
Distributed Dense Numerical Linear Algebra
Algorithms on massively parallel architectures:

DPLASMA
George Bosilca∗, Aurelien Bouteiller∗, Anthony Danalis∗†, Mathieu Faverge∗, Azzam Haidar∗,

Thomas Herault∗‡, Jakub Kurzak∗, Julien Langou§¶, Pierre Lemarinier∗, Hatem Ltaief∗,
Piotr Luszczek∗, Asim YarKhan∗ and Jack Dongarra∗†

∗University of Tennessee Innovative Computing Laboratory
†Oak Ridge National Laboratory

‡University Paris-XI
§University of Colorado Denver

¶Research was supported by the National Science Foundation grant no. NSF CCF-811520

Abstract—We present DPLASMA, a new project related
to PLASMA, that operates in the distributed memory
regime. It uses a new generic distributed Direct Acyclic
Graph engine for high performance computing (DAGuE).
Our work also takes advantage of some of the features of
DAGuE, such as DAG representation that is independent of
problem-size, overlapping of communication and computa-
tion, task prioritization, architecture-aware scheduling and
management of micro-tasks on distributed architectures
that feature heterogeneous many-core nodes. The origi-
nality of this engine is that it is capable of translating
a sequential nested-loop code into a concise and synthetic
format which it can be interpret and then execute in a
distributed environment. We consider three common dense
linear algebra algorithms, namely: Cholesky, LU and QR
factorizations, to investigate their data driven expression
and execution in a distributed system. We demonstrate
from our preliminary results that our DAG-based approach
has the potential to bridge the gap between the peak and
the achieved performance that is characteristic in the state-
of-the-art distributed numerical softwares on current and
emerging architectures.

Index Terms—Linear systems, parallel algorithms,
scheduling and task partitioning

I. INTRODUCTION AND MOTIVATION

Among the various factors that drive the momentous
changes occurring in the design of microprocessors and
high end systems, three stand out as especially notable:
1) the number of transistors on the chip will continue the
current trend, i.e. double roughly every 18 months, while
the speed of processor clocks will cease to increase; 2)
we are getting closer to the physical limit for the number
and bandwidth of pins on the CPUs and 3) there will
be a strong drift toward hybrid/heterogeneous systems
for petascale (and larger) systems. While the first two
involve fundamental physical limitations that the state-
of-art research today is unlikely to prevail over in the
near term, the third is an obvious consequence of the

first two, combined with the economic necessity of using
many thousands of CPUs to scale up to petascale and
larger systems.

More transistors and slower clocks means multicore
designs and more parallelism required. The modus
operandi of traditional processor design, increase the
transistor density, speed up the clock rate, raise the
voltage has now been blocked by a stubborn set of
physical barriers: excess heat produced, too much power
consumed, too much voltage leaked. Multicore designs
are a natural response to this situation. By putting
multiple processor cores on a single die, architects
can overcome the previous limitations, and continue
to increase the number of gates on the chip without
increasing the power densities. However, despite obvious
similarities, multicore processors are not equivalent to
multiple-CPUs or to SMPs. Multiple cores on the same
chip can share various caches (including TLB!) and they
certainly share the memory bus. Extracting performance
from such configurations of resources means that pro-
grammers must exploit increased thread-level parallelism
(TLP) and efficient mechanisms for inter-processor com-
munication and synchronization to manage resources
effectively. The complexity of parallel processing will
no longer be hidden in hardware by a combination of
increased instruction level parallelism (ILP) and pipeline
techniques, as it was with superscalar designs. It will
have to be addressed at an upper level, in software,
either directly in the context of the applications or in
the programming environment. As portability remains a
requirement, clearly the programming environment has
to drastically change.

Thicker memory wall means that communication effi-
ciency will be even more essential. The pins that connect
the processor to main memory have become a strangle
point, with both the rate of pin growth and the bandwidth

per pin slowing down, if not flattening out. Thus the
processor to memory performance gap, which is already
approaching a thousand cycles, is expected to grow, by
50% per year according to some estimates. At the same
time, the number of cores on a single chip is expected
to continue to double every 18 months, and since lim-
itations on space will keep the cache resources from
growing as quickly, cache per core ratio will continue to
go down. Problems with memory bandwidth and latency,
and cache fragmentation will, therefore, tend to become
more severe, and that means that communication costs
will present an especially notable problem. To quantify
the growing cost of communication, we can note that
time per flop, network bandwidth (between parallel pro-
cessors), and network latency are all improving, but at
exponentially different rates: 59%/year, 26%/year and
15%/year, respectively. Therefore, it is expected to see a
shift in algorithms’ properties, from computation-bound,
i.e. running close to peak today, toward communication-
bound in the near future. The same holds for com-
munication between levels of the memory hierarchy:
memory bandwidth is improving 23%/year, and memory
latency only 5.5%/year. Many familiar and widely used
algorithms and libraries will become obsolete, especially
dense linear algebra algorithms which try to fully exploit
all these architecture parameters; they will need to be
reengineered and rewritten in order to fully exploit the
power of the new architectures.

In this context, the PLASMA[1] project has devel-
oped several new algorithms for dense linear algebra
on shared memory system based on tile algorithms (see
section II). In this paper, we present DPLASMA, a
new project related to PLASMA, that operates in the
distributed-memory environment. DPLASMA introduces
a novel approach to schedule dynamically dense linear
algebra algorithms on distributed systems. It is based
on these tile algorithms, using DAGuE [2], a new
generic distributed Direct Acyclic Graph Engine for
high performance computing. This engine supports a
DAG representation independent of problem-size, over-
laps communications with computation, prioritizes tasks,
schedules in an architecture-aware manner and manages
micro-tasks on distributed architectures featuring hetero-
geneous many-core nodes. The originality of this engine
resides in its capability of translating a sequential nested-
loop code into a concise and synthetic format which it
can interpret and then execute in a distributed environ-
ment. We consider three common dense linear algebra al-
gorithms, namely: Cholesky, LU and QR factorizations,
to investigate through the DAGuE framework their data
driven expression and execution in a distributed system.
We demonstrate from preliminary our results that our
DAG-based approach has the potential to bridge the gap
between the peak and the achieved performance that is

characteristic in the state-of-the-art distributed numerical
software on current and emerging architectures.

