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ABSTRACT
We present a new methodology for utilizing all CPU cores
and all GPUs on a heterogeneous multicore and multi-GPU
system to support matrix computations efficiently. Our ap-
proach is able to achieve four objectives: a high degree of
parallelism, minimized synchronization, minimized commu-
nication, and load balancing. Our main idea is to treat the
heterogeneous system as a distributed-memory machine, and
to use a heterogeneous 1-D block cyclic distribution to allo-
cate data to the host system and GPUs to minimize commu-
nication. We have developed heterogeneous rectangular-tile
algorithms with two different tile sizes (one for CPU cores
and the other for GPUs) to cope with processor heterogene-
ity. We also propose an auto-tuning method to determine
the best tile sizes to attain both high performance and load
balancing. We have implemented a new runtime system and
applied it to the rectangular tile Cholesky and QR factoriza-
tions. Our experiments on a compute node with two Intel
Westmere hexa-core CPUs and three Nvidia Fermi GPUs
demonstrate the weak scalability, strong scalability, load bal-
ance, and efficiency of our approach.

1. INTRODUCTION
As the performance of both multicore CPU and GPU con-

tinues to scale at a Moore’s law rate, it is becoming ap-
pealing and pervasive to use heterogeneous multicore and
multi-GPU architectures to attain the highest performance
possible from a single compute node. Today it is not un-
common to find a shared-memory machine with dozens of
cores and a few GPUs that can achieve a maximum per-
formance of more than 2.5 Teraflops using double precision
floating point arithmetic. However, the heterogeneity in the
multi-core and multi-GPU architecture has introduced new
challenges to algorithm design and software systems.

Over the last few years, our colleagues at the Univer-
sity of Tennessee have developed the PLASMA library [2]
to solve linear algebra problems on multicore architectures.
In parallel with PLASMA, we have also developed another
library called MAGMA [27] to solve linear algebra problems
on GPUs. While PLASMA and MAGMA aim to provide
the same routines as LAPACK [4], one is used for multicore
CPUs, and the other for a single core with an attached GPU,
respectively. Our goal is to utilize all cores and all GPUs
efficiently on a single multicore and multi-GPU system to
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Figure 1: The architecture of a heterogeneous multi-
core and multi-GPU system. The host system is con-

nected to four GPUs via two PCI express connections. The host

system and each GPU have separate memory spaces.

support matrix computations.
Figure 1 shows the architecture of a heterogeneous mul-

ticore and multi-GPU system we are considering. The mul-
ticore host system is connected to four GPUs via two PCI
express connections and each pair of GPUs share a GPU
switch. The system is different from both shared-memory
and distributed-memory systems due to the following fea-
tures: (1) The system is not a shared-memory machine since
the host and the GPUs have different memory spaces and an
explicit memory copy is required to transfer data between
the host and a GPU; (2) It is also different from a conven-
tional distributed-memory machine since each GPU is actu-
ally controlled by a thread running on the host (more like
pthreads on a shared-memory machine); (3) GPUs and CPU
cores have distinct computational performance; (4) GPU is
optimized for throughput and expects larger input to pro-
duce high performance than a core which is optimized for
latency [24]; (5) The system requires two different computa-
tional libraries: one is developed and optimized for CPUs,
the other for GPUs. In this work, we take into account
all these factors and strive to meet four objectives in order
to obtain high performance: a high degree of parallelism,
minimized synchronization, minimized communication, and
load balancing. We propose to design new heterogeneous
algorithms and to use a simple but practical static data dis-
tribution to achieve the objectives simultaneously.

This paper describes rectangular tile algorithms with hy-
brid tile sizes, heterogeneous 1-D column block cyclic data
distribution, a new runtime system, and an auto-tuning
method to determine the hybrid tile sizes. The rectangu-
lar tile algorithms build upon the previous tile algorithms,
which divide a matrix into square tiles and have a high de-
gree of parallelism and minimized synchronizations [13, 14].



(Section 2.1 introduces the tile algorithms briefly). However,
a unique tile size does not work well for both CPU cores and
GPUs at the same time (either too small or too big). A big
tile will clobber a CPU core and a small tile cannot attain
high performance on a GPU. Therefore, we have redesigned
the tile algorithms so that they comprise between two types
of tiles: smaller tiles suitable for CPU cores and bigger tiles
suitable for GPUs. For instance, Fig. 2 depicts two matrices
consisting of a set of small and large rectangular tiles. The
rectangular tile algorithms execute in a fashion similar to
the tile algorithms such that whenever a task computing a
tile at [I, J ] is completed, it will trigger new tasks on the
right hand side of the J-th tile column and below the I-th
tile row. Here the rectangle tile at [I, J ] can be either small
or big and is different from the tile algorithms.

We regard the multicore and multi-GPU system as a dis-
tributed memory machine and place greater emphasis on
communication minimization. We statically store small rect-
angular tiles on the host and large rectangular tiles on the
GPUs respectively to cope with processor heterogeneity and
reduce data movement. In order to distribute the small and
big rectangular tiles to the host and GPUs evenly, we pro-
pose a heterogeneous 1-D column block cyclic distribution
method. The basic idea is that we first map a matrix to only
GPUs using a 1-D column block cyclic distribution, then we
cut a slice from each block and assign it to the host system.
Our analysis shows that the static distribution method is
able to reach a near lower bound communication volume.
We also propose an auto-tuning method to determine the
best slice size to be cut from each block for load balancing.

We have designed a runtime system to support dynamic
scheduling on the heterogeneous CPU+GPU system. The
runtime system allows our programs to be executed in a
data-availability-driven model where a parent task always
tries to triggers its children. In order to address the spe-
cialties of the heterogeneous system, we have implemented a
number of techniques to extend a centralized runtime system
to a new one that also considers the machine a distributed
memory system. The new runtime system is “hybrid” in
the sense that its scheduling and computing components are
centralized and resident in the single host system but data,
pools of buffers, the communication components, and task
queues are distributed in the host and different GPUs.

