
where nodes represent tasks, either panel factorization or update of a
block-column, and edges represent dependencies among them. Although
past approaches already achieve high performance on moderate and large
square matrices, their way of processing a panel in sequence leads to
limited performance when factorizing tall and skinny matrices or small
square matrices. We present a fully asynchronous method for computing
a QR factorization on shared-memory multicore architectures that over-
comes this bottleneck. Our contribution is to adapt an existing algorithm
that performs a panel factorization in parallel (named Communication-
Avoiding QR and initially designed for distributed-memory machines), to
the context of tile algorithms using asynchronous computations. An ex-
perimental study shows significant improvement (up to almost 10 times
faster) compared to state-of-the-art approaches. We aim to eventually
incorporate this work into the Parallel Linear Algebra for Scalable Multi-
core Architectures (PLASMA) library.

1 Introduction and Motivations

QR factorization is one of the major one-sided factorizations in dense linear al-
gebra. Based on orthogonal transformations, this method is well known to be
numerically stable and is a first step toward the resolution of least square sys-
tems [11]. We have recently developed a parallel tile QR factorization [7] as part
of the Parallel Linear Algebra Software for Multi-core Architectures (PLASMA)
project [8]. Tile algorithms in general provide fine granularity parallelism and

⋆ Research reported here was partially supported by the National Science Foundation
and Microsoft Research.



standard linear algebra algorithms can then be represented as a Directed Acyclic
Graph (DAG) where nodes represent tasks, either panel factorization or update
of a block-column, and edges represent dependencies among them.

PLASMA Tile QR has been benchmarked on two architectures [4], a quad-
socket quad-core machine based on an Intel Xeon processor and a SMP node
composed of 16 dual-core Power6 processors. Table 1 and 2 report the parallel
efficiency (the quotient of the division of the time spent in serial by the product
of the time spent in parallel and the number of cores used) achieved with different
matrix sizes on each architecture. PLASMA Tile QR scales fairly well for large

Table 1. Parallel efficiency on Intel

Number of cores

Matrix order 2 4 8 16

500 69% 55% 39% 24%

1000 88% 73% 60% 45%

2000 97% 91% 81% 69%

4000 98% 97% 94% 84%

Table 2. Parallel efficiency on Power6

Number of cores

Matrix order 2 4 8 16 32

500 72% 43% 25% 12% 6%

1000 80% 67% 46% 24% 12%

2000 92% 80% 65% 46% 25%

4000 95% 90% 79% 71% 51%

square matrices and up to the maximum number of cores available on those
shared-memory machines, 16 and 32 cores on Intel and Power6, respectively.
However, for small matrices, the parallel efficiency significantly decreases when
the number of cores increases. For example, for matrix sizes lower than 1000, the
efficiency is roughly at most 50% on Intel and Power6 with 16 cores. And this
declines on Power6 with only a 6% parallel efficiency achieved on 32 cores with a
matrix size of 500. This low efficiency is mainly due to the sequential factorization
of panels and is expected to be even lower when dealing with tall and skinny
(TS) matrices (of size m−by−n with m >> n) where a large proportion of the
elapsed time is spent in those sequential panel factorizations.

The purpose of this paper is to present a fully asynchronous method to com-
pute a QR factorization of tall and skinny matrices on shared-memory multicore
architectures. This new technique finds its root in combining the core concepts
from the Tile QR factorization implemented in the PLASMA library and the
Communication-Avoiding QR (CAQR) [9] algorithm introduced by Demmel et
al. Initially designed for distributed-memory machines, CAQR factors general
rectangular distributed matrices with a parallel panel factorization. Even if the
present paper discusses algorithms for shared-memory machines where commu-
nications are not explicit, multicore platforms often symbolize, at a smaller scale,
a distributed-memory environment with a design of a memory and/or cache hi-
erarchy to take advantage of memory locality in computer programs. Hence the
relevance of using algorithms that limit the amount of communication in our
context too.

This paper is organized as follows. Section 2 presents the background work.
Section 3 describes two new approaches that combine algorithmic ideas from tile
algorithms and the communication avoiding approach. Section 4 explains how
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the tasks from the resulting DAG are scheduled in parallel. In Section 5, we
present a performance analysis of the method and a comparative performance
evaluation against existing numerical libraries. Finally, in Section 6, we conclude
and present future work directions.

