
Algorithm-based Fault Tolerance for Dense Matrix
Factorizations

Peng Du
Innovative Computing Lab

UT, Knoxville
du@eecs.utk.edu

Aurelien Bouteiller
Innovative Computing Lab

UT, Knoxville
bouteill@eecs.utk.edu

George Bosilca
Innovative Computing Lab

UT, Knoxville
bosilca@eecs.utk.edu

Thomas Herault
Innovative Computing Lab

UT, Knoxville
herault@eecs.utk.edu

Jack Dongarra
Innovative Computing Lab

UT, Knoxville
dongarra@eecs.utk.edu

ABSTRACT
Dense matrix factorizations like LU, Cholesky and QR are
widely used for scientific applications that require solving
systems of linear equations, eigenvalues and linear least squa-
res problems. Such computations are normally carried out
on supercomputers where the ever-growing scale induces a
fast decrease of the Mean Time To Failure (MTTF). This pa-
per proposes a new algorithm-based fault tolerant (ABFT)
approach, designed to survive fail-stop failures during dense
matrix factorizations in extreme conditions such as the ab-
sence of any reliable components, and the possibility of loos-
ing both data and checksum from a single failure. Both left
and right factorization results are protected by ABFT algo-
rithms, and fault-tolerant algorithms derived from this solu-
tion can be directly applied to a wide range of dense matrix
factorizations, with minor modifications. Theoretical anal-
ysis shows that the overhead is sharply decreasing with the
number of computing units and the problem size. We im-
plemented the ABFT versions of LU based on ScaLAPACK
as a demonstration. Experimental results on the Kraken
supercomputer validate the theoretical evaluation.

Categories and Subject Descriptors
System Software [Software approaches for fault toler-
ance and resilience]: Software for high-performance com-
puting

General Terms
Fault-tolerance

Keywords
ABFT, Fault-tolerance, ScaLAPACK

1. INTRODUCTION

As today’s high performance computers paced into peta-
flops through the increase of system scale, the number of
system component such as CPU cores, memory, networking,
and storage grows enormously. One of the most powerful
Petaflop scale machines, Kraken [2], from National Institute
for Computational Sciences and University of Tennessee,
harnessed as many as 98,928 cores to reach its peak per-
formance of 1.02 Petaflops to rank No.7 on the November
2010 Top500 list. With the increase of system scale and chip
density, the reliability and availability of such systems has
not been improved at the same rate. Many types of failures
can hit a distributed computing system [17], but the focus
of this paper is on the most common occurrence: fail-stop
model. In this type of failure, a process completely stops
responding, which triggers the loss of a critical part of the
computational global state. To be more realistic, we assume
failure could occur at any time and can affect both check-
sum and matrix data. The mean-time-to-failure (MTTF)
has been measured to drop as low as under 2 hours [16] on
some large scale platforms. It has been shown that, at a cer-
tain critical point, adding computing units actually increases
applications completion time, as a larger node count implies
a higher probability of reliability issues. This directly trans-
lates into a lower efficiency of the machine, which equates
to a lower scientific throughput [27]. It is estimated that
the MTTF of High Performance Computing (HPC) systems
might drop to about one hour in the near future [7]. Without
a drastic change at the algorithmic level, such a failure rate
will certainly prevent capability applications to progress.

Exploring techniques for creating a software system and pro-
gramming environment capable of delivering computation
at extreme scale that is both resilient to faults and efficient,
will eliminate a major obstacle to high research productiv-
ity on tomorrow’s HPC platforms. In this work we advocate
that in extreme scale environments, successful approaches to
fault tolerance (e.g. those which exhibit acceptable recov-
ery times and memory requirements) must go beyond tra-
ditional systems-oriented techniques and leverage intimate
knowledge of dominant application algorithms in order to
create middleware that is far more adapted and responsive
to the application’s performance and error characteristics.

We introduce a generic algorithmic based fault tolerant (ABFT)
scheme that can apply on several widespread dense linear

factorizations. One of these factorizations, namely LU with
partial pivoting, is significantly more challenging due to the
pivoting . We theoretically prove that this scheme success-
fully applies to the three well known factorizations, Cholesky,
LU and QR, and implement and evaluate an application of
this generic ABFT scheme to the LU factorization. A signif-
icant contribution of this work is to maintain the left matrix
of the factorization result (referred to as “the left factor” in
the rest of the text), which was hitherto never achieved.

The rest of the paper is organized as follows: Section 2
presents prior work in the domain; Section 3 develops the
general framework of ABFT for matrix factorizations; Sec-
tion 4 presents the algorithms for checksum generation and
recovery; Section 5 discusses the protection of the left factor;
Section 6 proves that all data is protected by the checksum
at any moment during the factorizations; Section 7 presents
the experimental evaluation of our scheme; and Section 8
concludes the work.

2. RELATED WORK
The most well-known fault-tolerance technique for parallel
applications is checkpoint-restart (C/R), which encompasses
two categories, the system and application level. At the
system level, message passing middleware deals with faults
automatically, without intervention from the application de-
veloper or user ([5, 6]). At the application level, the appli-
cation state is dumped to a reliable storage when the ap-
plication code mandates it. Even though C/R bears the
disadvantage of high overhead while writing data to stable
storage, it is still widely used nowadays by high end systems
[1]. To reduce the overhead of C/R, diskless checkpointing
[26, 24] has been introduced to store checksum in memory
rather than stable storage. While diskless checkpointing has
shown promising performance in some applications (for in-
stance, FFT in [14]), it exhibits large overheads for applica-
tions modifying substantial memory regions between check-
points [26], as is the case with dense linear factorizations.

