
Heuristics for Optimizing Matrix-Based Erasure Codes for Fault-Tolerant Storage Systems

James S. Plank
Catherine D. Schuman

B. Devin Robison

Technical Report UT-CS-10-664
EECS Department

University of Tennessee
Knoxville, TN 37996

December 14, 2010

http://www.cs.utk.edu/∼plank/plank/papers/CS-10-664.html

This paper has been submitted for publication. Please see the link above for publication status of the paper.

Heuristics for Optimizing Matrix-Based Erasure Codes
for Fault-Tolerant Storage Systems

James S. Plank, Catherine D. Schuman
EECS Department

University of Tennessee
Knoxville, TN USA

Email: plank@cs.utk.edu, cschuman@eecs.utk.edu

B. Devin Robison
Department of Chemical Engineering

University of Utah
Salt Lake City, UT USA

Email: devin083@gmail.com

Contact Author: James S. Plank. plank@cs.utk.edu.
865-256-2397. Fax: 865-974-4404. This material has been
cleared through the authors’ institutions. Approximate word
count: 8,300.

Abstract—Large scale, archival and wide-area storage sys-
tems use erasure codes to protect users from losing data due
to the inevitable failures that occur. All but the most basic
erasure codes employ bit-matrices to perform encoding and
decoding. These bit-matrices are massaged so that encoding
and decoding become described by lists of exclusive-or (XOR)
operations.

When converting matrices to lists of XOR operations, there
are CPU savings that can result from strategically scheduling
the XOR operations and leveraging intermediate results so that
fewer XOR’s are performed. It is an open problem to derive a
schedule from a bit-matrix that minimizes the number of XOR
operations.

We attack this open problem, deriving two new heuristics
called Uber-CHRS and X-Sets to schedule encoding and decod-
ing bit-matrices with reduced XOR operations. We evaluate
these heuristics in a variety of realistic erasure coding settings
and demonstrate that they are a significant improvement over
previously published heuristics. In particular, a hybrid of the
two heuristics, which we call Uber-XSet, provides consistently
good schedules across all of our tests. We provide an open-
source implementation of these heuristics so that practitioners
may leverage our work.
Keywords-Erasure codes; Fault-tolerant storage; RAID; Disk

failures;

I. INTRODUCTION

As storage systems have grown in size, scale and scope,
the failure protection offered by the standard RAID levels (1-
6, 01 and 10) is in many cases no longer sufficient. These
systems protect to a maximum of two simultaneous disk
or node failures. However, proliferation of components, the
requirement of wide-area networking and enriched failure
modes have led storage designers to tolerate larger numbers
of failures [1], [11]. For example, companies like Google,
IBM and Cleversafe, and academic storage projects like
Oceanstore [16], DiskReduce [8], HAIL [5], and others [26]
all employ storage systems that tolerate at least three fail-
ures. As systems grow further and are deployed over wider

networks, their fault-tolerance requirements will increase
even further.

Systems that tolerate failures beyond RAID employ Reed-
Solomon codes for fault-tolerance [19], [21], [24]. With
Reed-Solomon codes, k data disks are encoded onto m
coding disks in such a way that the system of n = k + m
disks may tolerate the failure of any m disks without data
loss. Reed-Solomon codes employ finite field arithmetic
over w-bit words, which, when implemented in software,
is computationally expensive. A technique called Cauchy
Reed-Solomon (CRS) coding [4] converts the finite field
arithmetic into a sequence of bitwise exclusive-or (XOR)
operations and improves performance. Currently, CRS codes
represent the best performing general purpose erasure codes
for storage systems [22].

Data Strips

0
1
2
3
4
5
6
7
8
9

* =

Coding
Strips

0
1
2
3
4
5

Generator Matrix

Figure 1. Example 16-disk CRS system that can tolerate six disk
failures: k = 10, m = 6, w = 8.

To help motivate our work, Figure 1 shows a 16-disk
system that employs CRS to tolerate any six disk failures.
This is the exact configuration and erasure code used by
Cleversafe, Inc, (http://www.cleversafe.com) in the first release
of its commercial dispersed storage system. The parameters
of the code are k = 10, m = 6 and w = 8. Thus there are
16 disks, ten of which store data strips and six of which
store coding strips. The last parameter (w) means that each

strip is partitioned into w = 8 packets. The packets are
then encoded using bitwise exclusive-or operations (XOR),
as if they were bits in a binary matrix-vector product. The
actual encoding is defined by a (48×80) Generator matrix,
which is derived from finite field arithmetic over eight bit
words [4]. Decoding is defined similarly.

Figure 1 exemplifies a matrix-vector product, AX = B,
that is central to nearly all erasure coded systems. All
elements of A, X and B are bits. However, they are used
to encode and decode packets and strips of data and coding
information that are much larger than a bit, using the XOR
operation. The reason that packets are large is that XOR’s
of 32 and 64 bit words are supported by most machine
architectures, and many vector co-processors XOR larger
regions very efficiently. Thus, although conceptually the
equations are binary, in reality they are used to XOR large
regions efficiently.

The number of XOR operations required by an era-
sure code has a direct relationship to the performance of
encoding or decoding. While there are other factors that
impact performance, especially cache behavior and device
latency, reducing XOR’s is a reliable and effective way to
improve the performance of a code. As such, nearly all
special-purpose erasure codes, from RAID-6 codes such as
EVENODD [2], RDP [6], X [27] and P [15] codes, to
codes for larger systems such as STAR [14], T [17] and
WEAVER [10] codes, have minimizing XOR operations at
their core.

Figure 2. Example of a bit matrix to describe encoding or decoding
operations.

Given an encoding or decoding scenario embodied by a
matrix-vector product AX = B, such as the one depicted in
Figure 2, one way to perform the the encoding or decoding is
to calculate each product bit bi by XOR-ing every bit xj such
that Ai,j equals one. This is equivalent to evaluating each
of the equations on the right side of Figure 2 independently.

However, there are opportunities for calculating B with
fewer XOR’s, based on the structure of the matrix. For
example, in Figure 2, bits b1, b2 and b3 each contain the
sum (x3 +x4 +x5). If one calculates that intermediate sum
first and uses it to calculate b1, b2 and b3, then one saves
four XOR operations over calculating those three products
independently. As a second observation, there are times
when one may calculate a product bit from other product
bits or intermediate sums, and this calculation is cheaper

than calculating the product bit from bits of X . For example,
in Figure 2, bit b0 is equal to b2 + b3. Thus, it is cheaper
to calculate those two product bits and XOR them together
than it is to calculate b0 from x0, x1 and x2.

This paper explores techniques to calculate a binary
matrix-vector product with the fewest number of XOR
operations. We call this “XOR-Scheduling.” We can only
discover lower bounds on the number of XOR operations
using enumeration, which we do for small matrices. For
larger matrices, we must resort to heuristics. Two such
heuristics have been presented in the literature [12], [13].
In this work, we develop two new techniques called Uber-
CSHR and X-Sets. We describe them in detail and then
compare the performance of all heuristics in two settings
— first with respect to small matrices for which we have
been able to determine optimal schedules by enumeration,
and second with respect to larger matrices, such as Figure 1,
that occur in real erasure coding applications. The result
is a significant improvement in the performance of both
encoding and decoding using bit matrices. In particular,
a hybrid of the two heuristics, called Uber-XSet shows
excellent performance across all of our tests.