2 Background

TS matrices are present in a variety of applications in linear algebra, e.g., in
solving linear systems with multiple right-hand sides using block iterative meth-
ods by computing the QR factorization of a TS matrix [10, 16]. But above all,
TS matrices show up at each panel factorization step while performing one-sided
factorization algorithms (QR, LU and Cholesky). The implementation of efficient
algorithms to handle such matrix shapes is paramount. In this section, we de-
scribe different algorithms for the QR factorization of TS matrices implemented
in the state of the art numerical linear algebra libraries.

2.1 LAPACK/ScaLAPACK QR factorization

QR factorization of an m × n real matrix A has the form A = QR, where Q
is generally an m × m real orthogonal matrix and R is an m × n real upper
triangular matrix. QR factorization applies a series of elementary Householder
matrices of the general form H = I − τvvT where v is a column reflector and τ

is a scaling factor.
Regarding the block or block-partitioned algorithms in LAPACK [5] or ScaLA-

PACK [6], nb elementary Householder matrices are accumulated within each
panel and the product is represented as H1H2...Hnb = I − V TV T . Here V is a
n×nb matrix in which columns are the vectors v, T is a nb×nb upper triangular
matrix and nb is the block size.

Although the panel factorization is characterized by the presence of a sequen-
tial operation that represents a small fraction of the total number of FLOPS
performed (θ(n2)) FLOPS for a total of θ(n3)) FLOPS), the scalability of block
factorizations is limited on a multicore system when parallelism is only exploited
at the level of the BLAS or PBLAS routines, for LAPACK and ScaLAPACK
respectively. This approach will be referred to as the fork-join approach since
the execution flow of a block factorization would show a sequence of sequential
operations (i.e., the panel factorizations) interleaved to parallel ones (i.e., the
trailing submatrix updates).

2.2 Tile QR factorization (PLASMA-like factorization)

PLASMA Tile QR factorization [7, 8] is a derivative of the block algorithms
that produces high performance implementations for multicore architectures.
The algorithm is based on the idea of annihilating matrix elements by square
tiles instead of rectangular panels as in LAPACK. PLASMA Tile QR algorithm
relies on four basic operations implemented by four computational kernels:
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– CORE DGEQRT: this kernel performs the QR factorization of a diagonal
tile Akk of size nb× nb of the input matrix. It produces an upper triangular
matrix Rkk, a unit lower triangular matrix Vkk containing the Householder
reflectors and an upper triangular matrix Tkk as defined by the WY tech-
nique [18] for accumulating the transformations. Rkk and Vkk are written on
the memory area used for Akk while an extra work space is needed to store
Tkk. The upper triangular matrix Rkk, called reference tile, is eventually
used to annihilate the subsequent tiles located below, on the same panel.

– CORE DTSQRT: this kernel performs the QR factorization of a matrix
built by coupling the reference tile Rkk that is produced by CORE DGEQRT
with a tile below the diagonal Aik. It produces an updated Rkk factor, Vik

matrix containing the Householder reflectors and the matrix Tik resulting
from accumulating the reflectors Vik.

– CORE DORMQR: this kernel is used to apply the transformations com-
puted by CORE DGEQRT (Vkk, Tkk) to a tile Akj located on the right side
of the diagonal tile.

– CORE DTSSSMQR: this kernel applies the reflectors Vik and the matrix
Tik computed by CORE DTSQRT to two tiles Akj and Aij .

Since the tile QR is also based on Householder reflectors that are orthogo-
nal transformations, this factorization is stable. Figure 1 shows the first panel
reduction applied on a 3-by-3 tile matrix. The triangular shapes located on the
left side of the matrices correspond to the extra data structure needed to store
the T. The striped tiles represent the input dependencies for the trailing sub-
matrix updates. The algorithm for general matrices, with MT tiles in row and
NT tiles in column, is formulated in Algorithm 1 [8]. As of today, PLASMA

Algorithm 1 Tile QR factorization (PLASMA-like factorization)

for k = 1 to min(MT, NT ) do

Rk,k, Vk,k, Tk,k ← CORE DGEQRT(Ak,k)
for j = k + 1 to NT do

Ak,j ← CORE DORMQR(Vk,k, Tk,k, Ak,j)
end for

for i = k + 1 to MT do

Rk,k, Vi,k, Ti,k ← CORE DTSQRT(Rk,k, Ai,k)
for j = k + 1 to NT do

Ak,j , Ai,j ← CORE DTSSSMQR(Vi,k, Ti,k, Ak,j , Ai,j)
end for

end for

end for

implements Algorithm 1 through a given framework based on a static scheduling
and discussed later in Section 4.1. In the rest of the paper, we will use the term
PLASMA-like factorization to refer to any factorization based on Algorithm 1,
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Fig. 1. Reduction of the first tile column.

without regard to the framework implementing it nor the scheduling mechanism
used.