Algorithm-based fault tolerance (ABFT) was first introduced
to deal with silent error in systolic arrays [20]. Unlike other
methods that treat the checksum and data separately, ABFT
only encodes data once before computation. Matrix algo-
rithms are designed to work on the encoded checksum along
with matrix data, and the correctness is checked after the
matrix operation completes. The overhead of ABFT is usu-
ally low, since no periodical global checkpoint or rollback-
recovery is involved during computation and the computa-
tion complexity of the checksum operations scales linearly
with the related matrix operation. ABFT and diskless check-
pointing have been combined to apply to basic matrix opera-
tions like matrix-matrix multiplication [8, 10, 4, 9] and have
been implemented on algorithms similar to those of ScaLA-
PACK [3], which is widely used for dense matrix operations
on parallel distributed memory systems.

Recently, ABFT has been applied to the High Performance
Linpack (HPL) [12] and to the Cholesky factorization [19].
Both Cholesky and HPL have the same factorization struc-
ture, where only half of the factorization result is required,
and the update to the trailing matrix is based on the fact
that the left factor result is a triangular matrix. This ap-
proach however does not necessarily apply to other factor-

izations, like QR where the left factor matrix is full, neither
when the application requires both left and right factoriza-
tion results. Also, LU with partial pivoting, when applied
to the lower triangular L, potentially changes the checksum
relation and renders basic checksum approaches useless.

The generic ABFT framework for matrix factorizations that
we introduce in this work can be applied to Cholesky and
HPL, but also to LU and QR. The right factor is protected
by an ABFT checksum, while we evaluate the commonly ac-
cepted vertical checkpointing scheme, and propose two ap-
proaches for the left factor protection. One is based on a
novel hybrid checkpointing scheme, that harnesses some in-
sights from the algorithm structure to reduce the overhead
on checkpointing. Another is a mathematical method to re-
build the left factor once the factorization completes, even if
it has been damaged by failures. We investigate the conse-
quences of failures hitting at critical phases of the algorithm
and demonstrate that recovery is possible without suffering
from error propagation and extensive synchronization.

3. ABFT FOR FAIL-STOP FAILURE IN MA-
TRIX FACTORIZATIONS

In order to use ABFT for matrix factorization, an initial
checksum is generated before the actual computation starts.
Throughout the text we use matrix G to represent the gener-
ator matrix, and A for the original input matrix. Checksum
for A is produced by

C = GA or C = AG (1)

When G is all-1 vector, checksum is simply the sum of all
data items in a certain row or column. Referred to as“check-
sum relationship”, Equation 1 is used after the computa-
tion for failure detection and recovery. This relationship
has been shown separately for Cholesky[19], and HPL[12],
which share the propriety of updating the trailing matrix
with lower triangular matrix. In [25], ZU is used to repre-
sent LU (optionally with pairwise pivoting) and QR factor-
izations where Z is the left matrix (lower triangular or full)
and U is an upper triangular matrix, and the factorization
is regarded as the process of applying a series of matrices
Zi to A from the left until ZiZi−1 · · ·Z0A becomes upper
triangular. This scheme can in fact be applied to LU with
partial pivoting, Cholesky and QR factorization:

Theorem 3.1. Checksum relationship established before
ZU factorization is maintained during and after factorization.

Proof. Suppose data matrix A ∈ R n×n is to be factored
as A = ZU , where Z and U ∈ R n×n and U is an upper tri-
angular matrix. A is checkpointed using generator matrix
G ∈ R n×nc, where nc is the width of checksum. To fac-
tor A into upper triangular form, a series of transformation
matrices Zi is applied to A (with partial pivoting in LU).

Case 1: No Pivoting

U = ZnZn−1 . . . Z1A (2)

Now the same operation is applied to Ac = [A, AG]

Uc = ZnZn−1 . . . Z1 [A, AG]

= [ZnZn−1 . . . Z1A, ZnZn−1 . . . Z1AG]

= [U, UG] (3)

For any k ≤ n, using Uk to represent the result of U at step
k,

Uk
c = ZkZk−1 . . . Z1 [A, AG]

= [ZkZk−1 . . . Z1A, ZkZk−1 . . . Z1AG]

=
[
Uk, UkG

]
(4)

Case 2: With partial pivoting:

Uk
c = ZkPkZk−1Pk−1 . . . Z1P1 [A, AG]

= [ZkPkZk−1Pk−1 . . . Z1P1A,

ZkPkZk−1Pk−1 . . . Z1P1AG]

=
[
Uk, UkG

]
(5)

Therefore the checksum relationship holds for LU with par-
tial pivoting, Cholesky and QR factorizations.

Theorem 3.1 shows the mathematical checksum relationship
in matrix factorizations. However in real-world HPC factor-
izations are performed in block algorithms, and execution
is carried out in a recursive way. Linear algebra packages,
like ScaLAPACK, consist of several function components for
each factorization. For instance, LU has a panel factoriza-
tion, a triangular solver and a matrix-matrix multiplication.
We need to show that the checksum relationship also holds
for block algorithms, both at the end of each iteration, and
after the factorization is completed.

Theorem 3.2. For ZU factorization in block algorithm,
checksum at the end of each iteration only covers data blocks
that have already been factored and are still being factored in
the trailing matrix.

Proof. Input Matrix A is split into nb× nb blocks (Aij ,
Zij , Uij), and the following stands:[

A11 A12 A13

A21 A22 A23

]
=

[
Z11 Z12

Z21 Z22

] [
U11 U12 U13

0 U22 U23

]
, (6)

where A13 = A11 + A12, and A23 = A21 + A22.

Since A13 = Z11U13 + Z12U23, and A23 = Z21U13 + Z22U23,
and using the relation

A11 = Z11U11

A12 = Z11U12 + Z12U22

A21 = Z21U11

A22 = Z21U12 + Z22U22

in Equation 6, we have the following system of equations:{
Z21(U11 + U12 − U13) = Z22(U23 − U22)
Z11(U11 + U12 − U13) = Z12(U23 − U22)

This can be written as:[
Z11 Z12

Z21 Z22

] [
U11 + U12 − U13

−(U23 − U22)

]
= 0

For LU, Cholesky and QR,

[
Z11 Z12

Z21 Z22

]
is always nonsingu-

lar, so

[
U11 + U12 − U13

U23 − U22

]
= 0, and

{
U11 + U12 = U13

U23 = U22
.