The remainder of the paper is organized as follows.
Section II describes the related work, Section III recalls
the three one-sided factorization based on tile algorithms.
Section IV presents the DAGuE framework. Finally,
Section V gives the experimental results and Section VI
provides the conclusion and future work.

II. RELATED WORK

This paper reflects the convergence of algorithmic and
implementation advancements in the area of dense linear
algebra in the recent years. This section presents the
solutions that laid the foundation for this work, which
include: the development of the class of tile algorithms,
the application of performance-oriented matrix layout
and the use of dynamic scheduling mechanisms based
on representing the computation as a Directed Acyclic
Graph (DAG) [3].

A. Tile Algorithms

The tile algorithms are based on the idea of processing
the matrix by square submatrices, referred to as tiles, of
relatively small size. This makes the operation efficient
in terms of cache and TLB use. The Cholesky factoriza-
tion lends itself readily to tile formulation, however the
same is not true for the LU and QR factorizations. The
tile algorithms for them are constructed by factorizing
the diagonal tile first and then incrementally updating
the factorization using the entries below the diagonal
tile. This is a very well known concept, that dates back
to the work by Gauss, and is clearly explained in the
classic book by Golub and Van Loan [4] and Stewart [5].
These algorithms were subsequently rediscovered as
very efficient methods for implementing linear algebra
operations on multicore processors [6], [7], [8], [9], [10].

It is crucial to note that the technique of processing
the matrix by square tiles yields satisfactory performance
only when accompanied by data organization based
on square tiles. This fact was initially observed by
Gustavson [11], [12] and recently investigated in depth
by Gustavson, Gunnels and Sexton [13]. The layout is
referred to as square block format by Gustavson et al.
and as tile layout in this work. The paper by Elmroth,
Gustavson, Jonsson and Kågström [14] provides a sys-
tematic treatment of the subject.

Finally, the well established computational model
that uses DAGs as its representation together with the
dynamic task scheduling have gradually made their
way into academic dense linear algebra packages. The
model is currently used in shared memory codes, such
as PLASMA (University of Tennessee, University of
California Berkeley, University of Denver Colorado) [1]
and FLAME (University of Texas Austin) [15].

B. Parameterized Task Graphs

One challenge in scaling to large scale many-core
systems is how to represent extremely large DAGs of
tasks in a compact fashion, incorporating the dependency
analysis and structure within the compact representation.
Cosnard and Loi have proposed the Parameterized Task
Graph [16] as a way to automatically generate and
represent the task graphs implicitly in an annotated
sequential program. The data flow within the sequen-
tial program is automatically analyzed to produce a
set of tasks and communication rules. The resulting
compact DAG representation is conceptually similar to
the representation described in this paper. Using the
parameterized task graph representation various static
and dynamic scheduling techniques were explored by
Cosnard and collaborators [17], [18].

C. Task BLAS for distributed linear algebra algorithms

The Task-based BLAS (TBLAS) project [19], [20] is an
alternative approach to task scheduling for linear algebra
algorithms in a distributed memory environment. The
TBLAS layer provides a distributed and scalable tile
based substrate for projects like ScaLAPACK [21]. Lin-
ear algebra routines are written in a way that uses calls to
the TBLAS layer, and a dynamic runtime environment
handles the execution in an environment consisting of
a set of distributed memory, multi-core computational
nodes.

The ScaLAPACK style linear algebra routines make
a sequence of calls to the TBLAS layer. The TBLAS
layer restructure the calls as a sequence of tile-based
tasks, which are then submitted to the dynamic runtime
environment. The runtime accepts additional task param-
eters (data items are marked as input, output or input
and output) upon insertion of tasks into the system and
this information is later used to infer the dependences
between various tasks. The tasks can then be viewed as
comprising a DAG with the data dependences forming
the edges. The runtime system uses its knowledge of
the data layout (e.g., block cyclic) in order to determine
where the data items are stored in a distributed memory
environment and decide which tasks will be executed on
the local node and which tasks will be executed remotely.
The portion of the DAG relevant to the local tasks are
retained at each node. Any task whose dependences
are satisfied can be executed by the cores on the local
node. As tasks execute, additional dependences become
satisfied and the computation can progress. Data items
that are required by a remote task are forwarded to that
remote node by the runtime.

This approach to task scheduling scales relatively well,
and has performance that is often comparable to that of
ScaLAPACK. However, there is an inherent bottleneck in
the DAG generation technique. Each node must execute

the entire ScaLAPACK level computation and generate
all the tasks in the DAG, even though only the portions
of the DAG relevant to that node are retained. Curing
this problem is one of our motivation for creating the
DAGuE framework.

III. BACKGROUND

All the kernels mentioned below have freely avail-
able reference implementations as part of either the
BLAS [22], [23], LAPACK [24] or PLASMA [1] se-
quential kernels. Optimized implementations are avail-
able on a given machine for the BLAS and LAPACK.
Note: PLASMA sequential kernel names do not follow
previous papers. They follow current PLASMA code
terminology.

A. Cholesky Factorization

The Cholesky factorization (or Cholesky decomposi-
tion) is mainly used for the numerical solution of linear
equations Ax = b, where A is symmetric and positive
definite. Such systems arise often in physics applications,
where A is positive definite due to the nature of the
modeled physical phenomenon. This happens frequently
in numerical solutions of partial differential equations.