Although PLASMA achieves high performance on most types of matrices
by implementing Algorithm 1 [4], each panel factorization is still performed in
sequence, which limits the performance when processing small or TS matrices
(see results reported in Section 1).

2.3 Parallel Panel Factorizations

The idea of parallelizing the factorization of a panel was first presented by Pothen
and Raghavan, to the best of our knowledge, in 1988 [17]. The authors imple-
mented distributed orthogonal factorizations using Householder and Givens al-
gorithms. Each panel is actually composed of one single column in their case.
Their idea is to split the column into P pieces or subcolumns (if P is the num-
ber of processors) and to perform local factorizations from which they merge the
resulting triangular factors, as explained in Algorithm 2.

Demmel et al. [9] extended this work and proposed a class of QR algorithms
that can perform the factorization of a panel (block-columns) in parallel, named
Communication-Avoiding QR (CAQR). Compared to Algorithm 2, steps 1 and 2
are performed on panels of several columns thanks to a new kernel, called TSQR
(since a panel is actually a TS matrix). CAQR successively performs a TSQR
factorization (local factorizations and merging procedures) over the panels of

5



Algorithm 2 Pothen and Raghavan’s algorithm.

Successively apply the three following steps over each column of the matrix:

1. Local factorization. Split the current column into P pieces (if P is the number
of processors) and let each processor independently zeroes its subcolumn leading
to a single non zero element per subcolumn.

2. Merge. Annihilate those nonzeros thanks to what they call a recursive elimination
phase and that we name merging step for consistency with upcoming algorithms.
This merging step is itself composed of log

2
(P ) stages. At each stage, processors

cooperate pairwise to complete the transformation. After its element has been
zeroed, a processor takes no further part in the merging procedure. The processor
whose element is updated continues with the next stage. After log

2
(P ) such stages,

the only remaining nonzero is the diagonal element. All in all, the merging step
can be represented as a binary tree where each node corresponds to a pairwise
transformation.

3. Update. Update the trailing submatrix.

the matrix, applying the subsequent updates on the trailing submatrix after
each panel factorization, as illustrated in Figure 3. The panels are themselves
split in block-rows, called domains, that are factorized independently (step 1)
and then merged (step 2) using a binary tree strategy similar to the one of
Pothen and Raghavan. Figure 2 illustrates TSQR’s merging procedure (step 2).
Initially, at stage k = 0, a QR factorization is performed on each domain. Then,
at each stage k > 0 of the binary tree, the R factors are merged into pairs Ri,k

and Ri+1,k and each pair formed that way is factorized. This is repeated until the
final R is obtained. If the matrix is initially split in P domains, again, log2(P )

Fig. 2. TSQR factorization on four do-
mains. The intermediate and final R
factors are represented in black.

Fig. 3. CAQR: the panel (gray area)
is factorized using TSQR. The trailing
matrix (dashed area) is updated.
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(the depth of the binary tree) stages are performed during the merge procedure.
Demmel et al. proved that TSQR and CAQR algorithms a minimum amount of
communication (under certain conditions, see Section 17 of [9] for more details)
and are numerically as stable as the Householder QR factorization.

Both Pothen and Raghavan’s and Demmel et al.’s approaches have a syn-
chronization point between each panel factorization (TSQR kernel in Demmel
et al.’s case) and the subsequent update of the trailing submatrix, leading to a
suboptimal usage of the parallel processing power.

Synchronization 1 Processors (or cores) that are no longer active in the merg-
ing step still have to wait the end of that merging step before initiating the com-
putation related to the next panel.

In the next section, we present an asynchronous algorithm that overcomes these
bottlenecks and allows look-ahead in the scheduling.

3 Tile CAQR (SP-CAQR and FP-CAQR)

In this section, we present two new algorithms that extend the tile QR algo-
rithm (as implemented in PLASMA and described in Section 2.2) by performing
the factorization of a panel in parallel (based on the CAQR approach described
in Section 2.3). Furthermore, we adapt previous parallel panel factorization ap-
proaches [9, 17] in order to enable a fully asynchronous factorization, which is
critical to achieve high performance on multicore architectures. The names of our
algorithms below come from the degree of parallelism of their panel factorization.