We conducted experiments on the Keeneland system at
the Oak Ridge National Laboratory. On a compute node
with two Intel Westmere hexa-core CPUs and three Nvidia
Fermi GPUs, both of our Cholesky factorization and QR
factorization exhibit scalable performance. In terms of weak
scalability, we can attain a nearly constant Gflops/core and
Gflops/GPU performance from 1 core to 9 cores+3 GPUs.
And in strong scalability, we can reduce the execution time
by two orders of magnitude from 1 core to 9 cores+3 GPUs.

To our best knowledge, this is the first work to consider
the multicore and multi-GPU system a distributed-memory
machine to minimize communication in support of matrix
computations. Our work makes the following contributions:
(i) new heterogeneous rectangular-tile algorithms with hy-
brid tiles to handle processor heterogeneity, (ii) a hetero-
geneous 1-D block cyclic distribution with a novel two-level
partitioning scheme, (iii) an auto-tuning method to achieve
load balancing, (iv) and a new runtime system to accommo-
date the special features of the heterogeneous system (i.e.,
a hybrid of a shared- and distributed-memory system).
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Figure 2: Matrices consisting of a mix of small and
large rectangular tiles. (a) A 12×12 matrix is divided into

8 small tiles and 4 big tiles. (b) A 12 × 12 matrix is divided into

16 small tiles and 2 big tiles.

In the rest of this paper, Section 2 provides the back-
ground and motivations for our work. Section 3 presents the
rectangular tile algorithms for Cholesky and QR factoriza-
tions. Section 4 describes the implementation and the auto-
tuning method. Section 5 shows the experimental results.
Section 6 presents related work and Section 7 summarizes
our work.

2. BACKGROUND
In this section, we first give a brief introduction to the

previous tile algorithms [14]. Then we describe the moti-
vations for our optimizations on GPUs and the reasons for
choosing a static distribution method over a dynamic load
balancing method.

2.1 Tile Algorithms
A tile algorithm divides an n×n matrix A into a number

of small b×b submatrices (aka“tiles”) such that A consists of
nb × nb tiles, where nb = n

b
. A can be expressed as follows:


A1,1 A1,2 . . . A1,nb
A2,1 A2,2 . . . A2,nb

.

.

.
.
.
.

. . .
.
.
.

Anb,1
Anb,2

. . . Anb,nb

 ,

where Ai,j is a b × b tile. In the tile algorithm, every task
works on a small tile so that at any time there are a great
amount of tasks available to execute. This way we can in-
crease a program’s thread level parallelism, which is desir-
able on multicore architectures. Take the tile QR factoriza-
tion as an example. At the first iteration, the algorithm com-
putes a QR factorization for A1,1. The output of A1,1 is then
used to update the set of tiles on A1,1’s right hand side in
an embarrassingly parallel way (i.e., A1,2, A1,3, . . . , A1,nb).
As soon as a tile-update in the i-th row completes, its below
neighbor in the (i + 1)-th row can start immediately. One
could visualize the execution as falling columns of dominos
from top to bottom. After updating all tiles in the nb-th row,
tile QR will continue to apply the same steps to the trailing
submatrix A2:nb,2:nb recursively [14]. Our work extends the
tile algorithms to rectangular tile algorithms to accommo-
date the processor heterogeneity between CPUs and GPUs.

2.2 Optimization Issues on GPUs
Although computational performance can be increased by

adding more cores to a GPU, it is much more difficult to
increase the network performance at the same rate. For
instance, it has taken three years to introduce the PCIe
3.0 Base specification to double its predecessor’s bandwidth.
We also expect the ratio of computational performance over
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Figure 3: Matrix multiplication with CUBLAS 3.2
on an Nvidia Fermi M2070 GPU. (a) The maximum

performance in double precision is 302 Gflops and the distance

between the peaks is 64. (b) The maximum performance in single

precision is 622 Gflops and the distance between the peaks is 96.

communication bandwidth on a GPU will continue to in-
crease. Hence, one of our objectives is to minimize commu-
nication. A number of existing algorithms on distributed-
memory supercomputers have addressed the issue to min-
imize communication. In ScaLAPACK [10], the parallel
Cholesky, QR, and LU factorizations have been proven to
reach the communication lower bound to within a logarith-
mic factor [8, 16, 18]. This has inspired us to adapt these
efficient methods to optimize communication on multicore
and multi-GPU systems.

Another issue is that a GPU cannot reach its high perfor-
mance until given a sufficiently large input. Figure 3 shows
the performance of matrix multiplication on an Nvidia Fermi
GPU using CUBLAS 3.2 in double precision and single preci-
sion, respectively. In general, the bigger the matrix size, the
better the performance is, but the double precision matrix
multiplication does not reach 95% of its maximum perfor-
mance (max=302 Gflops) until the matrix size N ≥ 1088.
In single precision, it does not reach 95% of its maximum
(max=622 Gflops) until N ≥ 1344. Unlike GPU, it is com-
mon for a CPU core to reach 90% of its maximum when
N ≥ 200 for matrix multiplications. However, solving a big
matrix of size N > 1000 by a single core is much slower than
dividing it into smaller blocks and solving them in parallel
by multiple cores. One could still use several cores to solve
the big matrix in a fork-join way, but it will introduce ad-
ditional synchronization overhead and more CPU idle time
[3, 12, 14]. Therefore, we are motivated to design new algo-
rithms to expose different tile sizes suitable for CPUs and
GPUs, respectively.

2.3 Using a Static Distribution Strategy
At first sight, it seems that we could look at the multicore

and multi-GPU system as a shared memory machine and
offload an appropriate amount of compute-intensive work to
the GPUs. This results in a dynamic load balancing prob-
lem where a runtime system is required to monitor the cores
and GPUs and to profile the performance of different tasks
on a core or a GPU to keep load balancing. In considera-
tion of additional communication optimization and a related
software cache mechanism, the problem becomes more chal-
lenging. Also the dynamic approach may prove inefficient
due to the runtime and communication overhead (especially
for small matrices). More important, to solve an n× n ma-

trix, the cache size on a GPU must be close to n2

P
to achieve

an optimal communication volume as proven by Theorem 1.

Theorem 1 ([20]). The communication volume of the

classic matrix multiplication algorithm is equal to Ω( n3

P
√
M

),

where n is the matrix size, and M is the local memory size on

each of P processes. When M = O(n2

P
), the communication

volume Ω( n2
√
P

) is optimal.