II. PREVIOUS WORK

There have been two previous research projects that ad-
dress this problem. The first proposes Code Specific Hybrid
Reconstruction (CSHR) [12], which is based on the idea that
it is often advantageous to calculate a product bit using a
previously generated product bit as a starting point. CSHR is
very effective in improving the performance of some erasure
codes. For example, the Minimum Density codes for RAID-
6 [3], [22] have encoding matrices with a provably minimum
number of ones. However, their decoding matrices are quite
dense, and without optimization, their performance would be
unacceptably slow. CSHR works very well on these matrices,
enabling the them to decode with performance on par with
the other RAID-6 codes [22]. CSHR has an open-source
implementation in the Jerasure erasure coding library [23].

The second project attacks the issue of identifying and
exploiting common sums in the XOR equations [13]. The
authors conjecture that deriving an optimal schedule based
on common sums is NP-Complete, and then give a heuristic
based on Edmonds’ maximum matching algorithm [7]. They
demonstrate how the heuristic can be employed to encode
Reed-Solomon coding variants with similar performance to
RDP [6], EVENODD [2] and STAR codes [14]. The authors
do not give their heuristic a name, so we call it Subex, since
it attempts to minimize the number of XOR’s by identiying
common subexpressions. There is no implementation of
Subex1.

1Cheng Huang, Microsoft Research, personal communication.

III. THE CONTRIBUTION OF THIS PAPER

In this paper, we make significant inroads into the problem
of deriving optimal and good XOR schedules from binary
matrices. In particular, we do the following:

1) We develop a methodology for deriving the optimal
schedule for small matrices. We use this to evaluate the
effectiveness of the previous heuristics for scheduling
Cauchy bit matrices for w ≤ 8.

2) We extend CSHR by identifying two places where
it may be refined by parameterization. We call the
resulting heuristic Uber-CSHR.

3) We derive new scheduling heuristics based on the
concept of an XOR set (X-Set). The Subex heuristic
may be expressed in terms of X-Sets. We parameterize
the X-Set heuristics in three ways, resulting in a suite
of enriched heuristics. One of these parameterizations
is a hybrid of Uber-CSHR and X-Sets, which we call
Uber-XSet.

4) We evaluate all heuristics on a variety of encoding and
decoding scenarios that can best leverage them.

5) We provide an open-source implementation of these
heuristics so that other researchers and practitioners
may leverage our work.

IV. FORMAL SPECIFICATION

We are given a (r× c) bit matrix A, that we apply to a c-
element bit vector X to calculate a r-element bit vector B.
We call the bits of X data bits and the bits of B target
bits. We perform this calculation with a sequence of XOR
operations. The sequence of XOR operations is a schedule,
whose size we desire to minimize. We assume that we may
use temporary storage in the calculation. Ideally, we would
not use more storage than the r bits in B, but we do not
make this a requirement.

While we may represent a schedule by specifying XOR
operations, we find it useful to employ an alternate repre-
sentation. We define an element of the system to be a c-bit
word, which may be represented by a bit string of size c.
Each data bit xi corresponds to an element of the system
which is composed of all zero bits, plus a one bit in place i.
Thus, in Figure 2, x0 = 100000, x1 = 010000, etc. When
we add two elements, we simply XOR their bits. Thus, for
example, x0 + x1 = 110000.

Each product bit bi is also an element of the system,
which may be represented by row a i of the matrix. For
example, b0 in Figure 2 is equal to 111000. We call the
product bits target elements, and since the order in which
we calculate them is immaterial, we also refer to B as
the target set of elements {b0, b1, . . . br−1}. Since B is
ultimately defined by the matrix A, we equivalently refer
to A as the target set as well. A schedule, S is an ordered set
of elements, {s0, s1, . . .} that has the following properties:

• The first c elements are the elements of X :
si = xi for i < c.

• Any sk that is not an element of X must equal si +sj ,
where i < j < k.

Given a matrix A, we desire to create a schedule S opt
A

such that Sopt
A contains all the target elements, and |S opt

A |
is minimized. For example, Figure 3 shows an optimal
schedule for the matrix in Figure 2. The figure uses two
different ways to represent the schedule. In Figure 3(a),
the elements of the schedule are simply listed in order.
Figure 3(b) uses a pictoral representation where the first c
elements of the schedule are omitted, since they are simply
the elements of X . The target elements are denoted on the
right side of the picture.

{100000, 010000, 001000,
000100, 000010, 000001,
000011, 000111, 001111,
011111, 100111, 111000}

(a) (b)
Figure 3. An optimal schedule for the matrix in Figure 2: (a) A listing
of the elements of the schedule. (b) A pictoral representation which omits
the data elements.

While schedules defined in this way do not specify exactly
how to perform the XOR’s to generate each element, each
schedule S guarantees that all the elements it contains may
be calculated with exactly |S| − |X | XOR’s. One may
generate the XOR’s from a schedule with a simple doubly-
nested loop.

The following theorem, while simple and intuitive, is quite
helpful in finding good schedules:

Theorem 4.1: Let si, sj and sk ∈ S such that i < j <
k−1 and sk = si +sj . Then there exists a legal schedule S ′

defined as follows:

S′ =

s′x|s′x =

sx when x ≤ j
sk when x = j + 1
sx−1 when j + 1 < x ≤ k
sx when x > k

Put in English, if we are constructing a schedule that in-
cludes si and sj , and the schedule will include sk = si +sj ,
then we may place sk into the schedule immediately after sj .
For example, in Figure 3, since element b3 is equal to x0+s7,
it can be moved directly after s7 without changing the
legality of the schedule.

Proof: The only element whose order has changed relative
to the other elements is s′j+1. Therefore the only element that
can violate the property of being the sum of two previous
elements is s′j+1. Since it is the sum of s′i and s′j and i < j,
s′j+1 is also a legal element, and S ′ is a valid schedule.

(a) (b)
Figure 4. (a) C40: The Cauchy bit matrix for the value 40 in GF (26).
(b) An optimal schedule for C40.

V. OPTIMAL SCHEDULES

Given a target set A of elements, one may use a breadth-
first search (BFS) to determine an optimal schedule S opt

A .
Let G be an unweighted graph such every possible sched-
ule S of c-bit elements corresponds to a node NS in G.
Suppose S ′ = S + {e}, and both S and S ′ are legal sched-
ules. Then there is an edge in G from NS to NS′ . Let SX

be the schedule containing only the data elements. Then an
optimal schedule will be represented by any node NSopt

A

such that Sopt
A contains the target elements and the distance

from NSX to NSopt
A

is minimized.
This is a standard unweighted shortest path problem,

which may be solved with BFS. Unfortunately, the perfor-
mance of BFS is proportional to the number of nodes whose
distance from NSX is less than NSopt

A
’s distance, and this

number is exponential in c and |S opt
A |. We don’t give an exact

formula, because it is unimportant – we can only perform
this search for small values of c and |S opt

A |.
Theorem 4.1 allows us to prune the search by coalescing

nodes. If there is an edge from NS to NS′ and S ′ = S+{bi},
then Theorem 4.1 specifies that any optimal schedule that
starts with S is equivalent to one that starts with S ′. Thus, we
may coalesce nodes S and S ′, thereby reducing our search
significantly.