This shows that after ZU factorization, checksum blocks
cover the upper triangular matrix U only, even for the di-
agonal blocks. At the end of each iteration, for example the
first iteration in Equation 6, Z11, U11, Z21 and U12 are com-
pleted, and U13 is already U11 + U12. The trailing matrix
A22 is updated with

A22
′ = A22 − Z21U12 = Z22U22.

and A23 is updated to

A23
′ = A23 − Z21U13

= A21 + A22 − Z21(U11 + U12)

= Z21U11 + A22 − Z21U11 − Z21U12

= A22 − Z21U12 = Z22U22

Therefore, at the end of each iteration, data blocks that have
already been and are still being factored remain covered by
checksum blocks

4. CHECKSUM GENERATION AND PRO-
TECTION

Our algorithm works under the assumption that any process
can fail and therefore the data, including the checksum, can
be lost. Rather than forcing checksum and data on different
processes and assuming only one would be lost as in [12],
we put checksum and data together in the process grid and
design the checksum protection algorithm accordingly.

4.1 Two-Dimensional Block-cyclic Distribution
It has been well established that data layout plays an impor-
tant role in the performance of parallel matrix operations on
distributed memory systems [11, 22]. In 2D block-cyclic dis-
tributions, data is divided into equally sized blocks, and all
computing units are organized into a virtual two-dimension
grid P by Q. Each data block is distributed to comput-
ing units in round robin following the two dimensions of the
virtual grid. This layout helps with load balancing and re-
duces data communication frequency since in each step of
the algorithm as many computing units can be engaged in
computations and most of the time, each computing unit
only works on its local data. Figure 1 is an example of
P = 2, Q = 3 and a global matrix of 4× 4 blocks. The same
color represents the same process and numbering in Aij in-
dicates the location in the global matrix. Mapping between
local blocks and their global locations can be found in [13].

With 2D block-cyclic data distribution, failure of a single
process, usually a computing node which keeps several non-
contiguous blocks of the matrix, causes holes distributed
across the whole matrix. Figure 2 is an example of holes
(red blocks) caused by the failure of process (1,0) in a 2× 3
grid, and these holes are distributed into both checksum and
matrix data.

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

0

1

0

1

10 2 0

A11 A14

A31 A34

A12

A32

A13

A33

A21 A24

A41 A44

A22

A42

A23

A43

0

0 1

1

2

Global View Local View

Figure 1: Example of 2D block-cyclic data distribu-
tion

10 2 0

0

1

0

1

21 0 1

0

1

0

1

Figure 2: Holes in global matrix caused by failure

4.2 Checksum Generation
Theoretically, the sum-based checksum Ck of a series of N
blocks Ai, 1 ≤ i ≤ N , where N is the total number of blocks
in one row/column of the matrix, is computed by:

Ck =

N∑
k=1

Ak (7)

ScaLAPACK works with 2D block-cyclic distributed data,
and a failure punches multiple holes in global matrix. With
more than one hole per row/column, Ck in Equation 7 is not
sufficient to recover all holes. A slightly more sophisticated
checkpointing scheme is necessary.

Theorem 4.1. Using sum-based checkpointing, for N data
items distributed in block-cyclic onto Q processes, the size of
the checksum to recover from the loss of one process is dN

Q
e

Proof. With 2D block-cyclic, each process gets dN
Q
e items.

At the failure of one process, all data items in the group held
by the process are lost. Take data item ai, 1 ≤ i ≤ dN

Q
e,

from group k, 1 ≤ k ≤ Q. To be able to recover ai, any
data item in group k cannot be used, so at least one item
from another group is required to create the checksum, and
this generates one additional checksum item. Therefore for
all items in group k, dN

Q
e checksum items are generated so

that any item in group k can be recovered.

Applying this theorem, we have the following checkpointing
algorithm: Suppose Q processes are in a process column or

row, and let each process have K blocks of data of size nb×
nb. Without loss of generality, let K be the largest number of
blocks owned by any of the Q processes. From Theorem 4.1,
the size of the checksum in this row is K blocks.

Let Ci be the ith checksum item, and Aj
i , be the ith data

item on process j, 1 ≤ i ≤ dN
Q
e, 1 ≤ j ≤ Q:

Ck =

Q∑
k=1

Ak
k (8)

Under Equation 8, we have the following corollary:

Corollary 4.2. The ith block of checksum is calculated
using the ith block of data of each process having at least i
blocks.

4.3 Protection for Checksum
Since ABFT checksum is considered as fragile as matrix
data, from Theorem 4.1 and using the same N and Q, the
total number of checksum blocks is K = dN

Q
e. These check-

sum blocks are appended to the bottom or to the right of the
global data matrix accordingly, and since checksum is stored
on computing processes, these K checksum blocks are dis-
tributed over min (K,Q) processes. If failure strikes any of
these processes, part or all of checksum is lost. We pro-
pose two algorithms to protect the checksum, one compute
intensive the other memory consuming.

4.3.1 Duplication based checksum recovery
In this algorithm, for both column- and row-wise checksums,
the checksum is duplicated after creation. This duplication
is treated in the same way as the original checksum under
the condition that no checksum block and its duplicate maps
to the same process.

Therefore the valid condition of the duplication based check-
sum recovery is that the checksum width K is not a multi-
ple of process number in this column/row. If this condition
is not respected, a simple solution consists of inserting an
extra block row/column between the checksum blocks and
their duplicate blocks. This extra block row/column shifts
the mapping and ensures the condition.

Figure 3 is an example of 5×5 blocks matrix (on the top-left)
with 2 × 3 process grid. Red blocks represent holes caused
by the failure of process (1, 0). Green blocks on the right
are row-wise checksum of width of 2 blocks with duplicates,
and green blocks on the bottom are column-wise checksum
of height of 2 blocks with shift column between duplicates.