Note that the communication volume of matrix multiplica-
tion is also the lower bound for many other Θ(n3) matrix
computations such as Cholesky, QR, and LU factorizations.
By setting the software cache size on each GPU as large

as O(n2

P
), the caching scheme would become the same as a

static 1D or 2D block distribution method regarding memory
usage. Later Section 3.5 shows that using a static distribu-
tion method can guarantee a near lower bound communica-
tion volume. To optimize both computation and communi-
cation without resorting to complex scheduling policies and
software caches, we choose to use the simple static distribu-
tion strategy for the domain of matrix computations.

3. RECTANGULAR TILE ALGORITHMS
We extend the tile algorithms [14] to rectangular tile al-

gorithms and apply them to the Cholesky and QR factor-
izations. We also introduce a two-level partitioning method
and a heterogeneous 1-D column block cyclic distribution
to map tiles and tasks to the host and GPUs to minimize
communication.

3.1 Hybrid-Size Rectangular Tiles
The rectangular tile algorithm divides a matrix into a mix

of small and big rectangular tiles. Figure 2 depicts two ex-
amples of matrices that are divided into rectangular tiles.
The two matrices have the same dimension but consist of a
different number of small and big tiles.

However, the way to divide a matrix into rectangular tiles
is not arbitrary. Constrained by the correctness of the al-
gorithm, rectangular tiles must be aligned with each other
and located in a collection of rows and columns. Their di-
mensions, however, could vary row by row or column by
column (e.g., a row of tall tiles followed by a row of short
tiles). Since we target a heterogenous system with two types
of processors (i.e., CPU and GPU), we use two tile sizes: a
small one for CPU and a big one for GPU. It should be easy
to extend the algorithm to have more tile sizes.

On a heterogeneous multicore and multi-GPU system, we
propose to use the following two-level partitioning scheme
to create small tiles and big tiles:

1. At the top level, we divide a matrix into large square
tiles of size B ×B.

2. We subdivide each top-level tile of size B × B into a
number of small rectangular tiles of size B × b and a
remaining tile.

We use this scheme because it not only results in a clean
code structure but also allows us to use a simple auto-tuning
method to achieve load balancing. For instance, as shown
in Fig. 2 (a), we first divide the 12 × 12 matrix into four
6× 6 tiles, then we divide each 6× 6 tile into two 6× 1 and
one 6 × 4 rectangular tiles. How to partition the top-level
large tiles is dependent on the performance of the host and
the performance of a GPU. Section 4.2 introduces a method
to determine an appropriate partitioning.
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Figure 4: The operations of rectangular tile
Cholesky factorization. (a) The symmetric positive defi-

nite matrix A. (b) computes POTF2’ to solve L11. (c) applies

L11 to update its right A12 by matrix multiplication. (d) com-

putes TRSMs for all tiles below L11 to solve L21 and L31. (e)

applies GSMMs to update all tiles on the right of TRSMs. (f)

At the 2nd iteration, we repeat performing (b), (c), (d), (e) on

the trailing submatrix that starts from the 2nd column.

3.2 Rectangular Tile Cholesky Factorization
Given a matrix A of size n×n and two tile sizes of B and

b, A can be expressed as follows:
B︷ ︸︸ ︷

a11 a12 . . . A1s

B︷ ︸︸ ︷
a1(s+1) a1(s+2) . . . A1(2s) . . .

a21 a22 . . . A2s a2(s+1) a2(s+2) . . . A2(2s) . . .
...

...
. . .

ap1 ap2 . . . Aps ap(s+1) ap(s+2) . . . Ap(2s) . . .

 , where

an
︷ ︸︸ ︷
ai(ks+1)ai(ks+2) . . . Ai(ks+s) forms a large tile of size B×B.

Here aij represents a small rectangular tile of size B×b, and
Aij represents a tile of size B× (B− b(s−1)) that is usually
larger. We also assume n = pB and B > b.

Algorithm 1 shows the rectangular tile Cholesky factor-
ization. Here we don’t differentiate aij and Aij and always
use Aij since i and j imply a unique tile (either aij or Aij).
In addition, we denote Aij ’s submatrix that starts from its
local x-th row and y-th column to its original bottom right
corner by Aij [x, y]. We denote Aij [0, 0] by Aij for short.

Algorithm 1 Rectangular Tile Cholesky Factorization
for t ← 1 to p do

for d ← 1 to s do
k ← (t - 1) * s + d /* the panel index */
∆ ← (d - 1) * b /* row offset within a tile */
POTF2’(Atk[∆,0], Ltk[∆,0])
for j ← k + 1 to t * s do

GSMM(Ltk[∆+b,0], Ltk[∆+(j-k)*b,0], Atj [∆+b,0])
end for
for i ← t + 1 to p do

TRSM(Ltk[∆,0], Aik, Lik)
end for
for i ← t + 1 to p do

for j ← k + 1 to i * s do
j’ = d js e
if (j’ = t) GSMM(Lik, Ltk[∆+(j-k)%s*b,0], Aij)
else GSMM(Lik, Lj′k[(j-1)%s*b,0], Aij)

end for
end for

end for

end for
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Figure 5: The operations of rectangular tile QR fac-
torization. (a) The matrix A. (b) We compute QR factor-

ization of A11 to get R11 and V11. (c) We apply V11 to update

all tiles on the right of A11 by calling LARFB. (d) computes

TSQRTs for all tiles below A11 to solve V21 and V31. (e) applies

V21 and V31 to update all tiles on V21 and V31’s right hand side.

(f) After the 1st iteration, we have solved the R factors on the

first row with a hight equal to R11’s size. At the 2nd iteration,

we repeat performing (b), (c), (d), (e) on the trailing submatrix

that starts from the 2nd column.

The rectangular tile algorithm for Cholesky factorization
invokes the same set of kernels as the tile Cholesky factor-
ization algorithm [14] except for the kernel POTF2’:

• POTF2’(Atk, Ltk): Given a matrix Atk of size m× n
and m ≥ n, we let Atk = (Atk1

Atk2
), where Atk1 is of size

n×n, and Atk2 is of (m−n)×n. Similarly we let Ltk

= (Ltk1
Ltk2

). POTF2’ computes (Ltk1
Ltk2

) by solving Ltk1 =

Choleksy(Atk1) and Ltk2 = Atk2L
−T
tk1 .