To get an intuitive feel for the structure of these optimal
schedules, we determined optimal schedules for all elemen-
tal CRS coding matrices whose size is ≤ 8. To review,
classic Reed-Solomon coding [19] operates on w−bit words,
employing Galois Field arithmetic over GF (2w). It utilizes
a matrix-vector product AX = B, where X corresponds
to the data and B corresponds to the codeword (data plus
coding). Each element of the equation is a w−bit word.

CRS coding [4] converts each word in X and B into
a w-element bit vector, and each word in A to a (w×w) bit
matrix as in Figure 1. Thus, each w-bit word corresponds to
a (w×w) bit matrix. Since these matrices form the building
blocks of CRS coding, we evaluate their optimal schedules.

We present an example in Figure 4, which examines the
Cauchy bit matrix for the value 40 when w = 6. We call this
matrix C40, and it is pictured in Figure 4(a). The optimal

schedule for C40, generated by our pruned BFS, is depicted
in Figure 4(b). It requires 9 XOR’s. The path length to this
schedule, however, is just three edges, because Theorem 4.1
allows us to coalesce six nodes in the path. For clarity, the
path to this schedule is

(SX + {b0}) → (SX + {b0, s7, b4}) →
(SX + {b0, s7, b4, s9, b2, b3)} → Sopt

C40.

This schedule is interesting because it is an improvement
over both CSHR and Subex, which each generate schedules
with 11 XOR’s. We will examine these later, but a key
observation is that neither technique identifies the impor-
tance of s12 as an intermediate sum, since b1 = s12 + x1,
and b5 = s12 + b3.

O
ptim

al
CSH

R
Subex
N

one

5

6

7

8

X
O

R
’s

 p
er

 sc
he

du
le

O
ptim

al
CSH

R
Subex
N

one

6

8

10

12

O
ptim

al
CSH

R
Subex
N

one

8
10
12
14
16
18

O
ptim

al
CSH

R
Subex
N

one

10

15

20

25w=5 w=6 w=7 w=8

Figure 5. Comparison of schedules on Cauchy matrices for 5 ≤ w ≤ 8.

Figure 5 compares the performance of optimal schedules
to CSHR, Subex, and no scheduling for the Cauchy matrices
for 5 ≤ w ≤ 8. To generate these graphs, we considered
the (w × w) Cauchy matrix for each value of i from 1 to
2w − 1. We scheduled each of these matrices with each of
the four techniques and plot the average number of XOR’s
per schedule. The performance of the heuristics relative to
optimal gets worse as w increases. For w = 8, CSHR
and Subex perform 30% and 16% worse than optimal.
This is significant because eight is a natural value for
implementations, since each strip is partitioned into eight
packets, thereby allowing strip sizes to be powers of two.

A simple way to employ these results is to store the
optimal schedules and then use them for encoding and
decoding CRS coding applications for these values of w.
This obviates the need for storing and manipulating bit
matrices, simplifying implementation. For example, consider
the CRS matrix from Figure 1. This matrix has 1968 ones,
and encoding it with no scheduling requires 1920 XOR’s
for the 48 rows, an average of exactly 40 XOR’s per row.
Using the optimal schedules generated above reduces this
number to 1210 XOR’s, or 25.20 XOR’s per row. This is a
significant reduction. The results below improve on this still
further.

VI. HEURISTICS FOR LARGER MATRICES

When c grows, it becomes impractical, if not impossible
to generate optimal schedules. For example, generating the

Figure 6. The schedule generated by CSHR for C40.

schedules for the (8×8) Cauchy matrices took multiple days
on ten workstations. The CRS coding matrix from Figure 1
has 48 rows and 80 columns. Generating an optimal schedule
for a matrix of this size would take too much computation
and memory. Thus, we need to rely on heuristics. We explore
two types of heuristics: those based on CSHR, and those
based on the concept of an XOR set (X-Set). The Subex
heuristic may be expressed in terms of the latter.

A. CSHR and Uber-CSHR
CSHR is defined as follows. Let X(bi) be the number of

XOR’s required to generate bi from the data elements. At
each step of the algorithm, one selects a target element b j

to generate whose value of X(bj) is minimal. That element
is generated, and then for every remaining target element b i,
X(bi) may be improved by building b i from bj and the data,
rather than solely from the data. If this is the case, X(b i) is
updated to reflect the improvement.

We present an example using C40. Target b0 is first
generated with one XOR operation. Following that, tar-
gets bi, for 1 ≤ i ≤ 3, can each be generated from b i−1

with two XOR operations. Finally, b4 and b5 are generated
from the data elements with two XOR’s each. The resulting
schedule, which employs 11 XOR’s, is shown in Figure 6.
As mentioned in Section V, even though element b5 can
be calculated from the sum of s9 and b3, CSHR does not
discover this fact, because it only considers building the
target elements from data elements and previously built
target elements.

CSHR also does not consider the order in which target
elements are constructed from the data elements. For exam-
ple, s7 can equal 011100 as depicted in Figure 6, or 010110.
The choice is arbitrary.

We extend CSHR in two straightforward ways to yield the
Uber-CSHR heuristic. First, instead of considering only pre-
viously generated target elements as new potential starting
points for subsequent target elements, we can consider every
intermediate sum. Second, instead of considering only the
newest target (or intermediate sum) as a potential starting
point for other targets, we can consider every combination

of two generated targets (or intermediate sums), or three and
so on.

Thus, our Uber-CSHR heuristic has two parameters,
which we label Uber-CSHRT |I

L :
1) T |I: Whether it uses just target elements (T) or all

intermediate sums (I) as starting elements.
2) L: We consider all combinations of L previously

generated targets or intermediate sums as potential
starting points.

CSHR as originally specified is equal to Uber-CSHRT
1 . If

we apply Uber-CSHRI
2 to C40, we can achieve an optimal

schedule of 9 XOR’s. The schedule is identical to the one
pictured in Figure 6, except elements s13 and s15 are deleted.
This is because the algorithm identifies the fact that b4 and b5

may be constructed as the sum of two previous intermediate
sums/targets: b4 = s7 + b2, and b5 = s9 + b3.

The running time complexity of Uber-CSHRT
L is

O(crL+1log(r)), and of Uber-CSHRI
L is O(c|S|L+1log(r)),

where S is the schedule generated. We will evaluate and
discuss running time more thoroughly in Section VII below.