Note that shift columns or rows are just padding, and they
are not recovered. Gray blocks on the bottom-right is not
marked since this part is not used at all. It is easy to verify
that all holes in the checksum can be recovered from their
duplicates. For instance, red blocks in the 6th row are re-
covered by the corresponding (same column) green blocks in
row 9.

4.3.2 Multi-level checkpointing based
checksum recovery

10 2 0

0

1

0

2 0 1 2

1

1

0

1

0

1

0

1

Figure 3: Checksum duplication for recovery

Another way of protecting checksum is from the observa-
tion that except for the mathematical meaning of check-
sum, there is no difference between checksum blocks and
data blocks in the sense of storage. This means checksum
blocks can be viewed as extra portion of data that needs
to be covered, and therefore extra checksum can be gener-
ated for checksum blocks. These two levels of checksum are
named tier 1 for checksum from matrix data and tier 2 for
checksum from checksum.

Using the variables in section 4.3.1, let K be the number
of tier 1 checksum column/row. Since ABFT factorization
algorithm is more suitable for large number of processes for
minimum checkpointing overhead impact, assume Q is large
enough that each tier 1 checksum row/column maps to a
different process. Tier 2 checksum is calculated as:

C′′ =

K∑
i=1

Ci
′ (9)

where the number of ′ (apostrophe) means tier level. At the
time of losing any C′i, it can be recovered by C′′ and all C′s
that survive. To prevent C′′ from being lost, duplication
can be used to map C′′ to a different node.

Compared to the checksum recovery method in Section 4.3.1,
this method has the advantage of using less storage and less
FLOPs from factorization for checksum protection. The ex-
tra computations that are required for generating the higher
tier checksums could be overcome by the saving in factor-
ization FLOPs on checksum. On the other hand, the stor-
age savings might also become an asset when dealing with
multiple-process failures.

5. PROTECTION OF THE LEFT FACTOR
MATRIX

For the rest of this paper, we use the term “checksum” to
refer to the ABFT checksum generated before factorization
and put on the right of matrix, and “checkpointing” for the
operation that protects the left matrix Z in ZU factoriza-
tion. It was proven in Theorem 3.2 that checksum only
covers the part of the matrix that has been and still is being
factored, as shown in Figure 4 where the green checksum on
the right of the matrix protects the green part of the matrix.
For applications like iterative refinement and QR algorithm

for eigenvalue problem, the whole factorization result (both
Z and U) is needed, and therefore requires protection for
the entire matrix. In LU, partial pivoting prevents the verti-
cal checksum from being protected through ABFT, because
data in the checksum should not be considered for pivoting.
QR on the other hand, has no pivoting but still cannot use
ABFT to cover Q as we prove below.

Theorem 5.1. Q in Householder QR factorization can-
not be protected by performing factorization along with the
vertical checksum.

Proof. Append a m×n nonsingular matrix A with check-
sum GA of size c×n along the column direction to get matrix

Ac =

[
A
GA

]
. G is c×m generator matrix. Suppose A has a

QR factorization Q0R0.

Perform QR factorization to Ac:[
A
GA

]
= QcRc =

[
Qc11 Qc12

Qc21 Qc22

] [
Rc11

∅

]
Qc11 is m ×m and Qc21 is c ×m. Rc is m × n and ∅ rep-
resents c× n zero matrix. Rc 6= 0 and is full rank. Because
Rc is upper triangular with nonzero diagonal elements and
therefore nonsingular.

QcQ
T
c =

[
Qc11 Qc12

Qc21 Qc22

] [
QT

c11 QT
c21

QT
c12 QT

c22

]
= I

Therefore

Qc11Q
T
c11 + Qc12Q

T
c12 = I. (10)

Since A = Qc11Rc11 and Rc11 is nonsingular, then Qc11 6= 0
and nonsingular.

Assume Qc12 = 0:

Qc11Q
T
c21 +Qc12Q

T
c22 = 0, therefore Qc11Q

T
c21 = 0. We have

shown that Qc11 is nonsingular, so QT
c21 = 0 and this con-

flicts with GA = Qc21Rc11 6= 0, so the assumption Qc12 = 0
does not hold. From Equation 10, Qc11Q

T
c11 6= I. This

means even though A = Qc11Rc11, Qc11Rc11 is not a QR
factorization of A.

Given that the ZU factorization cannot protect Z by ap-
plying ABFT in the same way as for U , separate efforts are
needed. In ScaLAPACK where block algorithms are used for
performance reasons, once a panel of Z in a ZU factoriza-
tion is generated, it is stored into the lower triangular region
of the original matrix and does not change until the end of
the factorization. For example, in LU , vectors of L except
the diagonal ones are stored, and in QR, vectors v that are
used to generate the elementary reflectors are stored. These
lower triangular parts are subject to no further change ex-
cept partial pivoting in LU, and therefore only a unique
vertical checkpointing is necessary to maintain each panel’s
safety, as discussed in [12]. We’ll show that this idea, while
mathematically trivial and being no different from diskless
checkpointing with a frequency of once-per-panel factoriza-
tion, suffers from a scalability issue . Then we will propose

an alternative ABFT algorithm to protect Z. LU factor-
ization with partial pivoting is used for discussion but the
result can be extended to QR.

Beside the two checkpointing based methods, we devise an
ABFT recovery algorithm for L in LU factorization, which
has no checkpointing involved.