• TRSM(Ltk, Aik, Lik) computes Lik = AikL
−T
tk .

• GSMM(Lik, Ljk, Aij) computes Aij = Aij − LikL
T
jk.

Figure 4 illustrates the operations of the rectangular tile
Cholesky factorization. It shows a matrix of 3× 3 top-level
large tiles (i.e., p = 3), each of which is divided into one
small and one big rectangular tiles (i.e., s = 2). The al-
gorithm goes through 6 (= p · s) iterations, where the k-th
iteration solves a submatrix starting from the k-th column.
Since all iterations apply the same operations to different
trailing submatrices, we only show the operations of the first
iteration.

3.3 Rectangular Tile QR Factorization
Algorithm 2 shows the rectangular tile QR factorization.

The rectangular tile QR uses the following set of kernels that
are identical to those used in the tile QR factorization [14].
For completeness, we present them briefly here:

• GEQRT(Atk, Vtk, Rtk, Ttk) computes (Vtk, Rtk, Ttk)
= QR(Atk).

• LARFB(Atj , Vtk, Ttk, Rtj) computes Rtj

= (I − VtkTtkV
T
tk )Atj .

• TSQRT(Rtk, Aik, Vik, Tik) computes (Vik, Tik, Rtk)
= QR(Rtk

Aik
).

4



Algorithm 2 Rectangular Tile QR Factorization
for t ← 1 to p do

for d ← 1 to s do
k ← (t - 1) * s + d /* the panel index */
∆ ← (d - 1) * b /* row offset within a tile */
GEQRT(Atk[∆,0], Vtk[∆,0], Rtk[∆,0], Ttk[∆,0])
for j ← k + 1 to p * s do

LARFB(Atj [∆,0], Vtk[∆,0], Ttk[∆,0], Rtj [∆,0])
end for
for i ← t + 1 to p do

TSQRT(Rtk[∆,0], Aik, Vik, Tik)
end for
for i ← t + 1 to p do

for j ← k + 1 to p * s do
SSRFB(Rtj [∆,0], Aij , Vik, Tik)

end for
end for

end for

end for

• SSRFB(Rtj , Aij , Vik, Tik) computes (Rtj
Aij

)

= (I − VikTikV
T
ik ) (Rtj

Aij
).

Figure 5 illustrates the operations of the rectangular tile
QR factorization. It shows a matrix of 3 tile rows and 6
tile columns. The algorithm goes through 6 iterations for
the 6 tile columns. Since every iteration performs the same
operations on a different trailing submatrix, Fig. 5 only
shows the operations of the first iteration.

3.4 Heterogeneous Block Cyclic Distribution
We divide a matrix A into p×(s ·p) rectangular tiles using

the two-level partitioning method which first partitions A
into p × p large tiles at the top level, then partitions each
large tile into s rectangular tiles. Given a multicore and
multi-GPU machine, we will distribute A’s tile columns to
the host and a number of P GPUs in a 1-D block cyclic
way. That is, we statically allocate the j-th tile column to
Px, where P0 represents the host system and Px≥1 represents
the x-th GPU. We compute x as follows:

x =

{
(( j

s
− 1) mod P ) + 1 : j mod s = 0

0 : j mod s 6= 0

In other words, the columns whose indices are multiples of s
are mapped to the P GPUs in a cyclic way and all the other
columns go to the single host system.

Figure 6 (a) illustrates a matrix that is divided into rect-
angular tiles with the two-level partitioning method. Since
we always map an entire tile column to either the host or a
GPU, the figure omits the boundaries between rows to bet-
ter illustrate the 1-D method. Figure 6 (b) displays how a
matrix with 12 tile columns is allocated to one host and 3
GPUs using the heterogeneous 1-D column block cyclic dis-
tribution. The ratio of the sum of s-1 rectangular tiles over
their remainder controls the load on the host and on each
GPU. Section 4.2 describes a method to determine the ratio
for load balancing.

3.5 Communication Cost
We consider the heterogeneous system a distributed mem-

ory machine such that the host system and the P GPUs
represent P + 1 processes. We also assume the broadcast
between processes is implemented by a tree topology in or-
der to make a fair comparison between our algorithms and
the ScaLAPACK algorithms [10].

h h h h G1 G2 G3 G1 h h G2 G3 

. . . 

1 2 … s 1 2 … s 1 2 … s 

1 2 p 
… 

(a) (b) 

Figure 6: Heterogeneous 1-D column block cyclic
data distribution. (a) The matrix A divided by a two-level

partitioning method. (p, s) determines a matrix partition. (b)

Allocation of a matrix of 6 × 12 rectangular tiles (i.e., p=6, s=2)

to a host and three GPUs: h, G1, G2, and G3.

Given a system with one host, P GPUs, and a matrix of
size n×n, we partition the matrix into p×(p ·s) rectangular
tiles. The small rectangular tile is of size B × b and n =
p · B. The number of words communicated by at least one
of the processes in the rectangular tile QR (or Cholesky)
factorization is bounded by:

Word =

p−1∑
k=0

(n− kB)B log(P + 1) ' n2

2
log(P )

The communication volume of the rectangular tile algorithm

reaches the lower bound of Ω( n2
√
P

) (Theorem 1) to within a

factor of
√
P log(P ). If we use a 2-D block cyclic distribution

instead of the 1-D distribution, we could attain the same

communication volume as ScaLAPACK (i.e., O( n2
√
P

logP )

[8, 16]). However, it will result in more messages and pro-
duce lower performance in practice for the tile algorithms.

The number of messages sent or received by at least one
process in the rectangular QR (or Cholesky) factorization is
bounded by:

Message =

p−1∑
k=0

(p− k)s log(P + 1) ' p2s

2
log(P )

Although the number of messages is larger than that of
ScaLAPACK [8, 16] by a factor of O(p), the rectangular tile
algorithms have much smaller messages and exhibit a higher
degree of parallelism. Note that we also want to keep a high
degree of parallelism in order to obtain high performance
particularly on many-core systems [3, 6, 12].