B. X-Sets and Their Derivatives
The second set of new heuristics is based on a data

structure called the XOR Set (X-Set). Like CSHR, these
heuristics are greedy, taking a current schedule and itera-
tively adding an element to it until the schedule contains
all the target elements. At each iteration, there is a set of
target elements B/∈ that are not in the current schedule.
Each element b ∈ B/∈ will carry with it a list of X-Sets.
Each X-Set is composed of elements {sx0, sx1, . . .} such
that each sxi is an element of the schedule so far, and the
sum of all sxi equals b.

At the first iteration, the schedule is initialized to contain
all the data elements, and each target has one X-Set com-
posed of the data elements that sum to it. As an example,
we show the initial X-Sets of C40 in Figure 7(a).

(a) (b)

Figure 7. (a) Initial X-Sets for C40. (b) X-Sets after adding s6 = x4+x5.

At each iteration, we choose a new element to add to the
schedule. We restrict this element to being the sum of two
elements from the same X-Set for some element b ∈ B /∈. For
example, in Figure 7(a), we can choose x1 + x2 and x1 +
x3 (and many other sums), but we can’t choose x0 + x1

because those two elements do not appear in the same X-
Set. Suppose we choose xi+xj . Then we modify the X-Sets
so that every X-Set that contains both xi and xj replaces

those two elements with their sum. For example, suppose
we choose s6 = x4 +x5 as our first non-data element in the
schedule. Then Figure 7(b) shows the modification of the
X-Sets.

Clearly, it is advantageous to select sums that reduce the
size of as many X-Sets as possible. This is how the Subex
heuristic works [13]. Specifically, the X-Sets are converted
to a graph G where each current element of the schedule is
a node, and there is an edge between s i and sj if the two
elements appear in the same X-Set. Each edge is weighted
by the number of X-Sets in which the edge appears. G is
then pruned to contain only edges of maximal weight, and
a maximum matching of this pruned graph is determined
using Edmonds’ general matching algorithm [7]. All of these
edges are added to the schedule, updating the X-Sets as
described above. The intuition behind this algorithm is to
choose edges that maximize the number of X-Sets whose
sizes are reduced. The matching algorithm ensures that a
maximum number of these edges is chosen at each step.

We plot an example in Figure 8. This is the graph created
from the X-Sets of Figure 7(b). When this graph is pruned,
we are only left with the three edges of weight two. There
is no matching that contains two of these edges, so any edge
may be selected next.

Figure 8. The Subex graph generated from the X-Sets of Figure 7(b).

We view Subex as merely one way to exploit X-Sets. We
augment this exploitation in four additional ways, which we
detail in the following four subsections.

1) Theorem 4.1: In relation to X-Sets, Theorem 4.1 states
that if an X-Set contains two elements, then its target should
be generated immediately. For example, in Figure 7(a),
target b0 should be generated first. Thus, any algorithm that
employs X-Sets should always search first for X-Sets with
two elements. All the algorithms described below work in
this manner.

2) Threshold: Considering Additional X-Sets: To this
point, we have only considered one X-Set per target. This
helps us find common sums, but it misses an important
source of XOR reduction. Recall that in the optimal schedule
pictured in Figure 3, b0 = b2 + b3. This is a sum that
will never be discovered by the X-Sets described above,
because b2 and b3 both contain (x3 + x4 + x5), and adding
the elements together cancels these bits. As described, the
X-Sets do not consider elements that cancel bits.

To address this deficiency, whenever we add a new
element to a schedule, we attempt to add additional X-Sets to
a target’s list. Consider a new element s and a target b ∈ B /∈.
For all X-Sets XS in b’s list, if there are two elements sx

and sy in XS such that sx + sy = s, we simply replace sx

and sy with s. This is no different from the description
above. If we have modified any of b’s X-Sets in this manner,
then we delete any other of B’s X-Sets whose size is more
than its minimum X-Set size plus a threshold.

If we have not modified any of b’s X-Sets, then we create
a new X-Set composed of s and data elements such that the
sum of all the elements in this new X-Set equals b. If the
size of this new X-Set is within threshold of the smallest
X-Set for b, then we add the new X-Set to b’s list.

While this adds to the complexity, running time and
memory utilization of the heuristic, it also adds flexibility
and the ability to discover better schedules, since the X-
Sets may now include elements that cancel bits rather than
always adding them. We present an example starting from
the initial state of C40, depicted in Figure 7(a). Figure 9
shows the X-Sets after the element b0 = x1 + x3 is added
to the schedule, and threshold equals one.

Figure 9. New X-Sets when b0 = x1 + x3 is added to the schedule, and
threshold is one.

Element b1’s X-Set contains x1 and x3, so those two
elements are replaced by b0. The remaining targets do
not contain x1 and x3 in their X-Sets, so we consider
creating new X-Sets for them. First, consider b2. If we
use only b0 and the data elements, we create a new X-Set
{b0, x1, x2, x4, x5}. This X-Set’s size is five, which is one
more than the minimum X-Set for b2, so we add this new X-
Set to b2’s list. We add similar sets for b3 and b4. With b5, the
new X-Set would be {b0, x0, x1, x2, x3, x5}, whose size is
three bigger than b5’s other X-Set. Since that size is greater
than the threshold, the X-Set is not added to b5’s list.

3) L: Considering More Starting Elements: The next pa-
rameter is identical to Uber-CSHR — it considers additional
combinations of intermediate sums to generate new X-Sets.
We illustrate with an example. Suppose we are scheduling
C40 with a threshold of zero and have added elements
010100, 000011, 010011 and 000111 to the schedule. The
state of the schedule is depicted in the top box of Figure 10.
There are four targets remaining and their X-Sets are as
depicted. From Theorem 4.1, we add elements b2 and b3

next. In the middle box of Figure 10, we show the state
after adding b2. A second X-Set — {b2, x2, x5} — is added

to b1’s list of X-Sets. However, there is a third X-Set,
{b2, b4, x4}, that we can add if we consider combinations
of two intermediate sums, rather than one. In the bottom
box, we show the state after adding b3. Now there is a
second X-Set — {b2, b3, x5} — that we can add to b5’s
list if we consider two intermediate sums. Without this last
X-Set, there are no elements that we can add to improve
both b1 and b5’s X-Sets. However, this last X-Set enables us
to add b2 +x5 = 001110 to the schedule, shortening the X-
Sets of both targets. This yields the optimal schedule shown
in Figure 4(b). Without these additional X-sets, we cannot
generate an optimal schedule.

Figure 10. An example of scheduling C40 to motivate the nstart parameter.

The L parameter specifies that when a new element s
is generated, we look at all combinations of L non-data
elements in the schedule that include s, to see if any of them
can generate new X-Sets that fit the threshold. Thus, setting
L to zero will generate no additional X-Sets. Setting it to
one will add X-Sets as described in Section VI-B2 above.
Setting it to two will generate the X-Sets in Figure 10.

As in Uber-CSHR, increasing L affects the running time of
the heuristic significantly. Specifically, if the schedule size
is |S|, there are

(|S|−c
L

)
combinations of elements to test

when adding a new element to the schedule.
4) Technique: Selecting the Next Element: The final

parameter of the X-Set heuristic is probably the most
important: how we select the next element in a schedule.
While Subex uses Edmonds’ matching algorithm, there are
other techniques of varying complexity that we can employ.
We derived and tested about ten alternative techniques, and
after some exploratory work, have narrowed them to the five
described below. The first four leverage edge weights as in
Subex. The last is a hybrid of X-Sets and Uber-CSHR.