5.1 ABFT for the Lower Triangular Matrix L
For a certain class of scientific applications in which the orig-
inal data matrix after factorization is accessible with lower
complexity, we devised an ABFT recovery algorithm for the
lower triangular matrix. LU factorization is written as:[

A1

A2

]
= PLU = P

[
L11 0
L21 L22

]
U

Due to hardware failure, data in L is lost when the failed
process is recovered with holes in matrix. Pivoting matrix
P moves rows in L that own lost data but can be tracked
trivially by applying P onto a column vector of zeros except
rows that contain lost data. Without loss of generality, sup-
pose L11 has all the holes in L, and the corresponding rows
of A are in A1

′. Both checksum and U can be recovered as
stated previously, and since A1

′ =
[
L1 0

]
U , L11 can be

recovered by solving Y in A1
′Y = U using triangular solver.

The overhead of this algorithm includes: a) Assembly of
the triangular system of equations; b) Solving the system of
equations; c) Restoring L1 in result matrix.

Let A be of size M ×M on a P ×Q grid, and the size of L1

and A1
′ is dM

P
e ×M . In strong scaling dM

P
e decreases as P

increases while in weak scaling dM
P
e is a constant. Also Q

processes can work in parallel and therefore the overhead of
assembling the triangular system of equations for recovery
and restoring is O(M

Q
) communications.

The triangular solving step requires accessing a dM
P
e ×M

part of matrix A, therefore this algorithm only applies to
those applications whose complexity of “filling in” the origi-
nal matrix is lower than the complexity of solving the linear
system of equations using LU factorization [21, 23], hence,
do not require storing the matrix in full form through disk
I/O. In fact, only 1

P
of the original data matrix is required.

The computational overhead of triangular linear system solv-
ing is O(dM

P
eM2). Similarly, in both weak and strong scal-

ing, this overhead approaches O(M2) as P increases and
remains lower than the O(M3) computational overhead of
LU factorization and the O(M3) communication overhead
of checkpointing for L.

Many applications spend more time doing factorization than
generating the original data matrix, for those that cannot
guarantee this requirement, a variation of the algorithm can
be adopted: Using the same generator matrix G and factor-
ization PA = LU

GA = GP−1LU

= Y U

Y can be solved similarly and this only requires an initial

Figure 4: Checkpointing factorization

checksum of A at the beginning. Then similar recovery pro-
cess can be applied with some extra book-keeping scheme
about pivoting when restoring L.

This method does not apply to QR since in ScaLAPACK,
elementary reflectors, rather than Q itself, are stored in the
lower triangular matrix, and re-constructing elementary re-
flectors from the recovered Q using the method proposed
in this section requires higher complexity[18] than QR. For
QR, other checkpointing methods are recommended.

5.2 Static vertical checkpointing for Z
In LU, for matrix A,

A =

(
A11 A12

A21 A22

)
=

(
L11 0
L21 L22

)(
U11 U12

0 U22

)
=

(
L11U11 L11U12

L21U11 L21U12 + L22U22

)
(11)

Panel factorization is:

(
A11

A21

)
=

(
L11U11

L21U11

)
=

(
L11

L21

)
U11 (12)

In each step a panel of width nb is factored. To protect
L11 and L21, a separate checksum is put on the bottom of
the matrix (referred to as “bottom checkpoint”), as shown
in the yellow bottom rectangle of Figure 4. Once a panel is
factored, it is not changed until the end of the computation
with the exception of pivoting. When the generator matrix
for checksum, G, is an all-one vector, checksum is not af-
fected by row-exchanging pivoting. However this does not
apply to 2D block cyclic distribution.

Figure 5 is a diagram of the components of LU factorization.
The 2nd step (pivoting to the left) swaps two rows to the
left of the current panel. Suppose rows i1 and i2 resides on
blocks ki1 and kj1 of two processes. It is not unusual that
ki1 6= kj1 . By Corollary 4.2, block ki1 and kj1 contribute
to column-wise checksum block ki1 and kj1 respectively in
the column that local blocks ki1 and kj1 belong to. This

Panel
Factorizatoin

Triangular
Solver

Trailing
Update

Pivoting to
the Left

Pivoting to
the Right

Figure 5: LU factorization diagram; Green: Just fin-
ished; Red & Orange: being processed; Gray: Fin-
ished in previous steps

relationship is expressed as

row i1 7→ checksum block ki1

row j1 7→ checksum block kj1

7→ reads ’contributes to’. After the swapping, the relation-
ship should be updated to

row i1 7→ checksum block kj1

row j1 7→ checksum block ki1

This requires a re-generation of checksum blocks ki1 and kj1
in order to maintain the checkpoint validity. Since pivoting
to the left is carried out in every step of LU, this causes
significant checksum maintenance overhead. To remedy this
problem, pivoting to the left is accumulated and delayed to
the very end of the LU factorization. Because the factored L
is stored in the lower triangular part of the matrix without
further usage, LU factorization with delayed left-pivoting
still produces the correct result, as long as delayed pivoting
is applied at the end of the computation.

Figure 6 shows an example of the recovery when process
(1,0) in a 2 × 3 grid failed during LU factorization, right
after pivoting-to-right is done during the 5th iteration.

Through a fault tolerant MPI infrastructures, like FT-MPI[15],
failed process (1,0) is brought back to life and reintegrates
the 2 × 3 grid. With the help of vertical static checkpoint-
ing and ABFT checksum, the lost data is recovered, and
computation can proceed.

Suppose Treduction(x) is the time to do reduction on x pro-
cesses, and suppose matrix size is M × N with block size
NB. The overhead of vertical checkpointing is

M

P
× Treduction(P)× N

NB

5.3 Hybrid checkpointing for Z
The vertical checkpointing requires a set of reduction op-
erations immediately after each panel factorization. Since
panel factorization is on the critical path and has lower par-
allelism comparing to other components of the factorization
(trailing matrix update for example), vertical checkpointing
further worsens the situation by keeping processes in only
one process column busy.