4. IMPLEMENTATION
We have implemented a runtime system to support data-

availability-driven execution where a parent task tries to
trigger its children whenever possible. Before the execu-
tion, we use the heterogeneous 1-D block cyclic method to
distribute a matrix across a host and different GPUs stati-
cally. Since we have preallocated the j-th tile column to the
host or a certain GPU, we require a task modifying the j-th
column be executed by the column’s owner (the host or the
GPU) to save data movement.

We extend the centralized-version runtime system of our
previous work ([26] Section 3) to a new one that is suitable
for heterogeneous multicore and multi-GPU systems. The
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centralized runtime system works on multicore architectures
and consists of four components (look at Fig. 7 as if it had
no GPUs):

• Task window: a fixed size task queue that stores all
the generated but not finished tasks. It is an ordered
list that keeps the serial semantic order between tasks.

• Ready task queue: a list of tasks whose inputs are
all available. Each node in the list is just a pointer
pointing to its corresponding task in the task window.

• Master thread: a single thread that executes a serial
program and inserts new tasks to the task window.

• Computational threads: every core runs a computa-
tional thread. A computational thread picks up a task
from the ready task queue whenever it becomes idle.
After finishing the task, the thread scans the task win-
dow to determine which tasks are the children of the
finished task and moves them to the ready task queue.

4.1 The Extended Runtime System
We have extended the centralized-version runtime system

to make it accommodate to multicore and multi-GPU sys-
tems. Figure 7 shows the architecture of the extended run-
time system. Note that the master thread and task window
have not been changed.

However, since the host and the GPUs own different sub-
sets of a matrix, we want to avoid the situation where a task
accessing one GPU’s data is dispatched to another GPU or
the host. Also the task size intended for GPUs is much
larger than that intended for CPUs. Therefore, we make
the host and every GPU have their own ready task queues.
If a ready task modifies a tile that belongs to the host or a
GPU, it is sent to the host or GPU correspondingly.

We have also modified the computational threads. The
new runtime system has two types of computational threads:
one for CPU cores and the other for GPUs. If a host system
has a number of n cores and is connected with P GPUs,
the runtime system will launch P computational threads to
represent the P GPUs and (n − P ) computational threads
to represent the remaining CPU cores. Although a GPU
computational thread is running on the host, it is able to
invoke a GPU kernel automatically as long as the kernel’s
input is available in the GPU memory.

In the Nvidia CUDA 3.2 programming environment, data
movement between different GPUs needs to be relayed by
the host. The device memory accessible by a host thread
is also restricted. If a host thread is attached to a GPU
and allocates a chunk of memory on the GPU, usually only
that thread can access the memory. Also there can be only
one host thread attached to a GPU at a time. Hence, in
our implementation, any data movement to or from a GPU
is handled by the GPU’s computational thread. With the
newly released CUDA 4.0 RC, it is possible to merge several
GPU computational threads into one thread.

We also assign a message box to each GPU computational
thread. A core computational thread does not have a mes-
sage box since it cannot access the GPU memory allocated
by a GPU computational thread. When moving data either
from the host to a GPU or from a GPU to the host, it is
the GPU computational thread’s responsibility to move the
data. We consider three cases to handle the data movement
among the host and GPUs:

Master thread 

... Task window: 

... 

... 

mbox: 

Ready 
tasks: 

Ready 
tasks: 

Ready 
tasks: 

Ready 
tasks: 

mbox: mbox: 

Host GPU GPU GPU 

core 
thread 

GPU 
thread 

Figure 7: The extended runtime system for hetero-
geneous multicore and multi-GPU architectures.

• Host → GPU: after a core computational thread fin-
ishes a task, it wants to send the newly modified data
to a GPU. The core thread then adds a message to the
GPU’s message box telling the GPU to get the data.

• GPU → Host: after a GPU computational thread fin-
ishes a task, the GPU thread adds a message to its
own message box and sends the modified data later.

• GPUs → GPUt: the runtime system generates two
messages for this case. First, GPUs adds a “GPUs →
Host” message to its own message box with a replay
flag to GPUt. When GPUs processes the message, it
copies the data to the host and then adds a “Host →
GPUt” message to GPUt’s message box telling GPUt

to get the data from the host.

Nearly all communications in the Cholesky and QR fac-
torizations are broadcast. During a GPU broadcast, our
runtime system copies data only once from the GPU to the
host. Note that it is necessary to copy the data to the host
for broadcast operations. The other GPUs will simply copy
the data from the host to themselves to minimize commu-
nication overhead. A GPU computational thread currently
takes charge of both computation and communication and
is implemented as follows. With the new CUDA 4.0 RC, it
is also possible to move process_msg to a dedicated thread
to decouple communication from computation.

/* lv stores the current thread’s info */
while ( !done ) {

/* calls cudaMemcpy to handle a message */
process_msg(lv->mbox);
if( ready = get_task(lv->readyQ) ) {

compute_task(ready);
/* adds new ready tasks and new messages */
fire_children(ready, lv);

}
}

4.2 Tile Size Tuning
Load imbalance could happen either between GPUs or be-

tween the host and GPUs. We use the 1-D block cyclic dis-
tribution method to achieve load balancing between GPUs.
Also we adjust the ratio of the CPU tile size to GPU tile
size to achieve load balancing between the host and GPUs.

We go through three steps to determine the best tile sizes:
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1. We apply the two-level partitioning method to a ma-
trix and suppose the top-level large tile size B is al-
ready given (later we mention how to find B).

2. We use the following formula to estimate the best par-
tition of size B × Bh to be cut off from each top-level
tile of size B ×B:

Bh =
Perfcore ·#Cores

Perfcore ·#Cores + Perfgpu ·#GPUs
·B

Perf denotes the maximum performance (in Gflops) of
a dominant computational kernel in an algorithm.