Maximum-Weight (MW): Given a current schedule S
and remaining targets B /∈ with their X-Sets, we define the
weight of an element e to be the number of targets b ∈ B /∈

whose minimum X-Set size will shrink if e is added to the
schedule. For example, in the bottom box of Figure 10, the
element (b2 +x5) has a weight of two, since it will decrease
both b1 and b5’s minimum X-Set size. Other elements, like
(b0 + x2) and (x0 + x2), have a weight of one, since they
only shrink one target’s X-Set. The MW technique selects
any element with maximum weight.

MW-Smallest-Set (MW-SS): Of all the elements with
maximum weight, this technique selects one that decreases
the size of the smallest X-Set. This technique may be
implemented to run nearly as fast as MW, and refines it
so that it generates targets more quickly.

MW-Matching: As with Subex, we can view all elements
with maximum weight as edges in a graph, and run Ed-
monds’ algorithm on it to find a maximum matching. While
Subex chooses all edges in the matching to go into the
schedule, MW-Matching simply selects one edge in the
matching and adds it to the schedule. It only adds one,
because the X-Sets may change significantly after adding
this one element to the schedule.

MW2: This is the most expensive technique. Let |MW|
be the number of elements with maximum weight. For each
of these elements, we simulate adding it to the schedule, and
then calculate |MW| of the resulting schedule. MW2 selects
the element that maximizes this value. This is expensive
since it involves generating |MW| schedules at each step,
and then throwing away all but one.

Uber-XSet: This technique is a hybrid of Uber-CSHRI
L

and X-Sets. It starts by only considering targets in B /∈
whose minimum X-Set sizes are the smallest. Uber-CSHRI

L
would simply pick any sum from one of these X-Sets.
The Uber-XSet technique instead chooses the sum that has
the maximum overall weight. For example, in Figure 9
Uber-XSet only considers targets b1, b4 and b5, since their
minimum X-Sets sizes are three. Of all elements that will
shrink one of these targets, the element 000011 = (x4 +x5)
is chosen because it shrinks one of these X-Sets (b4’s), and
has a weight of three. The intent with Uber-XSet is for it
be a good general-purpose heuristic, as it blends properties
from both Uber-CSHR and X-Sets.

VII. EVALUATION

We have implemented all the heuristics described in the
previous sections. To evaluate them, we have chosen two sets
of tests: one for small matrices and one for large matrices.
The smaller test allows us to compare the heuristics with
provably optimal schedules. The larger test allows us to
compare the heuristics on matrices that are used in practice.

In the tests, we focus primarily on the effectiveness of
the generated schedules. We focus to a lesser degree on the
running times of the heuristics. Some, like Uber-CSHRT |I

1
run very fast, and others, like the X-Set heuristics when L
grows beyond one, run very slowly. In our tests, we limit

the heuristics to those that take roughly an hour or less to
run on a commodity microprocessor.

The reason we view running time as secondary to the
effectiveness of the schedules produced is that real im-
plementations will very likely precompute and store the
schedules rather than compute them on the fly. Since the
first c elements of a schedule are identity elements, a
schedule of size |S| may be represented by a list of (|S|−c)
c-bit numbers. Consider the largest example in this paper: the
decoding matrices from Figure 1. The best decoding sched-
ules reported below average 812 elements, which means
that they can be represented with 732 80-bit words. There
are

(10
6

)
= 210 combinations of 6-disk failures that must

be scheduled, resulting in (210)(732)(10) = 1.47 MB that
is required to store all possible decoding schedules. This
small amount of storage easily justifies devoting significant
running time to generating good schedules.

A. Small Matrices

We limit our presentation here to the 255 Cauchy matrices
for w = 8. This is the largest value of w for which we know
the optimal schedules and is also a value that is used in some
commercial installations. We also limit our focus solely to
the size of the schedules and not the running times of the
heuristics.

O
ptim

al

CSH
R

U
ber-T L=2

U
ber-T L=3

U
ber-I L=1

U
ber-I L=2

U
ber-I L=3

Subex
M

W
M

W
-SS

M
W

-M
atching

M
W

^2

U
ber-X

Set

N
one

10

12

14

16

X
O

R
’s

 p
er

 sc
he

du
le

24.13

Figure 11. The best schedules for each heuristic on the 255 Cauchy
matrices for w = 8.

We plot the average XOR’s per schedule in Figure 11.
Focusing first on the heuristics based on CSHR, we see that
Uber-CSHRI

2 and Uber-CSHRI
3 generate significantly better

schedules than the others. As anticipated, considering inter-
mediates rather than targets yields better schedules, as does
considering larger combinations of targets/intermediates.
However, as L increases from two to three, the improvement
is marginal (the results for L > 3 were the same as L = 3).

For the heuristics based on X-Sets, we tested all 49
combinations of threshold and L from 0 to 6. We plot the

best schedules produced, which occurred for each technique
when L ≥ 3 and threshold was any value. All of them
improve on Subex by 7 to 9 percent in terms of overall
XOR’s. The best overall technique is the hybrid, Uber-XSet.

B. Large Matrices

We performed two sets of tests on larger matrices. The
first test evaluates decoding matrices for Blaum-Roth RAID-
6 codes [3], which are based on bit matrices that can be
quite dense when decoding. The second test evaluates both
encoding and decoding with Cauchy Reed-Solomon codes
in 16-disk systems where 8, 10 and 12 disks are devoted to
data, and the remaining 8, 6, and 4 are devoted to coding.

1) Blaum-Roth RAID-6 Codes: With Blaum-Roth RAID-
6 codes, there are k disks of data and m = 2 disks of
coding. The encoding is defined by a (2w × kw) bit matrix
where w ≥ k and (w + 1) must be a prime number. The
codes are called “Minimal Density” because the matrices
achieve a lower bound on the number of non-zero entries [3].
As such, they encode with very high performance without
any scheduling. Blaum-Roth codes are implemented in the
Jerasure erasure coding library [23] and are employed in
the Hadoop DiskReduce project [8].

When two data disks fail, a new (2w × kw) matrix
is generated for decoding. Unlike the encoding matrices,
these decoding matrices can be quite dense, but CSHR
has been shown to improve the performance of decoding
significantly [22]. We use these decoding scenarios (when
two data disks fail) as our first scheduling test. We test n-disk
systems for 8 ≤ n ≤ 18. In each system we test w = 16,
because that is a legal value for all systems, and it has the
additional benefit that it allows strips to be powers of two
in size. We did test smaller values of w on Blaum-Roth and
the other Minimal Density RAID-6 codes [22], but omit the
results since they are very similar to the results for w = 16.

CSH
R

U
ber-T L=2

U
ber-T L=3

U
ber-I L=1

U
ber-I L=2

U
ber-I L=3

Subex
M

W
SS-M

W
M

W
-M

atching
M

W
^2

U
ber-X

Set

7

8

9

10

X
O

R
’s

 p
er

 d
ec

od
ed

 w
or

d

0.
2

s
0.