The Cholesky factorization of an n×n real symmetric
positive definite matrix A has the form

A = LLT ,

where L is an n× n real lower triangular matrix with
positive diagonal elements. In LAPACK the double
precision algorithm is implemented by the DPOTRF
routine. A single step of the algorithm is implemented
by a sequence of calls to the LAPACK and BLAS
routines: DSYRK, DPOTF2, DGEMM, DTRSM. Due
to the symmetry, the matrix can be factorized either as
upper triangular matrix or as lower triangular matrix.

The tile Cholesky algorithm is identical to the block
Cholesky algorithm implemented in LAPACK, except
for processing the matrix by tiles. Otherwise, the exact
same operations are applied. The algorithm relies on
four basic operations implemented by four computational
kernels:

DPOTRF: The kernel performs the Cholesky factor-
ization of a diagonal (triangular) tile T and
overrides it with the final elements of the output
matrix.

DTRSM: The operation applies an update to a tile A
below the diagonal tile T , and overrides the tile
A with the final elements of the output matrix.
The operation is a triangular solve.

DSYRK: The kernel applies an update to a diagonal
(triangular) tile B, resulting from factorization
of the tile A to the left of it. The operation is
a symmetric rank-k update.

FOR k = 0..TILES-1

 A[k][k] ← DPOTRF(A[k][k])

 FOR m = k+1..TILES-1

 A[m][k] ← DTRSM(A[k][k], A[m][k])

 FOR n = k+1..TILES-1

 A[n][n] ← DSYRK(A[n][k], A[n][n])

 FOR m = n+1..TILES-1

 A[m][n] ← DGEMM(A[m][k], A[n][k], A[m][n])

Fig. 1. Pseudocode of the tile Cholesky factorization (right-looking
version).

DGEMM: The operation applies an update to an
off-diagonal tile C, resulting from factorization
of two tiles A to the left of it. The operation is
a matrix multiplication.

Figure 1 shows the pseudocode of the Cholesky fac-
torization (the right-looking variant).

B. QR Factorization

The QR factorization (or QR decomposition) offers
a numerically stable way of solving full rank under-
determined, overdetermined, and regular square linear
systems of equations.

The QR factorization of an m× n real matrix A has
the form

A = QR,

where Q is an m×m real orthogonal matrix and R is an
m×n real upper triangular matrix. The traditional algo-
rithm for QR factorization applies a series of elementary
Householder matrices of the general form

H = I− τvvT ,

where v is a column reflector and τ is a scaling factor.
In the block form of the algorithm a product of nb
elementary Householder matrices is represented in the
form

H1H2 . . .Hnb = I−V TV T ,

where V is an N × nb real matrix those columns are
the individual vectors v, and T is an nb×nb real upper
triangular matrix [25], [26]. In LAPACK the double
precision algorithm is implemented by the DGEQRF
routine.

Here a derivative of the block algorithm is used called
the tile QR factorization. The ideas behind the tile QR
factorization are well known. The tile QR factorization
was initially developed to produce a high-performance
“out-of-memory” implementation (typically referred to
as “out-of-core”) [27] and, more recently, to produce
high performance implementation on “standard” (x86
and alike) multicore processors [6], [7], [28] and on the
CELL processor [10]. Further more, Demmel et al. [29]

proved that the tile QR factorization was communication
optimal in the sequential case and the parallel case (using
a binary tree).

The algorithm is based on the idea of annihilating
matrix elements by square tiles instead of rectangular
panels (block columns). The algorithm produces “essen-
tially” the same R factor as the classic algorithm, e.g.,
the implementation in the LAPACK library. (Elements
may differ in sign.) However, a different set of House-
holder reflectors is produced and a different procedure
is required to build the Q matrix. The tile QR algorithm
relies on four basic operations implemented by four
computational kernels:

DGEQRT: The kernel performs the QR factorization
of a diagonal tile and produces an upper tri-
angular matrix R and a unit lower triangular
matrix V containing the Householder reflec-
tors. The kernel also produces the upper tri-
angular matrix T as defined by the compact
WY technique for accumulating Householder
reflectors [25], [26]. The R factor overrides the
upper triangular portion of the input and the
reflectors override the lower triangular portion
of the input. The T matrix is stored separately.

DTSQRT: The kernel performs the QR factorization
of a matrix built by coupling the R factor,
produced by DGEQRT or a previous call to DT-
SQRT, with a tile below the diagonal tile. The
kernel produces an updated R factor, a square
matrix V containing the Householder reflectors
and the matrix T resulting from accumulating
the reflectors V . The new R factor overrides the
old R factor. The block of reflectors overrides
the corresponding tile of the input matrix. The
T matrix is stored separately.

DORMQR:The kernel applies the reflectors calculated
by DGEQRT to a tile to the right of the
diagonal tile, using the reflectors V along with
the matrix T .

DSSMQR: The kernel applies the reflectors calculated
by DTSQRT to two tiles to the right of the tiles
factorized by DTSQRT, using the reflectors V
and the matrix T produced by DTSQRT.

Figure 2 shows the pseudocode of the tile QR factor-
ization.

C. LU Factorization

The LU factorization (or LU decomposition) with
partial row pivoting of an m× n real matrix A has the
form

A = PLU,

where L is an m× n real unit lower triangular matrix,
U is an n× n real upper triangular matrix and P is

FOR k = 0..TILES-1

 A[k][k], T[k][k] ← DGEQRT(A[k][k])

 FOR m = k+1..TILES-1

 A[k][k], A[m][k], T[m][k] ← DTSQRT(A[k][k], A[m][k], T[m][k])

 FOR n = k+1..TILES-1

 A[k][n] ← DORMQR(A[k][k], T[k][k], A[k][n])

 FOR m = k+1..TILES-1

 A[k][n], A[m][n] ← DSSMQR(A[m][k], T[m][k], A[k][n], A[m][n])

Fig. 2. Pseudocode of the tile QR factorization.

a permutation matrix. In the block formulation of the
algorithm, factorization of nb columns (the panel) is
followed by the update of the remaining part of the
matrix (the trailing submatrix) [30], [31]. In LAPACK
the double precision algorithm is implemented by the
DGETRF routine. A single step of the algorithm is
implemented by a sequence of calls to the following
LAPACK and BLAS routines: DGETF2, DLASWP,
DTRSM, DGEMM, where DGETF2 implements the
panel factorization and the other routines implement the
update.