3.1 Semi-Parallel Tile CAQR (SP-CAQR)

As CAQR, our Semi-Parallel Tile CAQR algorithm (SP-CAQR) decomposes
the matrix in domains. Within a domain, a PLASMA-like factorization (tile
algorithm given in Algorithm 1) is performed. The domains are almost processed
in an embarrassingly parallel fashion, from one to another.

First, a QR factorization is independently performed in each domain on the
current panel (of a tile width), similary to step 1 of Algorithm 2. Second, the
corresponding updates are applied to the trailing submatrix in each domain, sim-
ilary to step 1 of Algorithm 2. For example, Figure 4 illustrates the factorization
of the first panel and the corresponding updates for two domains of 3-by-3 tiles
(MT=6 and NT=3). Compared to CAQR Demmel et al.’s approach, our algo-
rithm has the flexibility to interleave steps 1 and 3 of the initial Algorithm 2.
Third and last, the final local R factors from each domain are merged based on
the TSQR algorithm described in Section 2.3 and the corresponding block-row
is again updated. This is the only time where a particular domain needs an-
other one to advance in the computation. The merging procedure can also be
performed as the factorization and update processes go (first and second steps).
Moreover, cores that no longer participate in the merging procedure can proceed
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Fig. 4. Unrolling the operations related to the first panel in SP-CAQR. Two domains
are used, separated by the red line. Two steps are illustrated. First, the factorization of
the first tile in each domain and the corresponding updates are shown in (a). Second,
the factorization of the second and third tiles in each domain using the reference tile
and the corresponding updates are presented in (b) and (c) respectively.
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right away with the computation of the next panel. This can potentially enable
look-ahead in the scheduling.

Figure 5 illustrates the merge procedure related to the first panel factoriza-
tion. Two new kernels are used in this step to reduce a triangular tile on top

Fig. 5. Unrolling the merging procedure related to the first panel factorization in SP-
CAQR.

of another triangular tile as well as the related updates. From that point on,
we consider the matrices locally to their domain and we note them with three
subscripts. For instance Ap,i,j is the tile (or block-matrix) at (local) block-row
i and (local) block-column j in domain p. And we want to merge two domains,
let us say p1 and p2. With these notations, here are the two new kernels:

– CORE DTTQRT: this kernel performs the QR factorization of a matrix
built by coupling factor Rp1,k,k from the domain p1 with the Rp2,1,k from the
domain p2. It produces an updated Rp1,k,k factor, an upper triangular matrix
Vp2,1,k containing the Householder reflectors and an upper triangular matrix
T r

p2,1,k resulting from accumulating the reflectors Vp2,1,k. The reflectors are
stored in the upper annihilated part of the matrix. Another extra storage is
needed for T r

p2,1,k.
– CORE DTTSSMQR: this kernel applies the reflectors Vp2,1,k and the ma-

trix T r
p2,1,k computed by CORE DTTQRT to two tiles Ap1,k,j and Ap2,1,j .

Finally, Figure 6 unrolls the third and last panel factorization. A QR factor-
ization is performed on the last tile of the first domain as well as on the entire
panel of the second domain. The local R factors are then merged to produce the
final R factor.

We call the overall algorithm Semi-Parallel because the degree of parallelism
of the panel factorization depends on the number of domains used. For instance,
on a 32 core machine, let us assume that a matrix split in 8 domains. Even if each
domain is itself performed in parallel (with a PLASMA-like factorization), then 8
cores (maximum) may simultaneously factorize a given panel (one per domain).
The main difference against Algorithm 1 is that Algorithm 1 is optimized for
cache reuse [4] (data is loaded into cache a limited number of times) whereas
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Fig. 6. Factorization of the last panel (including its merging) in SP-CAQR.

our new algorithm (SP-CAQR) provides more parallelism by processing a panel
in parallel. The expected gain will thus be a trade off between increased degree
of parallelism and efficient cache usage.