2
s

0.
2

s 0.
2

s
0.

3
s

23
.4

 s

4.
7

s
54

1.
0

s
32

2.
9

s
55

4.
9

s
38

40
.2

 s

35
1.

1
s

Figure 12. Performance of the heuristics decoding the Blaum-Roth RAID-
6 code for k = 8, w = 16.

We focus first on k = 8, which corresponds to a 10-
disk system. There are

(8
2

)
= 28 combinations of two data

disks that may fail. The decoding bit matrices have 32
rows and 128 columns, and average 1897.21 ones. Without
scheduling, they would take 58.29 XOR’s per decoded word,
which is prohibitively expensive (encoding takes 7.22 XOR’s
per word). Figure 12 shows the effectiveness and running
times of the various heuristics on the 28 combinations
of failures. The bars show the XOR’s per decoded word
generated by schedule, and the numbers above each bar show
the average execution time of each heuristic. For each X-Set
heuristic, numbers are displayed for the best combination of
threshold ≤ 6 and L ≤ 3. The heuristics were implemented
in C++ and executed on an Intel Core2 Quad CPU Q9300’s
running at 2.50 GHz. The implementations are single-
threaded, and each test utilizes one core. We don’t view
the exact performance numbers as particularly important –
their relative performance and ballpark numbers instead give
a feel for how the various heuristics and parameters perform
in general.

The results differ from Figure 11 in several ways. First,
as a whole, the Uber-CSHR heuristics outperform the X-
Set heuristics, both in terms of running time and sched-
ules produced. While Uber-CSHRI

3 produces slightly better
schedules than Uber-CSHRT

2 , the latter’s running time is
so fast that it would preclude the need to store schedules.
If running time is not a concern, the best schedules are
produced by Uber-XSet – 8.11 XOR’s per decoded word
as opposed to 8.34 for Uber-CSHRI

3. Since Uber-XSet is a
hybrid of X-Sets and Uber-CSHR, it is not surprising that
its performance, unlike the other X-Set heuristics, is on par
with the Uber-CSHR heuristics.

0 1 2 3 4 5 6
Threshold

1

10

100

1000

R
un

ni
ng

 T
im

e
(s

)

0 1 2 3 4 5 6
Threshold

8.1

8.2

8.3

8.4

8.5 X
O

R
’s per decoded w

ord

L = 1
L = 2
L = 3

Figure 13. Running times and schedules produced for the Uber-
XSet heuristic on the 28 decoding matrices for the Blaum-Roth RAID-6
code, k = 8, w = 16.

Examining Uber-XSet further, we plot the running times
and XOR’s per decoded word for all values of threshold
and L in Figure 13. We limit the Y-axis to 1000 seconds.
Although the XOR values decrease slightly as threshold
increases, threshold has much less impact on the XOR’s
than L. L is also the major influence in the running time, al-
though the running times do increase as threshold increases.

To compare the running times of the various X-Set

0 1 2 3 4 5 6
Threshold

10

100

1000

R
un

ni
ng

 T
im

e
(s

)

MW
MW-SS
MW-Matching
MW^2
Uber-XSet

0 1 2 3 4 5 6
Threshold

10

100

1000

R
un

ni
ng

 T
im

e
(s

)

9.64 XOR’s
9.38 XOR’s
9.60 XOR’s
9.50 XOR’s
8.18 XOR’s

Figure 14. Performance of the X-Set heuristics on the 28 decoding matrices
for the Blaum-Roth RAID-6 code, k = 8, w = 16, L = 2.

heuristics, we plot them for L = 2 in Figure 14. The
right side of Figure 14 shows the number of XOR’s of the
schedules produced by the best instance of each technique.
MW, MW-SS and MW-Matching all have very similar
running times. As anticipated MW2 runs the slowest since
it performs one step of lookahead for each potential new
element, and then discards the lookahead information after
selecting the element. As noted above, Uber-XSet produces
the best schedules of the three, and its running time is
slightly higher than MW, MW-SS and MW-Matching.

6 8 10 12 14 16
k

0

20

40

60

R
un

ni
ng

 ti
m

e
(s

)

Uber-XSet, L=1
Uber-XSet, L=2

6 8 10 12 14 16
k

0.95

1.00

1.05

1.10

1.15 N
orm

alized X
O

R
’s

per decoded w
ord

CSHR
Uber-CSHR-T L=2

Figure 15. Running times and schedules produced for CSHR, Uber-
CSHRT

2 and Uber-XSet on all
(

k
2

)
decoding matrices for Blaum-Roth

codes, w = 16, threshold = 0.

In Figure 15, we compare the running times and schedules
produced by Uber-XSet, Uber-CSHRT

2 and CSHR for all
RAID-6 installations from k = 6 to 16. In all tests, w = 16,
and for the Uber-XSet tests, threshold is zero. To compare
the differing values of k, we normalize the number of XOR’s
per decoded word by dividing by k.

As the figure shows, adding the X-Set information to
Uber-CSHR imposes quite a penalty on the running time,
even with a threshold of zero, and L = 1. No instance of
Uber-XSet runs faster than two seconds. CSHR and Uber-
CSHRT

2 both run well faster than a second in all cases. Uber-
XSet produces the best schedules when L = 2. When L = 1,
the schedules produced are no better than Uber-CSHRT

2 .
Thus, if the application does not store schedules, the latter is
a much better scheduling technique to employ. Although not
shown on the graph, the Subex heuristic runs with speeds on

par with Uber-XSet, L = 1, but the schedules produced are
much worse, having normalized XOR’s between 1.21 and
1.24.

As a bottom line, on these codes, the Uber-CSHRT
2 has a

very nice blend of speed and schedules produced. If running
time is not a concern then Uber-XSet with a high value of L
produces the best schedules.

2) Cauchy Reed-Solomon Codes: Our second large ma-
trix test explores CRS codes on 16-disk systems that are
fault-tolerant to 4, 6 and 8 failures. Thus, the [k, m] pairs
are [12,4], [10,6] and [8,8]. We choose w = 8, since that is a
natural value in these systems. We focus first on the [10,6]
code from Figure 1, whose bit matrix has 1968 non-zero
entries.

In Figure 16, we show the best encoding schedules for
each heuristic on this matrix. We tested all combinations
of threshold ≤ 6 and L ≤ 2. The “Optimal-Sub” heuristic
breaks the bit matrix into 60 (8 × 8) sub-matrices and uses
the results of the enumeration in Section V to schedule the
sub-matrices.

N
one

O
ptim

al-Sub

CSH
R

U
ber-T L=2

U
ber-T L=3

U
ber-I L=1

U
ber-I L=2

U
ber-I L=3

Subex
M

W
M

W
-SS

M
W

-M
atching

M
W

^2

SS-M
W

10

15

20

25

30

X
O

R
’s

 p
er

en
co

de
d

w
or

d

40.0

Figure 16. The best schedules for each heuristic on the CRS encoding
matrix for k = 10, m = 6, w = 8.