Here a derivative of the block algorithm is used
called the tile LU factorization. Similarly to the tile
QR algorithm, the tile LU factorization originated as an
“out-of-memory” (“out-of-core”) algorithm [8] and was
recently rediscovered for the multicore architectures [7],
[28].

Again, the main idea here is the one of annihilating
matrix elements by square tiles instead of rectangular
panels. The algorithm produces different U and L factors
than the block algorithm (e.g., the one implemented in
the LAPACK library). In particular we note that the L
matrix is not lower unit triangular anymore. Another
difference is that the algorithm does not use partial
pivoting but a different pivoting strategy. The tile LU
algorithm relies on four basic operations implemented
by four computational kernels:

DGETRF:The kernel performs the LU factorization of
a diagonal tile and produces an upper triangular
matrix U , a unit lower triangular matrix L and a
vector of pivot indexes P. The U and L factors
override the input and the pivot vector is stored
separately.

DTSTRF: The kernel performs the LU factorization
of a matrix built by coupling the U factor,
produced by DGETRF or a previous call to
DTSTRF, with a tile below the diagonal tile.
The kernel produces an updated U factor and
a square matrix L containing the coefficients
corresponding to the off-diagonal tile. The new
U factor overrides the old U factor. The new L

FOR k = 0..TILES-1

 A[k][k], T[k][k] ← DGETRF(A[k][k])

 FOR m = k+1..TILES-1

 A[k][k], A[m][k], T[m][k] ← DTSTRF(A[k][k], A[m][k], T[m][k])

 FOR n = k+1..TILES-1

 A[k][n] ← DGESSM(A[k][k], T[k][k], A[k][n])

 FOR m = k+1..TILES-1

 A[k][n], A[m][n] ← DSSSSM(A[m][k], T[m][k], A[k][n], A[m][n])

Fig. 3. Pseudocode of the tile LU factorization.

factor overrides the corresponding off-diagonal
tile. New pivot vector P is created and stored
separately. Due to pivoting, the lower triangular
part of the diagonal tile is scrambled and also
needs to be stored separately as L′.

DGESSM:The kernel applies the transformations pro-
duced by the DGETRF kernel to a tile to the
right of the diagonal tile, using the L factor and
the pivot vector P.

DSSSSM: The kernel applies the transformations pro-
duced by the DTSTRF kernel to the tiles to the
right of the tiles factorized by DTSTRF, using
the L′ factor and the pivot vector P.

Figure 3 shows the pseudocode of the tile LU factor-
ization.

One topic that requires further explanation is the issue
of pivoting. Since in the tile algorithm only two tiles
of the panel are factorized at a time, pivoting only
takes place within two tiles at a time, a scheme which
could be described as block-pairwise pivoting. Clearly,
such pivoting is not equivalent to the “standard” partial
row pivoting in the block algorithm (e.g., LAPACK). A
different pivoting pattern is produced, and also, since
pivoting is limited in scope, the procedure could poten-
tially result in a less numerically stable algorithm. More
details on the numerical stability of the tile LU algorithm
can be found in [7].

IV. THE DAGUE FRAMEWORK

This section introduces the DAGuE framework [2],
a new runtime environment system which efficiently
schedules dynamically tasks in a distributed environ-
ment. The tile QR factorization is used as a test case
to explain how the overall execution is performed in
parallel.

A. Description

The originality of this framework for distributed en-
vironment resides in the fact that its starting point is
a sequential nested-loop user-application, similar to the
pseudocode from Fig. 1-3. The framework then translates
it in DAGuE’s internal representation called JDF, which

is a concise parameterized representation of the sequen-
tial program’s DAG. This intermediate representation is
eventually used as input to trigger the parallel execution
by the DAGuE engine. It includes the input and output
dependencies for each task, decorated with additional
information about the behavior of the task.

For an NTxNT tile matrix, there are O(NT 3) tasks.
The memory requirement to store the full DAG quickly
increases with NT. In order to have a scalable approach,
DAGuE however uses symbolic interpretation to sched-
ule tasks without unrolling the JDF in memory at any
given time, and thus spares computation cycles to walk
the DAG, and memory to keep a global representation.
So, basically this synthetic representation allows the
internal dependencies management mechanism to effi-
ciently compute the flow of data between tasks without
having to unroll the whole DAG, and to discover on
the fly the communications required to satisfy these
dependencies. Indeed, the knowledge of the IN and
OUT dependencies, accessible from any task to any task,
ascendant or descendant, is sufficient to implement a
fully distributed scheduling engine for the underlying
DAG. At the same time, the concept of looking variants
(i.e., right-looking, left-looking, top-looking) present in
LAPACK and ScaLAPACK becomes obsolete with this
representation as the execution is now data-driven and
dynamically scheduled.

Such representation is expected to be internal to the
DAGuE framework though, and not a programming
language at user disposal. The framework is still in an
early stage of development and it does not attempt to
compute automatically the data and task distribution. The
user is thus required to manually add such information
in the JDF.

From a technical point of view, the main goal of
the scheduling engine is to select a task for which
all the IN dependencies are satisfied, i.e. the data is
available locally, select a core where to run the task and
execute the body of the task when it is scheduled. Once
executed, release all the OUT dependencies of this task,
thus making more tasks available to be scheduled. It is
noteworthy to mention that the scheduling mechanism
is architecture aware, taking into account not only the
physical layout of the cores, but also the way different
cache levels and memory nodes are shared between the
cores. This allows to determine the best target core, i.e.
the one that minimizes the number of cache misses and
data movements over the memory bus.