Assuming that a matrix A is composed of MT tiles in row and NT tiles in
column, SP-CAQR corresponds to Algorithm 3. The PLASMA-like factorization
occurring within each domain p is interleaved with the merge operations for
each panel k. We note MTloc the number of tiles per column within a domain
(assumed constant) and proot the index of the domain containing the diagonal
block of the current panel k. The PLASMA-like factorization occurring in a
domain is similar to Algorithm 1 except that the reference tile in domain p is not
always the diagonal block of the domain (as already noticed in Figure 6). Indeed,
if the diagonal block of the current panel k is part of domain proot (p == proot),
then the reference tile is the diagonal one (ibeg = k−proot×MTloc). Otherwise
(i.e., p 6= proot), the tile of the first block-row of the panel is systematically
used as a reference (ibeg = 0) to annihilate the subsequent tiles located below,
within the same domain. The index of the block-row merged is then affected
accordingly (i1 = k − proot × MTloc when p1 == proot).

3.2 Fully-Parallel Tile CAQR (FP-CAQR)

One may proceed further in the parallelization procedure by aggressively and in-
dependently factorizing each tile located on the local panel of each domain. The
idea is to process the remaining part of a panel within a domain in parallel too,
with a local merging procedure. Figure 7 describes this Fully-Parallel QR factor-
ization (FP-CAQR), and the corresponding algorithm is given in Algorithm 4.

Actually, FP-CAQR does not depend on the number of domains used, pro-
vided that the number of tiles per column is a power of two (otherwise the pairs
used for the merge operations might not match, from one instance to another).
Furthermore, a given instance of FP-CAQR can be obtained with an instance
of SP-CAQR by choosing the instance of SP-CAQR with a number of domains
P equal to the number of tiles per row MT . This approach has been mainly
mentioned for pedagogic and completeness purposes. Therefore, we will focus
on SP-CAQR in the remainder of the paper. In the following section, we will
discuss frameworks for exploiting this exposed parallelism.
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Algorithm 3 Semi-Parallel Tile CAQR (SP-CAQR)

nextMT = MTloc

proot = 0
for k = 1 to min(MT, NT ) do

if k > nextMT then

proot + +
nextMT+ = MTloc

end if

/* PLASMA-like factorization in each domain */
for p = proot to P − 1 do

ibeg = 0
if p == proot then

ibeg = k − proot×MTloc

end if

Rp,ibeg,k, Vp,ibeg,k, Tp,ibeg,k ← CORE DGEQRT(Ap,ibeg,k)
for j = k + 1 to NT do

Ap,ibeg,j ← CORE DORMQR(Vp,ibeg,k, Tp,ibeg,k, Ap,ibeg,j)
end for

for i = ibeg + 1 to MTloc do

Rp,ibeg,k, Vp,i,k, Tp,i,k ← CORE DTSQRT(Rp,ibeg,k, Ap,i,k)
for j = k + 1 to NT do

Ap,ibeg,j , Ap,i,j ← CORE DTSSSMQR(Vp,i,k, Tp,i,k, Ap,ibeg,j , Ap,i,j)
end for

end for

end for

/* Merge */
for m = 1 to ceil(log

2
(P − proot)) do

p1 = proot ; p2 = p1 + 2m−1

while p2 < P do

i1 = 0 ; i2 = 0
if p1==proot then

i1 = k − proot×MTloc

end if

Rp1,i1,k, Vp2,i2,k, T r
p2,i2,k ← CORE DTTQRT(Rp1,i1,k, Rp2,i2,k)

for j = k + 1 to NT do

Ap1,i1,j , Ap2,i2,j ← CORE DTTSSMQR(Vp2,i2,k, T r
p2,i2,k, Ap1,i1,j , Ap2,i2,j)

end for

p1+ = 2m; p2+ = 2m

end while

end for

end for
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Fig. 7. Unrolling the operations related to the first panel in FP-CAQR. Two domains
are used, separated by the red line. The tree steps are illustrated, the factorization(a),
the local merge (b) and the global merge(c).
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Algorithm 4 Fully-Parallel Tile CAQR (FP-CAQR)

nextMT = MTloc

proot = 0
for k = 1 to min(MT, NT ) do

if k > nextMT then

proot + +
nextMT+ = MTloc

end if

/* PLASMA-like factorization in each domain */
for p = proot to P − 1 do

ibeg = 0
if p == proot then

ibeg = k − proot×MTloc

end if

for i = ibeg to MTloc − 1 do

Rp,i,k, Vp,i,k, Tp,i,k ← CORE DGEQRT(Ap,i,k)
for j = k + 1 to NT do

Ap,i,j ← CORE DORMQR(Vp,i,k, Tp,i,k, Ap,i,j)
end for

end for

/* Local Merge */
for m = 1 to ceil(log

2
(MTloc − ibeg) do

i1 = ibeg; i2 = i1 + 2k−1

while i2 < MTloc do

Rp,i1,k, Vp,i2,k, T r
p,i2,k ← CORE DTTQRT(Rp,i1,k, Rp,i2,k)