Since vertical checkpointing operation by nature is diskless
checkpointing with checkpointing frequency once per iter-
ation along the column direction, by increasing the check-
pointing frequency and perform checkpointing along the row
direction, less checkpointing with higher parallelism can be

Figure 7: Hybrid checkpointing

achieved. Supposed ZU factorization on a P ×Q grid. Ac-
cording to Corollary 4.2, starting from the first column on
the left, every Q columns contributes to one column of check-
sum, which means once factorization is done for this Q col-
umn, the corresponding checksum column is fixed with the
checksum of the upper triangular part of U . Utilizing this
feature, we increase the checkpointing frequency to every
Q iteration. During checkpointing, checksum is generated
along row direction overwriting the corresponding checksum
column, which makes all P process involved in the reduction
operation in parallel. To comply with this checkpointing
and prevent checkpointing result being mistakenly updated
by trailing matrix update, the order of initial checksum on
the right of the matrix is reversed so that during factoriza-
tion, once a checkpointing is done, the generated checksum
column is moved out of the range of trailing matrix update.
Figure 7 is an illustration of the checkpoitning. Q = 3.
Once the first 3 columns of data matrix completes factoriza-
tion, they are checkpointed into the first checksum column
reversely put on the right end of the checksum.

To utilize the hybrid checkpointing for recovery, at the be-
ginning of each Q panel factorization, all processes make a
copy of their local data into a temporary buffer (reusable
throughout factorization). At this moment, their check-
sum column still follows the ABFT checksum. Therefore
for any failure during the Q factorization, a failed process
uses checksum to return at the state of the beginning of the
Q iteration, and survived processes uses their local copies to
return to the same state. Then the factorization for this Q
columns can be restarted. Once rolled back, until the end of
this Q iteration trailing matrix update is not applied outside
this Q columns to avoid repetition. If failure occurs outside
the Q iteration, then lost data can be recovered from the
corresponding checksum column.

Suppose we use the same symbols as in the static vertical
checkpointing model, the checkpointing performance for hy-

Figure 6: Recovery example (matrix size 640×640, grid size 2×3, failure of process (1,0), i=4, failure occurred
after pivoting-to-right is done)
I: Right before failure II: After failure is fixed with holes (blue squares)
III: Checksum recovered IV-VI: data matrix recovered

brid checkpointing is

N

Q×NB
× Treduction(P)

6. RECOVERY FROM FAILURE WITH ER-
ROR PROPAGATION

In a fail-stop failure, failure strikes at random moment dur-
ing the life span of factorization operations or recovery pro-
cess, and the interval between the exact time when the failed
process stopped functioning and the time all survived pro-
cesses are notified leaves opportunity for error propagation.

Most of the components of ZU factorization can be pro-
tected by ABFT. Matrix multiplication, which is used for
trailing matrix updates and claims more than 95% of LU
and QR execution time, has been shown in previous work[4]
to be ABFT compatible. One feature that breaks this com-
patibility is pivoting in LU , especially when failure occurs
between panel factorization and pivoting.

Figure 8 shows an example of such a case. Suppose the cur-
rent panel contributes to the ith column of checksum. When
panel factorization finishes, the ith column becomes interme-
diate data which does not cover any column of matrix.

If a failure at this instant causes holes in the current panel
area, then lost data can be recovered right away. Pivoting
for this panel factorization has only been applied within the
light green area. Panel factorization is repeated to continue
on the rest of the factorization. However, if failure causes
holes in other columns that also contribute to the ith column
of checksum, these holes cannot be recovered until the end
of the trailing matrix update. To make it worse, after the
panel factorization, pivoting starts to be applied outside the
panel area and can move rows in holes into healthy area or
vice versa, expending the recovery area to the whole column,
as shown in red in Figure 8 including triangular solving area.

Figure 8: Ghost pivoting Issue
Gray: Result in previous steps
Light Green: Panel factorization result in current
step
Deep Green: The checksum that protects the light
green
Blue: TRSM zone Yellow: GEMM zone
Red: one of the columns affected by pivoting

To Recover from this case, in addition to matrix multipli-
cation, the triangular solver is also required to be protected
by ABFT.

Theorem 6.1. Failure in the right-hand sides of triangu-
lar solver can recover from fail-stop failure using ABFT.

Proof. Suppose A is the upper or lower triangular ma-
trix produced by LU factorization (non-blocked in ScaLA-
PACK LU), B is the right-hand side, and the triangular

solver solves the equation Ax = B.

Supplement B with checksum generated by Bc = B ∗ Gr

to extended form B̂ = [B, Bc], where Gr is the generator
matrix. Solve the extended triangular equation:

Axc = Bc = [B, Bc]

∴ xc = A−1 × [B, Bc]

=
[
A−1B, A−1Bc

]
=

[
x, A−1BGr

]
= [x, xGr]

Therefore data in the right-hand sides of the triangular solver
is protected by ABFT.

With this theorem, if failure occurs during triangular solv-
ing, lost data can be recovered when the triangular solver
completes. Since matrix multiplication is also ABFT com-
patible, the whole red region in figure 8 can be recovered
when trailing matrix update is done.

7. EVALUATION
In this section, we evaluate the memory overhead of the
proposed algorithm, as well as the computational efficiency
on the LU factorization. The overhead comes from two
different sources; extra flops generated by maintaining the
right checksum up to date, and the extra communications
involved in maintaining the L checkpoint. Should one con-
sider the input matrix is easy to re-obtain, the latter can be
ignored, and rely on the post-factorization recovery instead.
To serve as a comparison base we use the non fault toler-
ant ScaLAPACK LU . For this purpose we used the NICS
Kraken supercomputer hosted at the Oak Ridge National
Laboratory, which features 112,896 2.6GHz AMD opteron
cores with the Seastar interconnect. For small size exper-
iments, we used a small cluster at the University of Ten-
nessee, Knoxville named “dancer”, which is an 8-node based
on two quad Intel 2.27GHz Xeon cores per node, with a
Infiniband 20G interconnect.

7.1 Storage Overhead
Checksum takes extra storage (memory) on processes, and
on large scale systems memory usage is normally maximized
for computing tasks. Therefore it is preferable to have a
small ratio of checksum size over matrix size. For the sim-
plicity of the proof, and because the small impact in term of
memory usage, neither the pivoting vector nor the column
shift are considered in this evaluation.