The DAGuE engine is obviously responsible of mov-
ing data from one node to another when necessary. The
framework language introduces a type qualifier called
modifier, expressed as MPI datatypes in the current
version. It tells the communication engine what is the
shape of the data to be transferred from a remote location

to another. By default, the communication engine uses
a default data type for the tiles (the user defines it to
fit the tile size of the program). But the framework has
also the capability to transfer any shapes of data. Indeed,
sometimes, only a particular area of the default data
type must be conveyed. Again, at this stage, the user
has still to manually specify how the transfers must be
done using these modifiers. Moreover, the data tracking
engine is capable to understand if the different modifiers
overlap, and appropriately behave when tracking the
data dependencies. One should note that the DAGuE
engine allows modifier settings on both, input and output
dependencies, so that one can change the shape of the
data on the fly during the communication.

B. A Test Case: QR Factorization

A realistic example of the DAGuE’s internal repre-
sentation for the QR factorization is given in Fig. 4.
As stated in the previous section, this example has
been obtained starting from the sequential pseudocode
shown in Fig. 2 using the DAGuE’s translation tools.
The logic to determine the task distribution scheme has
been hard-coded and could be eventually provided by
auto-tuning techniques. The tile QR consists of four
kernel operations: DGEQRT, DSSMQR, DORMQR, and
DTSQRT. For each operation, we define a function (lines
1 to 13 for DGEQRT) that consists of 1) a definition
space (DGEQRT is parametrized by k, the step of the
factorization, that takes values between 0 and NT −1);
2) a task distribution in the process space (DGEQRT(k)
runs on the process that verifies the two predicates of
lines 5 and 6); 3) a set of data dependencies (lines 7
to 13 for DGEQRT(k)); and 4) a body that holds the
effective C-code that will eventually be executed by the
scheduling engine (the body has been excluded from the
picture).

Dependencies apply on data that are necessary for
the execution of the task, or that are produced by the
task. For example, the task DGEQRT uses one data V
as input, and produces two data, a modified version
of the input V, and T a data locally produced by the
task. Input data, such as V, are indicated using the left
arrow (and the optional IN keyword). They can come
either from input matrix (local to the task, or located on
a remote process), or from the output data of another
task (executed either locally, or remotely). For example,
the V of DGEQRT(k) comes either from the original
matrix located in tile A(0, 0) if k==0, or from the
output data C2 of task DSSMQR(k-1, k, k) otherwise.
Output dependencies, marked with an right arrow (and
the optional OUT keyword), work in the same manner.
In particular, DGEQRT produces V which can be sent
to DTSQRT and DORMQR depending on the values of
k. These dependencies are marked with a modifier (line

1 DGEQRT(k) (h i g h p r i o r i t y)
2 / / E x e c u t i o n s p a c e
3 k = 0 . . NT−1
4 / / P a r a l l e l p a r t i t i o n i n g
5 : (k / rtileSIZE) % GRIDrows == rowRANK
6 : (k / ctileSIZE) % GRIDcols == colRANK
7 V <− (k ==0) ? A(0 , 0) : C2 DSSMQR(k−1,k , k)
8 −> (k==NT−1) ? A(k , k) : R DTSQRT(k , k +1) [U]
9 −> (k !=NT−1) ? V1 DORMQR(k , k + 1 . .NT−1) [L]

10 −> A(k , k) [L]
11 T −> T DORMQR(k , k + 1 . .NT−1) [T]
12 −> T (k , k) [T]
13
14 DTSQRT(k ,m) (h i g h p r i o r i t y)
15 / / E x e c u t i o n s p a c e
16 k = 0 . . NT−2
17 m = k + 1 . .NT−1
18 / / P a r a l l e l p a r t i t i o n i n g
19 : (m / rtileSIZE) % GRIDrows == rowRANK
20 : (k / ctileSIZE) % GRIDcols == colRANK
21 V2 <− (k ==0) ? A(m, 0) : C2 DSSMQR(k−1,k ,m)
22 −> V2 DSSMQR(k , k + 1 . .NT−1,m)
23 −> A(m, k)
24 R <− (m==k +1) ? V DGEQRT(k) :
25 R DTSQRT(k ,m−1) [U]
26 −> (m==NT−1) ? A(k , k) :
27 R DTSQRT(k ,m+1) [U]
28 T −> T DSSMQR(k , k + 1 . .NT−1,m) [T]
29 −> T (m, k) [T]

36 DORMQR(k , n) (h i g h p r i o r i t y)
37 / / E x e c u t i o n s p a c e
38 k = 0 . . NT−2
39 n = k + 1 . .NT−1
40 / / P a r a l l e l p a r t i t i o n i n g
41 : (k / rtileSIZE) % GRIDrows == rowRANK
42 : (n / ctileSIZE) % GRIDcols == colRANK
43 T <− T DGEQRT(k) [T]
44 V1 <− V DGEQRT(k) [L]
45 C1 <− (k ==0) ? A(k , n) : C2 DSSMQR(k−1,n , k)
46 −> C1 DSSMQR(k , n , k +1)
47
48 DSSMQR(k , n ,m)
49 / / E x e c u t i o n s p a c e
50 k = 0 . . NT−2
51 n = k+1 . . NT−1
52 m = k+1 . . NT−1
53 / / P a r a l l e l p a r t i t i o n i n g
54 : (m / rtileSIZE) % GRIDrows == rowRANK
55 : (n / ctileSIZE) % GRIDcols == colRANK
56 V2 <− V2 DTSQRT(k ,m)
57 T <− T DTSQRT(k ,m) [T]
58 C2 <− (k ==0) ? A(m, n) : C2 DSSMQR(k−1,n ,m)
59 −> (n==k+1 & m==k +1) ? V DGEQRT(k +1)
60 −> (n==k+1 & k<m−1) ? V2 DTSQRT(k +1 ,m)
61 −> (k<n−1 & m==k +1) ? C1 DORMQR(k +1 , n)
62 −> (k<n−1 & k<m−1) ? C2 DSSMQR(k +1 , n ,m)
63 C1 <− (m==k +1) ? C1 DORMQR(k , n) :
64 C1 DSSMQR(k , n ,m−1)
65 −> (m==NT−1) ? A (k , n) : C1 DSSMQR(k , n ,m+1)