for j = k + 1 to NT do

Ap,i1,j , Ap,i2,j ← CORE DTTSSMQR(Vp,i2,k, T r
p,i2,k, Ap,i1,j , Ap,i2,j)

end for

i1+ = 2k; i2+ = 2k

end while

end for

end for

/* Global Merge */
for m = 1 to ceil(log

2
(P − proot)) do

p1 = proot ; p2 = p1 + 2m−1

while p2 < P do

i1 = 0 ; i2 = 0
if p1==proot then

i1 = k − proot×MTloc

end if

Rp1,i1,k, Vp2,i2,k, T r
p2,i2,k ← CORE DTTQRT(Rp1,i1,k, Rp2,i2,k)

for j = k + 1 to NT do

Ap1,i1,j , Ap2,i2,j ← CORE DTTSSMQR(Vp2,i2,k, T r
p2,i2,k, Ap1,i1,j , Ap2,i2,j)

end for

p1+ = 2m; p2+ = 2m

end while

end for

end for
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4 Parallel Scheduling

This section explains how the DAG induced by SP-CAQR can be efficiently
scheduled on a multicore machine. Two schedulers approaches are discussed:
a static approach where the scheduling is predetermined (exactly the one im-
plemented in PLASMA) and a dynamic approach where decisions are made at
runtime.

4.1 Static scheduling

Developed initially on the IBM Cell processor [14], the static implementation is
a hand-written code using POSIX threads and primitive synchronization mech-
anisms. In the tile QR, the work is distributed by columns of tiles. Figure 8
shows the step-by-step scheduling execution with 8 threads on a square 5-by-5
tile matrix (MT = NT = 5). There are five panel factorization steps and each
of those steps is performed in sequence. It implements a right-looking QR fac-
torization and the steps of the factorization are pipelined. The mapping of the
cores to the tasks is performed before the actual numerical factorization based
on a one-dimensional partitioning of work and a lookahead of varying depth.
The lookahead strategy greedily maps the cores that are expected to run out
of work to the different block column operations. This static approach is well
adapted to schedule Algorithm 1 and achieves high performance [4] thanks to an
efficient cache reuse [15]. This static scheduling could be extended to SP-CAQR

Fig. 8. Work assignment in the static pipeline implementation of the tile QR factor-
ization.

algorithm since SP-CAQR performs a PLASMA-like factorization on each do-
main. However, this would raise load balance issues that are out-of-scope for this
paper4. Another solution consists in using a dynamic scheduler where the tasks
are scheduled as soon as their dependencies are satisfied and that prevents cores
from stalling.

4 One might think to map a constant number of cores per domain, but, after NT panels
have been processed, the cores of the first domain would then run out-of-work.
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4.2 Dynamic scheduling

We have developed an experimental dynamic scheduler well suited for linear al-
gebra algorithms [13]. This scheduler is still at the level of a prototype especially
because the current version has:

– a non negligible cost for scheduling (scheduling itself basically requires one
dedicated core on our both platforms);

– a centralized scheduling (handled by one single thread), which would not
scale above hundreds of cores.

Although we have coupled our algorithms to this scheduler, we preferred to
present experimental results obtained with a well established dynamic scheduler,
SMPSs.

SMP Superscalar (SMPSs) [3] is a parallel programming framework devel-
oped at the Barcelona Supercomputer Center (Centro Nacional de Supercom-
putación). SMPSs is a dynamic scheduler implementation that addresses the
automatic exploitation of the functional parallelism of a sequential program in
multicore and symmetric multiprocessor environments.

SMPSs allows the programmers to write sequential applications, and the
framework is able to exploit the existing concurrency and to use the different
processors by means of an automatic parallelization at execution time. As in
OpenMP [2], the programmer is responsible for identifying parallel tasks, which
have to be side-effect-free (atomic) functions. However, he is not responsible for
exposing the structure of the task graph. The task graph is built automatically,
based on the information of task parameters and their directionality.