For this matrix, the Uber-CSHR schedules are poorer
than the X-Set schedules. Only the Uber-CSHRI

3 schedule
comes close to the worst X-Set schedule. Within the X-
Set schedules, the best is generated by the MW2 heuristic
when threshold ≥ 3 and L = 2. This is markedly different
from the RAID-6 tests above, where the Uber-XSet hybrid
performs much better than the others.

We explore the differences between the various X-Set
heuristics with respect to decoding in Figure 17. There
are

(
10
6

)
= 210 combinations of six data disks that can

fail when k = 10 and m = 6. For each combination,
we measured the running time and schedule size of all
heuristics. For the X-Set heuristics, we used thresh = 2
and L ∈ {1, 2}. In the figure, we plot the XOR’s per decoded
word of the schedule and the running time.

As in Figure 16, MW2 generates the best schedule.
However, the average running times are very large. MW-
Matching generates the next best schedules and takes far
less time to run, although six seconds may still be too large

Subex

15.0

15.5

16.0

16.5

A
ve

ra
ge

 X
O

R
’s

 p
er

de
co

de
d

w
or

d

2.
24

 s

1 2
L

MW

4.
95

 s

40
.7

2
s

1 2
L

MW-SS

8.
10

 s

29
.1

2
s

1 2
L

Matching

6.
01

 s

57
.9

8
s

1 2
L

MW^2

61
8.

23
 s

15
17

.2
8

s

1 2
L

Uber-XSet

7.
50

 s

34
.0

0
s

Figure 17. Average running time and decoding schedules for the
(
10
6

)
CRS decoding matrices for six failures, k = 10, m = 6, w = 8, threshhold
= 2.

to employ without precomputation. Of the six techniques,
Uber-XSet performs the worst. Uber-CSHRT

3 , which is not
pictured on the graph, produces the best schedules among the
heuristics which run under a second; however, the schedules
it produces are much worse, averaging 25.9 XOR’s per
decoded word.

Finally, Figure 18 shows the normalized performance of
encoding and decoding with CRS codes on 16-disk disk
systems where k ∈ {8, 10, 12} and w = 8. The figures
evaluate no scheduling plus five heuristics: CSHR, Uber-
CSHRT

3 , Subex, MW2 and Uber-XSet. They show the per-
formance of encoding, plus decoding from all combinations
of four and six data disk failures. In both figures we show
the “original” Cauchy matrices as defined by Blomer [4] and
the “good” Cauchy matrices generated by Jerasure [23],
which are sparser than the original matrices. The X-Set
heuristics generate much better schedules than the others,
but run slower (running times are on par with those in
Figure 17). Both graphs show the effectiveness of scheduling
— the reduction of XOR operations is drastic in all cases,
improving the performance over no scheduling by over 60
percent.

8 10 12
1.0
1.5
2.0
2.5
3.0
3.5
4.0

N
or

m
al

iz
ed

 X
O

R
s p

er
 w

or
d

Encoding

None
CSHR

"Original" Matrices

8 10 12

6 failures
8 10

4 failures

Uber-CSHR-T, L=3
Subex

8 10 12

Encoding
"Good" Matrices

8 10 12

6 failures

MW^2
Uber-XSet

8 10

4 failures
k= k= k= k= k= k=

Figure 18. Performance of heuristics with CRS coding, m = (16 − k),
w = 8.

With encoding, the matrix impacts performance regardless
of the scheduling algorithm – The “good” matrices require
much fewer XOR operations than the “original” matrices.

This discrepancy goes away upon decoding — sparse en-
coding matrices do not lead to sparse decoding matrices,
and the performance of the X-Set heuristics is independent
of the encoding matrices.

One conclusion that one may draw from Figures 16-
18 is that for CRS coding, none of the new heuristics
improve significantly over the original Subex heuristic. The
schedules produced perform nearly as well as the best X-
Set heuristics, and the running times are faster, although
probably too slow to allow an application to not store
schedules. Unfortunately, the Blaum-Roth tests show that
Subex does not produce good enough schedules to qualify
it as a universally applicable heuristic. The hybrid, Uber-
XSet, although slightly worse than Subex in the CRS tests,
shows the best performance on all of the tests in this paper.

VIII. IMPLEMENTATION

Our implementations of all the heuristics are available as
open source C++ programs released under the New BSD
License [20]. The Uber-CSHR program is small (under 500
lines) and consumes a small amount of memory, regardless
of the value of L. The X-Set program is larger (roughly 1800
lines), much of which is composed of Edmonds’ matching
algorithm. As thresh and L grow, the X-Set program con-
sumes a significant amount of memory, which becomes the
limiting factor in running the heuristics, rather than time.
Both implementations are single-threaded and run without
any external libraries.

It is our intent for storage practitioners to leverage these
programs as they implement their erasure codes, and for
researchers to use them to spur further work. The implemen-
tation is notable also as the first implementation of Subex.
CSHR was implemented as part of the Jerasure erasure
coding library [23].

IX. CONCLUSION

Erasure codes that are based on bit matrices are already
in heavy use, and their use will increase in the future. We
have described heuristics whose intent is to schedule the
XOR operations of these erasure codes so that the number
of operations is minimized. These heuristics expand upon on
previous work in the area [12], [13]. We have implemented
the heuristics and provide them to the community as open
source C++ programs [20].

We have evaluated the heuristics in relation to optimal
schedules that were generated via a pruned enumeration.
The Uber-XSet heuristic comes closest to optimal on the
255 (8 × 8) Cauchy bit matrices, requiring 5.6 percent more
XOR’s than the optimal schedules. The improvement over
previous heuristics is significant. CSHR requires 30 percent
more XOR’s and Subex requires 16 percent. No scheduling
results in 89 percent more XOR’s.

We performed a second evaluation of the heuristics on two
sets of encoding and decoding scenarios that may be used in

fault-tolerant storage installations: RAID-6 based on Blaum-
Roth erasure codes, and Cauchy Reed-Solomon codes to
tolerate larger numbers of failures. For the RAID-6 codes,
the performance of decoding requires the use of scheduling,
and two new heuristics improve the state of the art. Uber-
CSHRT

2 yields improved schedules and runs very quickly.
Uber-XSet yields the best schedules but takes longer to run.

In the Cauchy Reed-Solomon examples, the X-Set heuris-
tics all yield schedules that are a significant improvement
over what is currently implemented (namely, no schedul-
ing and CSHR). The MW2 heuristic generates the best
schedules, albeit very slowly. The Subex heuristic generates
schedules that are nearly as good, but much more quickly.
When all tests are considered, the best heuristic is the Uber-
XSet heuristic, which generates the best schedules in the
enumeration and the Blaum-Roth codes, and very good
schedules for Cauchy Reed-Solomon coding.

One limitation of this work is that it attacks an exponential
search space with heuristics, but doesn’t glean fundamental
insights that may lead to better solutions to the problem.
For that reason, the result is somewhat more pragmatic than
theoretical. It is our hope that this work helps spur more
theoretical work in the field. For example, while there are
no known lower bounds for the number of non-zero entries
in certain generator matrices [3], there are not lower bounds
on the resulting number XOR operations.