Fig. 4. Concise representation of tile QR factorization

8 and 9) at their end: [U] and [L] for DTSQRT and
DORMQR, respectively. This tells the DAGuE engine
that the functions DTSQRT and DORMQR only require
the strict lower part of V and only the upper part of V
as inputs, respectively. The whole tile could have been
transferred instead, but this would engender two main
drawbacks: (1) communicating more data than required
and (2) add extra dependencies into the DAG which will
eventually serialize the DORMQR and DTSQRT calls.
This works in the same manner for output dependencies.
For example, in line 10, only the lower part of V is
written and stored on the memory in the lower part of
the tile pointed by A(k, k). Also, a data that is sent
to memory is final, meaning that no other task will
modify its contents until the end of the DAG execution.
However, this does not prevent other tasks from using it
as a read-only input.

Fig. 5 depicts the complete unrolled DAG of a 4x4
tiles QR, as resulting from the execution of the previ-
ously described DAG on a 2x2 processor grid. The color
represents the task to be executed (DGEQRT, DORMQR,
DTSQRT and DSSMQR), while the border of the circles
represents the node where the tasks has been executed.
The edges between the tasks represents the data flowing
from one tasks to another. A solid edge indicate that the
data is coming from a remote resource, while a dashed
edge indicate a local output of another task.

V. PERFORMANCE RESULTS

This section shows some preliminary results of the tile
Cholesky, tile QR and tile LU with the DAGuE engine

DGEQRT

DORMQR

DTSQRT

DSSMQR

node 0

node 2

node 3

node 1

comm

local

Fig. 5. DAG of QR for a 4x4 tile matrix.

on today’s distributed systems.

A. Hardware Descriptions

The Kraken system is a Cray XT5 with 8256 compute
nodes interconnected with SeaStar, a 3D torus. Each
compute node has two six-core AMD Opterons (clocked

at 2.6 GHz) for a total of 99072 cores. All nodes have 16
Gbytes of memory: 4/3 Gbytes of memory per core. Cray
Linux Environment (CLE) 2.2 is the OS on each node.
The Kraken system is located at the National Institute for
Computational Sciences (NICS) at Oak Ridge National
Laboratory.

0 1000 2000 30000

5

10

15

20

25

30

35
Cholesky Weak scalability Cray XT5

cores

O
pe

ra
tio

n
pe

r s
ec

 (T
FL

O
PS

)

Theoric Peak
ScaLAPACK
DPLASMA

Fig. 6. Cholesky Weak Scalability.

0 1000 2000 30000

5

10

15

20

25

30

35 LU Weak scalability Cray XT5

cores

O
pe

ra
tio

n
pe

r s
ec

 (T
FL

O
PS

)

Theoric Peak
ScaLAPACK
DPLASMA

Fig. 7. LU Weak Scalability.

B. Tuning

Maximizing the performance and minimizing the exe-
cution time of scientific applications is a daily challenge
for the HPC community. The tile QR and LU factor-
ization strongly depend on tunable execution parameters
trading off utilization of different system resources, the
outer and the inner blocking sizes (NB and IB). The tile
Cholesky depends only on the outer blocking size.

The outer block size (NB) trades off parallelization
granularity and scheduling flexibility with single core
utilization, while the inner block size (IB) trades off
memory load with extra-flops due to redundant calcula-
tions. Hand-tuning of active probing has been performed
to determine the optimal NB and IB for each factoriza-
tion. NB = 1800 has been selected for all three factor-
izations and IB = 225 for LU and QR factorizations.

Moreover, in a parallel distributed framework, the ef-
ficient parallelization of the tile QR and LU factorization
algorithms greatly relies on the data distribution.

There are several indicators of a “good” data distri-
bution and it is actually a challenge to optimize all of
these cost functions at once. A good distribution has
to unlock tasks on remote nodes as quickly as possible
(concurrency), it has to enable a good load balance
of the algorithm, and it definitely has to minimize
communication and data transfer. ScaLAPACK uses el-
ementwise 2D block cyclic data distribution as its data
layout. The distribution currently used in DPLASMA
is tilewise 2D block cyclic. As we have raised the
level of abstraction from scalar to tiles when going
from LAPACK to PLASMA, we found it useful to
raise the level for the data distribution from scalar to
tiles when going from ScaLAPACK to DPLASMA. In
ScaLAPACK, each process contains an rSIZE x cSIZE
block of scalars and this pattern is repeated in a 2D block
cyclic fashion. In DPLASMA, each process possesses
an rtileSIZE x ctileSIZE block of tiles (of size NB x
NB). This block of tiles enable multiple cores within a
nodes to work concurrently on the various tiles of the
block (as opposed to the elementwise distribution) while
enabling good load balancing, low communication and
great concurrency among nodes (similarly to element-
wise distribution). We found it best for the tilewise 2D
block cyclic distribution to be strongly rectangular for
QR and LU (with more tile rows than tile columns) and
more square for Cholesky. These facts on tilewise distri-
bution for DPLASMA matches previous results obtained
for elementwise distribution for ScaLAPACK [32].

0 1000 2000 30000

5

10

15

20

25

30

35
QR Weak scalability Cray XT5

cores

O
pe

ra
tio

n
pe

r s
ec

 (T
FL

O
PS

)

Theoric Peak
ScaLAPACK
DPLASMA

Fig. 8. QR Weak Scalability.