Based on the annotations in the source code, a source to source compiler
generates the necessary code and a runtime library exploits the existing paral-
lelism by building at runtime a task dependency graph. The runtime takes care
of scheduling the tasks and handling the associated data.

Regarding its implementation, it follows the same approach as described
in [15] in order to get the best performance by drastically improving the schedul-
ing. However, SMPSs is not able to recognize accesses to triangular regions of a
tile. For example, if only the lower triangular region is accessed during a partic-
ular task, SMPSs will still create a dependency on the whole tile and therefore
prevent the scheduling of any subsequent tasks that only use the strict upper
triangular region of the same tile. To bypass this bottleneck, we force the sched-
uler to drop some dependencies by shifting the starting pointer address of the
tile back and forth 5. In the next section, experimental results of our SP-CAQR
algorithm with SMPSs are presented.

5 On the other hand, our dynamic scheduler prototype can identify such fake depen-
dencies and eliminate them with the keyword NODEP, meaning there is no depen-
dency required for this particular data.
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5 Experimental Results

5.1 Experimental environment

The experiments were performed on a quad-socket, quad-core machine based on
an Intel Xeon EMT64 E7340 processor operating at 2.39 GHz. The theoretical
peak is equal to 9.6 Gflop/s/ per core or 153.2 Gflop/s for the whole node, com-
posed of 16 cores. There are two levels of cache. The level-1 cache, local to the
core, is divided into 32 kB of instruction cache and 32 kB of data cache. Each
quad-core processor being actually composed of two dual-core Core2 architec-
tures, the level-2 cache has 2 × 4 MB per socket (each dual-core shares 4 MB).
The machine is running Linux 2.6.25 and provides Intel Compilers 11.0 together
with the MKL 10.1 vendor library [1].

The performance of QR tile algorithms strongly depends on tunable execution
parameters of the outer and the inner blocking sizes [4]. The outer block size
(NB) trades off parallelization granularity and scheduling flexibility with single
core utilization, while the inner block size (IB) trades off memory load with
extra-flops due to redundant calculations. In the experiment, NB and IB were
set to 200 and 40.

We recall that SP-CAQR depends on the number P of domains used, and we
note SP-P an instance of SP-CAQR with P domains. If P = 1, it corresponds
to a PLASMA-like implementation (except that SP-1 uses a dynamic scheduler
instead of a static scheduler). On the other side of the spectrum, we recall that
P = MT (MT is the number of tiles per row) corresponds to the FP-CAQR
algorithm. As discussed in Section 4, we remained that our SP-CAQR algorithm
is scheduled thanks to SMPSs.

In this section, we essentially present experiments on tall and skinny matrices
(where the higher improvements are expected), but we also consider general and
square matrices. A comparison against state of the art linear algebra packages
(LAPACK, ScaLAPACK, PLASMA) and the vendor library MKL 10.1 concludes
the section.

5.2 Tall and Skinny matrices

Figure 9 shows the performance obtained on matrices of only two tiles per row,
using 16 cores. The overall limited performance (at best 12% of the theoretical
peak of the machine) shows the difficulty achieving high performance on TS
matrices. This is mainly due to the Level-2 BLAS operations which dominate
the panel factorization kernels.

If the matrix is tall enough, FP-CAQR and SP-CAQR (if the number of
domains is large too) are significantly faster than the original (PLASMA-like)
Tile QR (up to more than 3 times faster). With such tall and skinny matrices,
the more subdomains, the higher performance. In particular, FP-CAQR (that is
SP-CAQR with P = 32 since MT = 32) is consistently optimum or close to the
optimum.
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Fig. 9. Performance of 16 core executions on TS matrices with 2 tiles per row (N = 400
is fixed). The plot is under-scaled (the actual theoretical peak performance is 153.2
Gflop/s. The number of tiles per column MT has to be greater than or equal to the
number of domains P ; for instance, SP-16 can only be executed on matrices of at least
M = 16 ∗ 200 = 3200 rows, since a tile is itself of order 200.

Fig. 10. Performance of 16 core executions on TS matrices with 32 tiles per column
(M = 6400 is fixed).
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Figure 10 shows the performance of matrices with 32 tiles per column on
execution using 16 cores. The improvement brought by SP-CAQR is again strong
for TS matrices (SP-16 is twice faster than SP-1 when N = 800). However,
when the shape of the matrix tends to be square (right part of the graph),
the PLASMA-like algorithm (SP-1) becomes relatively more and more efficient.
It is the fastest execution in the case of the factorization of a square matrix
(6400 ∗ 6400). The reason is that, for such large square matrices, the lack of
parallelism within the panels is mostly hidden by the other opportunities of
parallelism (see Section 2.2) and is thus completely balanced by the very good
cache usage of PLASMA-like factorizations.