The storage of the checksum includes the row-wise and column-
wise checksums and a small portion at the bottom-right cor-
ner. Different checksum protection algorithms requires dif-
ferent amounts of memory. In the following, we consider
the duplication algorithm presented in the Section 4.3.1 for
computing the upper memory bound.

For input matrix of size M ×N on a P ×Q process grid, the
memory used for checksum (including duplicates) is

2MN

P
+

2MN

Q
+

4MN

PQ

30

40

50

60

Pe
rc

en
ta

ge
 o

f c
he

ck
su

m
 s

iz
e

ov
er

 d
at

a
m

at
ri

x
si

ze

0

10

20

Pe
rc

en
ta

ge
 o

f c
he

ck
su

m
 s

iz
e

ov
er

 d
at

a
m

at
ri

x
si

ze

Number of processes

Figure 9: Checksum storage overhead

The ratio Rmem of checksum memory over the memory of
the input matrix is

Rmem =
2

P
+

2

Q
+

4

PQ

When P = Q (as suggested for better performance in [13])

Rmem = 4×
(

1

Q
+

1

Q2

)
And therefore the storage overhead model is

Q =
2×

(
1 +
√

1 + Rmem

)
Rmem

(13)

Figure 9 shows an estimation according to Equation 13. For
the current top ten machines on the Top500 list, the storage
overhead is less than 1% of the data matrix.

7.2 Checksum and Checkpoint Costs
Figures 10 and 12 present the execution time in seconds (and
the overhead in the zoomed-in graphs) for the algorithms
presented above. In both cases, we used weak-scaling main-
taining a ratio of 4000 × 4000 data per core while increas-
ing the number of cores involved in the LU factorization.
In the case of the overhead, we compute it based on the
ScaLAPACK version of the LU factorization, with no fault
tolerance features.

In Figure 10 the overhead of the checksum is under 10%
starting with matrix sizes of 300 × 300, and as expected it
decreases with the size of the factorization. As the size of the
matrix increases, the number of cores involved in the factor-
ization increases and the ratio of checksum memory to data
memory decreases. As a consequence, the overhead of the
trailing matrix update, which is the most time consuming
operation when maintaining the checksum, decreases.

In Figure 12 we present the overhead of the fully protected
ABFT factorization. In addition to the checksum presented
previously, we added the checkpoint algorithms described in
Section 5.2 and 5.3. As expected the static vertical check-
pointing introduces a high overhead due to its sequential
nature (checkpoint and panel are done in sequence block-
ing the progression of the updates). In contrast, the hybrid
approach shows promising scalability capabilities.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 3
00
 1,200

N=138K
 2,700

N=207K
 4,800

N=277K
19,200

N=554K

P
er

fo
rm

an
ce

 (
T

fl
o

p
s/

s)

Number of cores

No FT
Checksum protection for U

 0
 2
 4
 6
 8

 10
 0 5000 10000 15000 20000

O
ve

rh
ea

d
 (

%
)

Figure 10: Weak Scalability of ABFT LU on the
Kraken platform. Scaled from N=4000 for 1 core

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

3600(2x2 grid) 7200(4x4 grid) 10800(6x6 grid) 14400(8x8 grid)

LU factorization Assembling recovery system (memory copy)

TRSM Restoring L (memory copy)

Figure 11: ABFT recovery overhead for L on Dancer

As L is touched only once during the computation, the ap-
proach of checkpointing the result of a panel synchronously
can look sound, a-priori (when compared to system based
checkpoint, where the entire dataset is checkpoint periodi-
cally). However, as the checkpointing of a particular panel
suffers from its inability to exploit the full parallelism of the
platform, it is subject to a derivative of Amdahl’s law, where
its importance is bound to grow when the number of com-
puting resources increases. Its parallel efficiency is bound
by P, while the overall computation enjoys a PxQ parallel
efficiency. As a consequence, in the experiments, the time
to compute the naive checkpoint dominates the computation
time. On the other hand, the hybrid checkpointing approach
exchanges the risk of a Q-step rollback with the opportunity
to benefit from a PxQ parallel efficiency for the panel check-
pointing. Because of this improved parallel efficiency, the
hybrid checkpointing approach benefits from a competitive
level of performance, that follows the same trend as the orig-
inal non fault tolerant algorithm.

7.3 ABFT based post-factorization recovery
for L

Figure 11 illustrates the time to recover the L part of the re-
sult matrix, using the ABFT based recovery algorithm pro-
posed in section 5.1. The figure presents a percentage break
down of the time required to perform the original factoriza-
tion, to obtain U , and the time it takes to recompute L from
the resultant U matrix and the original A matrix. The ratio

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 3
00
 1,200

N=138K
 2,700

N=207K
 4,800

N=277K
19,200

N=554K

P
er

fo
rm

an
ce

 (
T

fl
o

p
s/

s)

Number of cores

No FT
Q-Parallel Checkpoint and Checksum

Sequential Checkpoint and Checksum

 0
 2
 4
 6
 8

 10
 0 5000 10000 15000 20000

O
ve

rh
ea

d
 (

%
)

Figure 12: Weak Scalability of ABFT and L check-
pointing on the Kraken platform. Scaled from
N=4000 for 1 core

of time spent for the recovery of L over the time to com-
pute U decreases when the number of processor increases,
which is expected as the TRSM kernel, involved in this re-
construction, has a lower polynomial complexity that the LU
factorization. Moreover, the recovery of L, which is shown
to be a small part of the entire computation, is necessary
only if and where failures occurred. However, this approach
requires to access a small part of the input matrix whose
location is unknown before the factorization. Therefore this
method only applies to applications which can re-generate
the input matrix with less overhead than the factorization.