C. Comparisons

We present our results in Figure 6, Figure 7, and
Figure 8. As we can see the performances obtained by
DAGuE and DPLASMA are comparable to the one of
ScaLAPACK in a weak scaling context.

We want to stress out that the conditions in which
DAGuE and DPLASMA are tested are not optimal.
There are currently a few points that can be improved.

First of, for QR and LU, we have tested DPLASMA
with square tile 2D block cyclic distribution. The config-
uration is depicted in Figure 5. Starting from the top we
see that DGEQRT is executed on node 0, followed by
DTSQRT on node 2, followed by another DTSQRT on
node 0, and another DTSRQT on node 2. We are doing
three inter-node communications. A better algorithm
would be to have DGEQRT on node 0, followed by
DTSQRT on node 0, followed by DTSQRT on node 2,
followed by DTSQRT on node 2. The total number of
inter-node communication is now reduced to 1 (instead
of 3). Such an algorithmic is amenable by playing
on the data distribution or by changing the way the
algorithm moves along the data. Overall, the number of
messages sent is O((N/NB)∗ (N/NB)) and the volume
of messages sent is O((N/NB)∗(N/NB)∗NB) which is
asymptotically more than ScaLAPACK.

Secondly, we need to improve the broadcast operations
in DAGuE. Currently the broadcast is implemented with
the root sending the data to each of the recipients. This is
fine for some operations but not for Cholesky, LU or QR
(e.g.). A better way to do the broadcast in this context
is with a ring broadcast as done in [33]. DAGuE needs
to be able to support broadcast topology provided by the
user that are adapted to a given algorithm. The BLACS
(communication layer) has this capacity. Also DAGuE
is not yet able to group messages, this would be useful
for example in the tile LU or QR factorizations where
two arrays need to be broadcasted at once in the same

broadcast configuration. As an illustration, in Figure 5,
the three pairs of arrows going from the first DGEQRT
to the three DORMQR below it represent the broadcast
of the same data (T and V) from the same root to
the same nodes. These two arrays can obviously been
concatenated to gain on the latency term.

VI. SUMMARY AND FUTURE WORKS

This paper introduces DPLASMA, a new distributed
implementation of three linear algebra kernels (QR,
LU, and LLT), based on Tile algorithms and Direct
Acyclic Graphs of tasks scheduling for high performance
linear algebra computing. It is based on the DAGuE
engine, which is capable of extracting tasks and their
data dependencies from the sequential nested-loop user
application and expressing them using an intermediate
concise and synthetic format (JDF). The engine then
schedules the generated tasks across a distributed system
without having to unroll the whole DAG. DAGuE is still
at early stage of development and the results shown on
this paper are very encouraging.

Our current results show that DAGuE is a promis-
ing framework that provides a scalable and dynamic
scheduling for parallel distributed machines. For parallel
distributed code development, one often has to rely
on static scheduling of the operations. This lends to
an important complexity of coding. Parallel distributed
dynamic schedulers offer a solution however current
dynamic parallel distributed schedulers are intrinsically
limited in scalability. We have proven that our dynamic
scheduler DAGuE scales up to 5,000 cores and its
scalability from 1 to 5,000 cores has not been hindered
the least (as expected by our design).

REFERENCES

[1] University of Tennessee. PLASMA Users’ Guide, Parallel Lin-
ear Algebra Software for Multicore Archtectures, Version 2.0,
November 2009.

[2] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier,
and J. Dongarra. DAGuE: A generic distributed DAG engine
for high performance computing. Technical Report ICL-UT-10-
01, Innovative Computing Laboratory, University of Tennessee,
2010. Submitted at SC’10.

[3] John A. Sharp, editor. Data flow computing: theory and practice.
Ablex Publishing Corp, 1992.

[4] G. H. Golub and C. F. C. F. van Loan. Matrix Computations.
The Johns Hopkins University Press, 1996. ISBN: 0801854148.

[5] G. W. Stewart. Matrix algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2001.

[6] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra. Par-
allel tiled QR factorization for multicore architectures. Con-
currency Computat.: Pract. Exper., 20(13):1573–1590, 2008.
DOI: 10.1002/cpe.1301.

[7] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra. A
class of parallel tiled linear algebra algorithms for multicore
architectures. Parellel Comput. Syst. Appl., 35:38–53, 2009.
DOI: 10.1016/j.parco.2008.10.002.

[8] E. S. Quintana-Ortı́ and R. A. van de Geijn. Updating an LU
factorization with pivoting. ACM Trans. Math. Softw., 35(2):11,
2008. DOI: 10.1145/1377612.1377615.

[9] J. Kurzak, A. Buttari, and J. J. Dongarra. Solving systems of
linear equation on the CELL processor using Cholesky factor-
ization. Trans. Parallel Distrib. Syst., 19(9):1175–1186, 2008.
DOI: TPDS.2007.70813.

[10] J. Kurzak and J. J. Dongarra. QR factorization for the
CELL processor. Scientific Programming, 17(1-2):31–42, 2009.
DOI: 10.3233/SPR-2009-0268.

[11] F. G. Gustavson. Recursion leads to automatic variable blocking
for dense linear-algebra algorithms. IBM J. Res. & Dev.,
41(6):737–756, 1997. DOI: 10.1147/rd.416.0737.

[12] F. G. Gustavson. New generalized matrix data structures lead
to a variety of high-performance algorithms. In Proceedings of
the IFIP TC2/WG2.5 Working Conference on the Architecture of
Scientific Software, pages 211–234, Ottawa, Canada, October 2-4
2000. Kluwer Academic Publishers. ISBN: 0792373391.