3. We start from the estimated size Bh and search for
an optimal B∗h near Bh. We wrote a script to execute
Cholesky or QR factorization with a random matrix
of size N = c0 · B · #GPUs. In the implementation,
we let c0 = 3 to reduce the searching time. The script
adapts the parameter of Bh to search for the minimal
difference between the host and the GPU computa-
tion time. If the host takes more time than a GPU,
the script will decrease Bh accordingly. This step is
inexpensive since the granularity of our fine tuning is
64 for double precision and 96 for single precision due
to the significant performance drop when a tile size is
not a multiple of 64 or 96 (Fig. 3). In our experiments,
it takes at most three attempts to find B∗h.

The top-level tile size B in Step 1 is critical for the GPU
performance. To find the best B, we search for the min-
imal matrix size that provides the maximum performance
for the dominant GPU kernel (i.e., GEMM for Cholesky and
SSRFB for QR). Our search ranges from 128 to 2048 and is
performed only once for every new kernel implementation
and new GPU architecture. For Fermi GPUs, B has to be
at least 960 for good performance.

Unlike Step 1, Steps 2 and 3 depend on the number of
cores and GPUs used in a computation. Note that there are
at most (#Cores · #GPUs) configurations on a given ma-
chine, and not every configuration is useful in practice (e.g.,
we often use all cores and all GPUs in scientific computing).
Later our experimental results show that the auto-tuning
method can attain a load imbalance ratio of less than 5% in
most cases.

Lemma 1 also justifies our observation that the number of
top-level tiles is not related to the load balancing between
the host and GPUs for the rectangular tile QR factorization.

Lemma 1. Assume a matrix is divided into rectangular
tiles by the two-level partitioning method. Given the perfor-
mance of the host and GPUs, the partitioning of a large tile
into two parts (one for the host and one for GPUs) to attain
load balancing is not related to the number of large tiles for
rectangular tile QR factorization.

Proof. Suppose there are P GPUs. We let t
(host)
panel and

t
(host)
up denote the time for the host to compute a panel fac-

torization and a trailing matrix update for a single tile. Simi-

larly, t
(gpu)
panel and t

(gpu)
up denote the time on a GPU. We assume

the kernel computation time does not change much during
an execution. So given a matrix partitioned into p× p large
tiles at the top level and assuming p is a multiple of P , the
execution time of the host:

Thost =

p∑
i=1

(i× t
(host)
panel + 2i2 × t(host)up ).

Table 1: Experiment Environment

Host Attached GPUs
Processor type Intel Xeon X5660 Nvidia Fermi M2070
Clock rate 2.8 GHz 1.15 GHz
Processors per node 2 3
Cores per processor 6 14 SMs
Memory 24 GB 6 GB per GPU
Theo. peak (double) 11.2 Gflops/core 515 Gflops/GPU
Theo. peak (single) 22.4 Gflops/core 1.03 Tflops/GPU
Max gemm (double) 10.7 Gflops/core 302 Gflops/GPU
Max gemm (single) 21.4 Gflops/core 635 Gflops/GPU
Max ssrfb (double) 10.0 Gflops/core 223 Gflops/GPU
Max ssrfb (single) 19.8 Gflops/cores 466 Gflops/GPU
BLAS/LAPACK lib Intel MKL 10.3 CUBLAS 3.2, MAGMA
Compilers Intel compilers 11.1 CUDA toolkit 3.2
OS CentOS 5.5 Kernel module 260.19.14
System interface – PCIe x 16 Gen2

And the execution time of each GPU:

Tgpu =

p∑
i=1

(i× t
(gpu)
panel + 2

i2

P
× t(host)up ).

It is easy to see that Thost=Tgpu is not related to the number
of large tiles p. Similarly we can reach the same conclusion
for the rectangular tile Cholesky factorization.

5. PERFORMANCE EVALUATION
We have implemented the rectangular tile Cholesky and

QR factorizations in double and single precisions. In this
section, we present their performance data in weak scala-
bility and strong scalability, respectively. We then measure
their load imbalance for three different configurations. We
also analyze the efficiency of the runtime system. For ev-
ery experiment, we have verified that its numerical result is
correct.

We conducted experiments on a single node of the het-
erogeneous Keeneland system at the Oak Ridge National
Laboratory. The system has 120 nodes and each node has
two Intel Xeon X5660 (Westmere) hexa-core processors and
three Nvidia Fermi M2070 GPUs. Table 1 lists the hard-
ware and software resources used in our experiments. The
table also lists the maximum performance of gemm and ssrfb

used by Cholesky factorization and QR factorization, respec-
tively. The kernel performance serves as an upper bound for
the whole program’s performance.

5.1 Weak Scalability
We use weak scalability to evaluate the capability of a

program to solve potentially larger problems when more
computing resources are added. In the weak scalability ex-
periment, we increase the input size accordingly when we
increase the number of cores and GPUs.

Figure 8 shows the performance of Cholesky and QR fac-
torizations in double precision and single precision, respec-
tively. The x-axis shows the number of cores and GPUs
used in the experiment. The y-axis shows Gflops-per-core
or Glfops-per-GPU on a logarithmic scale. In each subfigure
there are five curves: two “theoretical peak”s to denote
the theoretical peak performance from a single core or from a
single GPU, one “max GPU-kernel” to denote the maximum
GPU kernel performance used by Cholesky or QR factoriza-
tion which is the upper bound of the whole program, “our
perf per core” to denote the performance of our program
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(a) Cholesky in double precision
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(b) QR in double precision
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(c) Choleksy in single precision
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(d) QR in single precision

Figure 8: Weak scalability. The input size increases too while adding more core and GPUs. The y-axis is presented on a

logarithmic scale. OverallPerformance = (Perfper core * #cores) + (Perfper gpu * #gpus). Note that ideally the performance per core

or per GPU should be a flat line.

0.1 

1 

10 

100 

1000 

Ti
m

e 
(S

ec
on

ds
) 

N=23,040 
N=17,280 
N=11,520 
N=  5,760 

2 cores 1 core 4 6 8 10 12 3 cores 

(a) Cholesky in double precision
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(b) QR in double precision
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(c) Cholesky in single precision
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(d) QR in single precision

Figure 9: Strong scalability. The last three ticks on the x-axis (after 12 cores) are: 11 cores + 1 GPU, 10 cores

+ 2 GPUs, and 9 cores + 3 GPUs. The input size is fixed while adding more cores and GPUs. Both x-axis and y-axis are presented

on a logarithmic scale. Note that ideally a strong scalability curve should be a straight line in a log-log graph.
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on each CPU core, and “our perf per GPU” to denote our
program performance on each GPU.