5.3 Square matrices

Figures 11 and 12 show the performance obtained on square matrices using 8 and
16 cores, respectively. They confirm that the lack of parallelism of PLASMA-
like algorithms (SP-1) on small matrices leads to a limited performance and are
outperformed by semi-parallel (SP-P , P > 1) and fully-parallel algorithms (SP-
MT ). On the other hand, PLASMA-like factorizations become the most efficient
approach for matrices of order greater than 3200. Note that the number of tiles
per column MT has to be greater than or equal to the number of domains P ;
for instance, SP-16 can only be executed on matrices of order at least equal to
M = 16 ∗ 200 = 3200 rows, since a tile is itself of order 200.

Fig. 11. Performance on square matrices using 8 cores.
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Fig. 12. Performance on square matrices using 16 cores.

5.4 Comparison with state-of-the-art libraries

In Figure 13, we compare our new approach, SP-CAQR against PLASMA,
ScaLAPACK, LAPACK and MKL for a tall and skinny matrix of size 51200 ×

3200. SP-CAQR is 27% faster than the original Tile QR as implemented in
PLASMA, if the matrix is split in 16 domains (SP-16). Furthermore, for this
matrix shape, SP-CAQR is slightly faster when scheduled dynamically (SP-1)
than statically (PLASMA) with a ratio of 79 Gflop/s against 75 Gflop/s. The
performance of SP-CAQR depends on the number of domains. In this case, the
most significant performance variation (21%) is obtained between 2 and 4 do-
mains.

Figure 14 shows the performance on 16 cores of the QR factorization of a
matrix where the number of rows is fixed to 51200 and the number of columns
varies. For tall and skinny matrix of size 51200 by 200, our approach for comput-
ing the QR factorization is almost 10 times faster than the Tile QR of PLASMA
and around 9 times than MKL (exactly 9.54 and 8.77 as reported in Table 3).
This result is essentially due to the higher degree of parallelism brought by the
parallelization of the panel factorization. It is interesting to notice that the ratio
is of the order of magnitude of the number of cores, 16, which is clearly an upper
bound. LAPACK is around 30 times slower than our approach, while ScaLA-
PACK is only 3 times slower. By increasing the number of tiles in a column
of the matrix, the ratio is less important, however, SP-CAQR is still faster by
far compared to state of the art linear algebra packages. PLASMA is perform-
ing better and tends to reach the performance of SP-CAQR when the number
of tiles in the column are increased. For instance, PLASMA is only 1.27 times
slower for matrix size of 51200 by 3200. Regarding the other libraries, the ratio
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Fig. 13. Performance Comparisons of SP-CAQR depending on the number of domains.

Fig. 14. Scalability of SP-CAQR.
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compared to ScaLAPACK is still at 3, while SP-CAQR is more than 4 times and
11 times faster than MKL and LAPACK respectively.

Table 3. Ratio comparison of the performance of SP-CAQR.

Matrix sizes PLASMA MKL ScaLAPACK LAPACK

51200 − 200 9.54 8.77 3.38 28.63

51200 − 3200 1.27 4.10 2.88 11.05

6 Conclusions and Future Work

By combining two existing algorithms (Tile QR from PLASMA and CAQR),
we have proposed a fully asynchronous and numerically stable QR factorization
scheme for shared-memory multicore architectures. We have shown a significant
performance improvement (up to almost 10 times faster against previous estab-
lished linear algebra libraries). In this paper, we have considered a fixed tile size
(200) and inner blocking size (40). It would be interesting to see the impact
of those tunable parameters on performance, together with the choice of the
number of domains. Autotuning techniques will certainly have to be considered.

We have inserted our algorithms into the PLASMA library through its in-
terface for dynamic scheduling [15] and eventually plan to release them. These
algorithms also represent a natural basis for extending the PLASMA library to
distributed-memory environments. We will indeed benefit from the low amount
of communication induced by communication-avoiding algorithms, which are ac-
tually minimum [9]. Furthermore, we plan to investigate the extension of this
work to the LU factorization where numerical stability issues are more com-
plex [12].
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