[13] F. G. Gustavson, J. A. Gunnels, and J. C. Sexton. Minimal
data copy for dense linear algebra factorization. In Applied
Parallel Computing, State of the Art in Scientific Computing,
8th International Workshop, PARA 2006, Umeå, Sweden, June
18-21 2006. Lecture Notes in Computer Science 4699:540-549.
DOI: 10.1007/978-3-540-75755-9 66.

[14] E. Elmroth, F. G. Gustavson, I. Jonsson, and B. Kågström.
Recursive blocked algorithms and hybrid data structures for
dense matrix library software. SIAM Review, 46(1):3–45, 2004.
DOI: 10.1137/S0036144503428693.

[15] The FLAME project. http://z.cs.utexas.edu/wiki/flame.wiki/
FrontPage, April 2010.

[16] M. Cosnard and M. Loi. Automatic task graph generation
techniques. In HICSS ’95: Proceedings of the 28th Hawaii Inter-
national Conference on System Sciences, page 113, Washington,
DC, USA, 1995. IEEE Computer Society.

[17] Michel Cosnard and Emmanuel Jeannot. Compact dag represen-
tation and its dynamic scheduling. J. Parallel Distrib. Comput.,
58(3):487–514, 1999.

[18] Michel Cosnard, Emmanuel Jeannot, and Tao Yang. Compact dag
representation and its symbolic scheduling. J. Parallel Distrib.
Comput., 64(8):921–935, 2004.

[19] Fengguang Song, Asim YarKhan, and Jack Dongarra. Dynamic
task scheduling for linear algebra algorithms on distributed-
memory multicore systems. In SC ’09: Proceedings of the Con-
ference on High Performance Computing Networking, Storage
and Analysis, pages 1–11, New York, NY, USA, 2009. ACM.
DOI: 10.1145/1654059.1654079.

[20] Fengguang Song. Static and dynamic scheduling for effective use
of multicore systems. PhD thesis, University of Tennessee, 2009.

[21] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’
Guide. SIAM, Philadelphia, PA, 1997. http://www.netlib.org/
scalapack/slug/.

[22] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic
linear algebra subprograms for FORTRAN usage. ACM Trans.
Math. Soft., 5:308–323, 1979.

[23] J. J. Dongarra, J. Du Croz, I. S. Duff, , and S. Hammarling. A set
of level 3 basic linear algebra subprograms. ACM Trans. Math.
Soft., 16:1–17, 1990.

[24] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Demmel,
J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM,
Philadelphia, PA, 1992. http://www.netlib.org/lapack/lug/.

[25] C. Bischof and C. van Loan. The WY representation for products
of Householder matrices. J. Sci. Stat. Comput., 8:2–13, 1987.

[26] R. Schreiber and C. van Loan. A storage-efficient WY represen-
tation for products of Householder transformations. J. Sci. Stat.
Comput., 10:53–57, 1991.

[27] B. C. Gunter and R. A. van de Geijn. Parallel out-of-
core computation and updating the QR factorization. ACM
Transactions on Mathematical Software, 31(1):60–78, 2005.
DOI: 10.1145/1055531.1055534.

[28] E. Chan, E. S. Quintana-Orti, G. Gregorio Quintana-Orti, and
R. van de Geijn. Supermatrix Out-of-Order Scheduling of
Matrix Operations for SMP and Multi-Core Architectures. In
Nineteenth Annual ACM Symposium on Parallel Algorithms and
Architectures SPAA’07, pages 116–125, June 2007.

[29] J. Demmel, L. Grigori, M. F. Hoemmen, , and J. Langou.
Communication-optimal parallel and sequential QR and LU
factorizations. Technical Report arXiv:0808.2664v1, 2008.

[30] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst.
Numerical Linear Algebra for High-Performance Computers.
SIAM, 1998. ISBN: 0898714281.

[31] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
ISBN: 0898713897.

[32] Zizhong Chen, Jack Dongarra, Piotr Luszczek, and Kenneth
Roche. Self-adapting software for numerical linear algebra and
LAPACK for clusters. Parallel Computing, 29(11-12):1723–
1743, November-December 2003.

[33] Fred G. Gustavson, Lars Karlsson, and Bo Kågström. Distributed
sbp cholesky factorization algorithms with near-optimal schedul-
ing. ACM Trans. Math. Softw., 36(2):1–25, 2009.

http://www.amazon.com/exec/obidos/ASIN/0801854148/
http://dx.doi.org/10.1002/cpe.1301
http://dx.doi.org/10.1016/j.parco.2008.10.002
http://doi.acm.org/10.1145/1377612.1377615
http://dx.doi.org/10.1109/TPDS.2007.70813
http://dx.doi.org/10.3233/SPR-2009-0268
http://dx.doi.org/10.1147/rd.416.0737
http://www.amazon.com/exec/obidos/ASIN/0792373391
http://dx.doi.org/10.1007/978-3-540-75755-9_66
http://dx.doi.org/10.1137/S0036144503428693
http://z.cs.utexas.edu/wiki/flame.wiki/FrontPage
http://z.cs.utexas.edu/wiki/flame.wiki/FrontPage
http://doi.acm.org/10.1145/1654059.1654079
http://www.netlib.org/scalapack/slug/
http://www.netlib.org/scalapack/slug/
http://www.netlib.org/lapack/lug/
http://doi.acm.org/10.1145/1055531.1055534
http://doi.acm.org/10.1145/1248377.1248397
http://doi.acm.org/10.1145/1248377.1248397
http://www.amazon.com/exec/obidos/ASIN/0898714281/
http://www.amazon.com/exec/obidos/ASIN/0898713897/

	Introduction and Motivation
	Related Work
	Tile Algorithms
	Parameterized Task Graphs
	Task BLAS for distributed linear algebra algorithms

	Background
	Cholesky Factorization
	QR Factorization
	LU Factorization

	The DAGuE Framework
	Description
	A Test Case: QR Factorization

	Performance Results
	Hardware Descriptions
	Tuning
	Comparisons

	Summary and Future Works
	References