In the experiments, we first increase the number of cores
from 1 to 9. Then we add 1, 2, and 3 GPUs to the 9
cores. The input sizes for the double precision experiments
(i.e., (a), (b)) are: 1000, 2000, . . . , 9000, followed by 20000,
25000, and 34000. The input sizes for single precision (i.e.,
(c), (d)) are the same except for the last three sizes that
are 30000, 38000, and 46000. From Fig. 8, we can see that
Cholesky and QR factorizations are scalable on both CPU
cores and GPUs. Note that ideally the performance per core
or per GPU is a flat line.

The overall performance of Cholesky factorization or QR
factorization can be derived by summing up (perf-per-core
× NumberCores) and (perf-per-gpu × NumberGPUs). For
instance, the double precision Cholesky factorization using
9 cores and 3 GPUs attains an overall performance of 742
Gflops, which is 74% of the upper bound and 45% of the the-
oretical peak. Similarly, the single precision Cholesky fac-
torization has an overall performance of 1.44 Tflops, which
is 69% of the upper bound and 44% of the theoretical peak.
Moreover, the overall performance of QR factorization is
79% of the upper bound in double precision, and 73% of the
upper bound in single precision.

5.2 Strong Scalability
We use strong scalability to evaluate how much faster a

program can solve a given problem if a user is provided with
more computing resources. In the experiment, we measure
the execution time to solve a number of matrices with differ-
ent sizes. For each fixed-size matrix, we keep adding more
computing resources to solve it.

Figure 9 shows the wall clock execution time of Cholesky
and QR factorizations in double precision and single preci-
sion, respectively. Each graph has several curves, each of
which represents a matrix of size N . The x-axis shows the
number of cores and GPUs on a logarithmic scale. That is,
we solve a matrix of size N using 1, 2, . . . , 12 cores, followed
by 11 cores + 1 GPU, 10 cores + 2 GPUs, and 9 cores +
3 GPUs. The y-axis shows execution time in seconds also
on a logarithmic scale. Note that an ideal strong scalability
curve should be a straight line in a log-log graph.

In Fig. 9 (a), we reduce the execution time of Cholesky
factorization in double precision from 393 seconds to 6 sec-
onds for N=23,040, and from 6.4 to 0.2 seconds for N=5,760.
In (b), we reduce the execution time of QR factorization in
double precision from 1790 to 33 seconds for N=23,040, and
from 29 seconds to 1 second for N=5,760. Similarly, (c) and
(d) display the performance in single precision. In (c), we re-
duce the execution time of Cholesky factorization from 387
to 7 seconds for N=28,800, and from 3.2 to 0.2 seconds for
N=5,760. In (d), we reduce the execution time of QR fac-
torization from 1857 to 30 seconds for N=28,800, and from
16 to 0.7 seconds for N=5,760.

5.3 Load Imbalance
Section 4.2 described how we determined the best tile sizes

to achieve load balancing. In this section, we use the metric
imbalance_ratio to evaluate the quality of our load balanc-
ing, where imbalance ratio = MaxLoad

AvgLoad
as proposed in [22].

Here we use computational time to represent the load on a
host or GPU. In our implementation, we put timers above
and below every computational kernel and sum them up to

measure the computational time.
Our experiment uses three different configurations: 3 cores

+ 1 GPU, 6 cores + 2 GPUs, and 9 cores + 3 GPUs. Given
an algorithm (either Cholesky or QR factorization), we first
determine the top-level tile size, B, for the algorithm; then
we determine the partitioning size, Bh, for each configura-
tion using the auto-tuning method. We apply the tuned
tile sizes to various matrices. For simplicity, we let the ma-
trix size be a multiple of B and suppose the number of tile
columns is divisible by the number of GPUs. If it is not di-
visible by the number of GPUs, we divide its remainder (∈[1,
NumberGPUs-1]) among all GPUs using a smaller chunk.

Figure 11 shows the imbalance ratio for three configu-
rations each with double and single precisions. An imbal-
ance ratio of 1.0 indicates a perfect load balancing. We can
see that most of the imbalance ratios are less than 5%. A
few of the first columns have an imbalance ratio of up to
17%. This is because their corresponding matrices have too
few top-level tiles. For instance, the first column of the
9Cores+3GPUs configuration has a matrix of three top-level
tiles (Fig. 11 (c), (f)). We could increase the number of tiles
to alleviate this problem by reducing the top-level tile size.

5.4 Runtime System Efficiency
This section investigates whether our runtime system can

schedule tasks efficiently and how much better we can im-
prove our program performance. Here we show the execu-
tion time breakdown for the double precision Cholesky and
QR factorizations to see where their time goes. The single
precision results are the same and not shown here.

Figure 10 shows the execution time breakdown of the
Cholesky and QR factorization experiments that use 9 cores
and 3 GPUs. The time breakdown data is actually collected
from the 9cores+3GPUs experiment in the weak scalability
experiments shown in Fig. 8. The corresponding load im-
balance ratio for the two experiments are 3% and 0.1%, re-
spectively. Note that we show the time breakdown for one
of the GPUs because of their balanced load.

POTRF 
0% 

TRSM 
14% 

GEMM 
73% 

SYRK 
7% 

Communica
tion 
5% 

Idle 
1% 

(a) Cholesky factorization

GEQRT 
1% 

TSQRT 
14% 

LARFB 
3% 

SSRFB 
77% 

Communicati
on 
3% 

Idle 
2% 

(b) QR factorization

Figure 10: Execution time break down on a GPU for
double precision Cholesky and QR factorizations.