Finally, the we readily acknowledge that reducing XOR’s
is not the only way to improve the performance of an
erasure code. Careful attention to cache behavior can im-
prove performance by over 30 percent without changing the
number of XOR’s [18]. Hand-tuning the code with respect to
multiple cores and SSE extensions will also yield significant
performance gains. Other code properties, like the amount of
data required for recovery, may limit performance more than
the CPU overhead [9], [25]. We look forward to addressing
these challenges in future work.

X. ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-
tional Science Foundation under grants CNS-0615221 and
CSR-1016636, and a research award from Google.

REFERENCES

[1] BAIRAVASUNDARAM, L. N., GOODSON, G., SCHROEDER,
B., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. An analysis of data corruption in the storage stack.
In FAST-2008: 6th Usenix Conference on File and Storage
Technologies (San Jose, February 2008).

[2] BLAUM, M., BRADY, J., BRUCK, J., AND MENON, J.
EVENODD: An efficient scheme for tolerating double disk
failures in RAID architectures. IEEE Transactions on Com-
puting 44, 2 (February 1995), 192– 202.

[3] BLAUM, M., AND ROTH, R. M. On lowest density MDS
codes. IEEE Transactions on Information Theory 45, 1
(January 1999), 46–59.

[4] BLOMER, J., KALFANE, M., KARPINSKI, M., KARP, R.,
LUBY, M., AND ZUCKERMAN, D. An XOR-based erasure-
resilient coding scheme. Tech. Rep. TR-95-048, International
Computer Science Institute, August 1995.

[5] BOWERS, K., JUELS, A., AND OPREA, A. Hail: A high-
availability and integrity layer for cloud storage. In 16th
ACM Conference on Computer and Communications Security
(2009).

[6] CORBETT, P., ENGLISH, B., GOEL, A., GRCANAC, T.,
KLEIMAN, S., LEONG, J., AND SANKAR, S. Row diagonal
parity for double disk failure correction. In 3rd Usenix
Conference on File and Storage Technologies (San Francisco,
CA, March 2004).

[7] EDMONDS, J. Paths, trees and flowers. Canadian Journal of
Mathematics 17 (1965), 449–467.

[8] FAN, B., TANTISIRIROJ, W., XIAO, L., AND GIBSON, G.
DiskReduce: RAID for data-intensive scalable computing. In
4th Petascale Data Storage Workshop, Supercomputing ’09
(Portland, OR, November 2009), ACM.

[9] GREENAN, K. M., LI, X., AND WYLIE, J. J. Flat XOR-based
erasure codes in storage systems: Constructions, efficient
recovery and tradeoffs. In 26th IEEE Symposium on Massive
Storage Systems and Technologies (MSST2010) (Nevada, May
2010).

[10] HAFNER, J. L. WEAVER Codes: Highly fault tolerant
erasure codes for storage systems. In FAST-2005: 4th Usenix
Conference on File and Storage Technologies (San Francisco,
December 2005), pp. 211–224.

[11] HAFNER, J. L., DEENADHAYALAN, V., BELLUOMINI, W.,
AND RAO, K. Undetected disk errors in RAID arrays. IBM
Journal of Research & Development 52, 4/5 (July/September
2008), 418–425.

[12] HAFNER, J. L., DEENADHAYALAN, V., RAO, K. K., AND
TOMLIN, A. Matrix methods for lost data reconstruction in
erasure codes. In FAST-2005: 4th Usenix Conference on File
and Storage Technologies (San Francisco, December 2005),
pp. 183–196.

[13] HUANG, C., LI, J., AND CHEN, M. On optimizing XOR-
based codes for fault-tolerant storage applications. In ITW’07,
Information Theory Workshop (Tahoe City, CA, September
2007), IEEE, pp. 218–223.

[14] HUANG, C., AND XU, L. STAR: An efficient coding scheme
for correcting triple storage node failures. IEEE Transactions
on Computers 57, 7 (July 2008), 889–901.

[15] JIN, C., JIANG, H., FENG, D., AND TIAN, L. P-Code: A new
RAID-6 code with optimal properties. In 23rd International
Conference on Supercomputing (New York, June 2009).

[16] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., EATON, P.,
GEELS, D., GUMMADI, R., RHEA, S., WEATHERSPOON,
H., WEIMER, W., WELLS, C., AND ZHAO, B. Oceanstore:
An architecture for global-scale persistent storage. In Pro-
ceedings of ACM ASPLOS (Cambridge, MA, November
2000), ACM, pp. 190–201.

[17] LIN, S., WANG, G., STONES, D. S., LIU, X., AND LIU, J.
T-Code: 3-erasure longest lowest-density MDS codes. IEEE
Journal on Selected Areas in Communications 28, 2 (February
2010).

[18] LUO, J., XU, L., AND PLANK, J. S. An efficient XOR-
Scheduling algorithm for erasure codes encoding. In DSN-
2009: The International Conference on Dependable Systems
and Networks (Lisbon, Portugal, June 2009), IEEE.

[19] PLANK, J. S. A tutorial on Reed-Solomon coding for fault-
tolerance in RAID-like systems. Software – Practice &
Experience 27, 9 (September 1997), 995–1012.

[20] PLANK, J. S. Uber-CSHR and X-Sets: C++ programs for
optimizing matrix-based erasure codes for fault-tolerant stor-
age systems. Tech. Rep. CS-10-665, University of Tennessee,
December 2010.

[21] PLANK, J. S., AND DING, Y. Note: Correction to the 1997
tutorial on Reed-Solomon coding. Software – Practice &
Experience 35, 2 (February 2005), 189–194.

[22] PLANK, J. S., LUO, J., SCHUMAN, C. D., XU, L., AND
WILCOX-O’HEARN, Z. A performance evaluation and ex-
amination of open-source erasure coding libraries for storage.
In FAST-2009: 7th Usenix Conference on File and Storage
Technologies (February 2009), pp. 253–265.

[23] PLANK, J. S., SIMMERMAN, S., AND SCHUMAN, C. D.
Jerasure: A library in C/C++ facilitating erasure coding for
storage applications - Version 1.2. Tech. Rep. CS-08-627,
University of Tennessee, August 2008.

[24] REED, I. S., AND SOLOMON, G. Polynomial codes over
certain finite fields. Journal of the Society for Industrial and
Applied Mathematics 8 (1960), 300–304.

[25] XIANG, L., XU, Y., LUI, J. C. S., AND CHANG, Q. Optimal
recovery of single disk failure in RDP code storage systems.
In ACM SIGMETRICS (June 2010).

[26] XU, G., WANG, G., ZHANG, H., AND LI, J. Redundant data
composition of peers in P2P streaming systems using cauchy
reed-solomon codes. In Sixth International Conference on
Fuzzy Systems and Knowledge Discovery (Tianjin, China,
2009), IEEE.

[27] XU, L., AND BRUCK, J. X-Code: MDS array codes with
optimal encoding. IEEE Transactions on Information Theory
45, 1 (January 1999), 272–276.