8. CONCLUSION
In this paper, by assuming a failure model in which fail-
stop failures can occur randomly during execution, a general
scheme of ABFT algorithms for protecting matrix factoriza-
tions has been proposed. This framework can be applied
to a wide range of dense matrix factorizations, including
Cholesky, LU and QR. A significant property of the pro-
posed algorithms is that both left and right factorization re-
sults are protected. For the left result several strategies have
been proposed to ensure that it is always available. The ex-
periments show the performance overhead of the checksum
generation decreases with the increasing number of comput-
ing resources and the problem size. Moreover, the hybrid
Q-parallel checkpointing overhead for the left factorization
result maintains the scalability of the original factorization.
As future work, multi-process failures and optimization of
checkpointing strategies will be further investigated.

9. REFERENCES
[1] Fault tolerance for extreme-scale computing workshop

report, 2009.

[2] http://www.top500.org/, 2011.

[3] L. Blackford, A. Cleary, J. Choi, E. D’Azevedo,
J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, et al. ScaLAPACK users’ guide.
Society for Industrial Mathematics, 1997.

[4] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou.
Algorithm-based fault tolerance applied to high
performance computing. Journal of Parallel and
Distributed Computing, 69(4):410–416, 2009.

[5] A. Bouteiller, G. Bosilca, and J. Dongarra.
Redesigning the message logging model for high
performance. In International Supercomputer
Conference (ISC 2008), Dresden, Germany (June
2008). Citeseer.

[6] G. Burns, R. Daoud, and J. Vaigl. LAM: An open
cluster environment for MPI. In Proceedings of
supercomputing symposium, volume 94, pages 379–386,
1994.

[7] F. Cappello. Fault tolerance in petascale/exascale
systems: Current knowledge, challenges and research
opportunities. International Journal of High
Performance Computing Applications, 23(3):212, 2009.

[8] Z. Chen and J. Dongarra. Algorithm-based
checkpoint-free fault tolerance for parallel matrix
computations on volatile resources. In Parallel and
Distributed Processing Symposium, 2006. IPDPS
2006. 20th International, pages 10–pp. IEEE, 2006.

[9] Z. Chen and J. Dongarra. Scalable techniques for fault
tolerant high performance computing. PhD thesis,
University of Tennessee, Knoxville, TN, 2006.

[10] Z. Chen and J. Dongarra. Algorithm-based fault
tolerance for fail-stop failures. Parallel and Distributed
Systems, IEEE Transactions on, 19(12):1628–1641,
2008.

[11] J. Choi, J. Demmel, I. Dhillon, J. Dongarra,
S. Ostrouchov, A. Petitet, K. Stanley, D. Walker, and
R. Whaley. ScaLAPACK: a portable linear algebra
library for distributed memory computers–design
issues and performance. Computer Physics
Communications, 97(1-2):1–15, 1996.

[12] T. Davies, C. Karlsson, H. Liu, C. Ding, , and
Z. Chen. High Performance Linpack Benchmark: A
Fault Tolerant Implementation without
Checkpointing. In Proceedings of the 25th ACM
International Conference on Supercomputing (ICS
2011). ACM.

[13] J. Dongarra, L. Blackford, J. Choi, A. Cleary,
E. D’Azevedo, J. Demmel, I. Dhillon, S. Hammarling,
G. Henry, A. Petitet, et al. ScaLAPACK user’s guide.
Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1997.

[14] E. Elnozahy, D. Johnson, and W. Zwaenepoel. The
performance of consistent checkpointing. In Reliable
Distributed Systems, 1992. Proceedings., 11th
Symposium on, pages 39–47. IEEE, 1991.

[15] G. Fagg and J. Dongarra. FT-MPI: Fault tolerant
MPI, supporting dynamic applications in a dynamic
world. Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pages 346–353, 2000.

[16] S. Ghemawat, H. Gobioff, and S. Leung. The Google
file system. ACM SIGOPS Operating Systems Review,
37(5):29–43, 2003.

[17] G. Gibson. Failure tolerance in petascale computers.
In Journal of Physics: Conference Series, volume 78,
page 012022, 2007.

[18] G. Golub and C. Van Loan. Matrix computations.
Johns Hopkins Univ Pr, 1996.

[19] D. Hakkarinen and Z. Chen. Algorithmic Cholesky
factorization fault recovery. In Parallel & Distributed
Processing (IPDPS), 2010 IEEE International
Symposium on, pages 1–10. IEEE, 2010.

[20] K. Huang and J. Abraham. Algorithm-based fault
tolerance for matrix operations. Computers, IEEE
Transactions on, 100(6):518–528, 1984.

[21] K. Klimkowski and H. Ling. Performance evaluation of
moment-method codes on an intel iPSC/860
hypercube computer. Microwave and Optical
Technology Letters, 6(12):692–694, 1993.

[22] V. Kumar, A. Grama, A. Gupta, and G. Karypis.
Introduction to parallel computing: design and analysis
of algorithms, volume 400. Benjamin/Cummings, 1994.

[23] E. Lezar and D. Davidson. GPU-Accelerated Method
of Moments by Example: Monostatic Scattering.
Antennas and Propagation Magazine, IEEE,
52(6):120–135, 2010.

[24] C. Lu. Scalable diskless checkpointing for large parallel
systems. PhD thesis, Citeseer, 2005.

[25] F. Luk and H. Park. An analysis of algorithm-based
fault tolerance techniques* 1. Journal of Parallel and
Distributed Computing, 5(2):172–184, 1988.

[26] J. Plank, K. Li, and M. Puening. Diskless
checkpointing. Parallel and Distributed Systems, IEEE
Transactions on, 9(10):972–986, 1998.

[27] F. Streitz, J. Glosli, M. Patel, B. Chan, R. Yates,
B. Supinski, J. Sexton, and J. Gunnels. Simulating
solidification in metals at high pressure: The drive to
petascale computing. In Journal of Physics:
Conference Series, volume 46, page 254. IOP
Publishing, 2006.