As shown in Fig. 10 (a), the double precision Cholesky
factorization spends 73% of its time on kernel GEMM, 14% on
TRSM, 7% on kernel SYRK, and 5% on communication. There
is only 1% of idle time. In (b), all the QR computational
kernels take 95% of the total execution time, the communica-
tion time takes 3%, and the idle time is 2%. From the anal-
ysis, we can see that our runtime system works efficiently
and the communication time occupies a small percentage
of time. To further improve the performance, we will need
a better implementation of TRSM and TSQRT kernels for
GPUs. In addition, the maximum performance of SSRFB
for GPUs is only 74% of the maximum GEMM performance
and it needs to be improved too.
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(a) 4Cores+1GPU (double)
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(b) 6Cores+2GPUs (double)
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(c) 9Cores+3GPUs (double)
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(d) 4Cores+1GPU (single)

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

1.40 

1.60 

1.80 

2.00 

76
80

 

11
52

0 

15
36

0 

19
20

0 

23
04

0 

26
88

0 

30
72

0 

34
56

0 

38
40

0 

42
24

0 

Im
bl

an
ce

 r
at

io
 

Matrix size 

Cholesky (SP) 
QR (SP) 

(e) 6Cores+2GPUs (single)
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(f) 9Cores+3GPUs (single)

Figure 11: Load imbalance. The metric imbalance ratio = MaxLoad
AvgLoad

. The closer the ratio is to 1.0 the better.

6. RELATED WORK
There are a few linear algebra libraries developed for GPU

devices. CUBLAS has implemented the standard BLAS
(Basic Linear Algebra Subroutines) library on GPUs [25].
MAGMA and CULA have also implemented a subset of the
standard LAPACK library on GPUs [27, 19]. But currently
they do not support computations using multiple cores and
multiple GPUs.

Demmel et al. have developed the communication-avoiding
QR factorization entirely on a single GPU to minimize com-
munication for tall and skinny matrices [5]. By contrast,
other GPU implementations (including ours) send panel fac-
torizations back to the host CPUs to compute. Fogue et al.
presented a strategy to port the existing PLAPACK library
to GPU-accelerated clusters [17]. They require that GPUs
compute most of the compute-intensive work and store all
data in GPU memories to reduce communication.

StarSs is a programming model using directives to anno-
tate a sequential source code to execute on various architec-
tures such as SMP, CUDA, and Cell [7]. A programmer is
responsible for specifying which piece of code should be exe-
cuted on a GPU. Then its runtime can execute the annotated
code in parallel on the host and GPUs. It uses a software
cache mechanism to reduce data transfer time. Charm++
is an object-oriented parallel language that uses a dynamic
load balancing runtime system to map objects to proces-
sors dynamically [21]. StarPU also develops a dynamic load
balancing framework to execute a sequential code on the
host and GPUs in parallel and has been applied to the QR
factorization [1]. Differently, we use a simple static data dis-
tribution to minimize communication and attain high per-
formance simultaneously for matrix computations.

There are many researches that have studied how to ap-
ply static data distribution strategies to heterogeneous dis-
tributed memory systems. Boulet et al. designed an algo-
rithm to map a set of uniform tiles to a 1-D collection of
heterogeneous processors [11]. Beaumont et al. proposed a
heuristic 2-D block data allocation to extend ScaLAPACK
to work on heterogeneous clusters [9]. Lastovetsky et al.
developed a static data distribution strategy that takes into
account both processor heterogeneity and memory hetero-
geneity for dense matrix factorizations [23].

7. CONCLUSION AND FUTURE WORK
The heterogeneous multicore and multi-GPU architectures

have imposed a challenging task to develop new parallel soft-
ware owning to a variety of reasons. These reasons include
processor heterogeneity, memory heterogeneity, many cores,
distributed memory spaces, and an increasing gap between
computational performance and communication bandwidth.
In order to provide efficient support for matrix computa-
tions, we are focused on four objectives: fine-granularity
(for a high degree of parallelism), minimized synchroniza-
tion, minimized communication, and load balancing.

In this paper, we design rectangular tile algorithms with
hybrid tiles to provide high degree of parallelism and cope
with processor heterogeneity. We treat the multicore and
multi-GPU system as a distributed-memory machine and
deploy a heterogeneous 1-D column block cyclic data dis-
tribution to minimize communication. We also introduce
an auto-tuning method to determine the best tile sizes that
not only attain high performance, but also achieve load bal-
ancing. Furthermore, we have implemented a new runtime
system for the heterogeneous multicore and multi-GPU ar-
chitectures. Although we have applied our approach to
the domain of matrix computations, the same methodology
and principles can be applied to other scientific applications
on multicore and multi-GPU architectures (e.g., heteroge-
neous algorithms with hybrid tasks, two-level partitioning,
a distributed-memory perspective on GPUs, adapting effi-
cient algorithms on clusters, auto-tuning, and so on).

In our approach, the largest matrix size is constrained
by the memory capacity of each GPU since we use a static
block cyclic distribution method. An approach to solving
this issue is to use an “out-of-core” algorithm such as the
left looking algorithm, to compute a matrix panel by panel
[15]. Other future work includes applying the rectangular
tile algorithms to distributed memory clusters with hetero-
geneous multicore and multi-GPU nodes by distributing the
top-level tiles to nodes in a 2-D block cyclic way.

Acknowledgment
We are very grateful to Bonnie Brown for all her assistance
with this paper.

10



8. REFERENCES
[1] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge,

H. Ltaief, S. Thibault, and S. Tomov. QR
factorization on a multicore node enhanced with
multiple GPU accelerators. In Proceedings of IEEE
International Parallel and Distributed Processing
Symposium (IPDPS 2011), Alaska, USA, 2011.

[2] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak,
J. Langou, J. Langou, H. Ltaief, P. Luszczek, and
A. YarKhan. PLASMA Users’ Guide. Technical
report, ICL, UTK, 2010.

[3] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarrra.
Comparative study of one-sided factorizations with
multiple software packages on multi-core hardware. In
Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09,
pages 20:1–20:12, New York, NY, USA, 2009. ACM.

[4] E. Anderson, Z. Bai, C. Bischof, L. Blackford,
J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. SIAM, 1992.

[5] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer.
Communication-avoiding QR decomposition for
GPUs. Technical Report UCB/EECS-2010-131, EECS
Department, University of California, Berkeley,
October 2010.

[6] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The landscape of parallel computing research: A view
from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, December 2006.
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