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Abstract 
 

There are numerous algorithms and methods for controlling the locomotion, 
assembly, and reconfiguration of modular self-reconfigurable robots.  A brief overview 
of several of these algorithms is presented in this report.  The general idea behind each 
algorithm is discussed, and these discussions are accompanied by images of example 
robot structures and configurations.  The presentation also includes a discussion of 
results of simulation experiments, as well as issues and challenges with implementing 
these algorithms, and possible practical applications of the various research projects. 

                                                 
*  This report may be used for any non-profit purpose provided that the source is credited. 
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1   Introduction 
 
Locomotion, assembly, and reconfiguration are crucial behaviors for self-reconfigurable robots 
in performing their tasks in their given environments.  Several algorithms for implementing these 
behaviors in modular self-reconfigurable robots have been developed and tested, and several of 
these algorithms are presented in this report.  The basic mechanisms and features of the 
algorithms are discussed, and several examples of robot structures and tasks are illustrated.  The 
analysis of the algorithms also addresses issues such as scalability and future work involved in 
further developing these algorithms to be more amenable to real-life situations and tasks. 

 
2   Algorithms for Locomotion and Reconfiguration of Self-
Reconfigurable Robots 
 
A number of algorithms and mechanisms for self-reconfigurable robot locomotion and 
reconfiguration have been reported in the literature.  The following is a presentation of several of 
these algorithms. 
 
2.1   Compressible Unit Modules and the Melt-Grow Algorithm 
 
One type of mechanism for robot module relocation is an inchworm-like propagation [15] 
similar to the movement of muscles and amoeba.  The modules can expand or contract as needed 
to achieve the desired configuration.  This method has been applied to simulations of the 
Crystalline robot modules [16].  Figure 1 shows an example of this type of movement.  The two 
center modules are compressed and then expanded in the direction of the goal position, which 
results in the entire structure moving forward one unit.  Another example is shown in Figure 2.  
The module on the surface of the side face of the cube is pulled into the structure when two 
internal modules compress, and another module is popped out on the top face of the entire cube.  
In this way, a module can be repositioned on any convex structure in constant time.  For concave 
portions of module arrangements, this method can be repeated for each turn (i.e., around each 
corner) in the structure. 
 

 
Figure 1. Inchworm locomotion of Crystalline modules [15]. 
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Figure 2. Moving a module along a cube surface [15]. 

 
The Melt-Grow planner [15] is used to establish shape metamorphosis of Crystalline modules.  
The algorithm is comprised of two basic steps: 
 
1. Melt starting state S into intermediate state I 
2. Grow goal state G from I. 
 
The idea is to find a mobile grain (i.e., cube of modules) in S and move it to a place in I, and 
repeat this process until all grains are in I.  A grain is mobile if it can be moved without 
disconnecting the entire structure.  Then for each mobile grain in I, the grain is moved to a place 
in G until all grains are in G.  A reconfiguration example using the Melt-Grow algorithm 
includes converting a table into a chair [15].  Another simulation of 3D Crystalline robots 
involves transforming a dog-shaped object into a couch-shaped object [15, 16]. 
 
 
2.2   Distributed Control for 3D Metamorphosis 
 
The distributed control algorithms for reconfiguration presented in [20] were applied to 
simulations of Proteo modules.  Proteo is a type of metamorphic robot comprised of homogenous 
modules (e.g., rhombic dodecahedron shape as shown in Figure 3) that occupy cells of a lattice 
structure [20].  Modules move in discrete steps by rolling over one another into an open 
neighboring space.  A module determines a move based on the current cell, the current state of 
the module, and the states of the neighboring modules obtained from local communication 
between modules.  The algorithm is based on a goal-ordering mechanism.  A partial order of goal 
cells in the final configuration is computed, and this determines the order in which the goal 
spaces are filled.  This allows a module to stay in place once it reaches a goal space, and it 
minimizes communication by enabling local reasoning about the global structure.  Issues with 
these distributed control algorithms include stability, local minima, and overcrowding of 
modules. 
 

 
Figure 3. Rhombic dodecahedron shape of Proteo module [20]. 

 
There are three types of distributed control discussed in the research of [20]: distance-based 
method, heat-based method, and the combined method.  In the distance-based approach, open 
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goal sites are ordered based on the Euclidean distance to unconstrained (i.e., unblocked) unfilled 
goals.  In the heat-based algorithm, unconstrained unfilled goals are treated as heat sources, 
while modules that have not reached a goal place are considered heat sinks.  Each module 
propagates heat to its neighbors.  Modules that are closer to unconstrained unfilled goals have a 
higher temperature than the farther away modules, thus the closer modules will fill the goal sites 
first.  The combined method begins with using the distance method, and switches to the heat 
mechanism when the system appears to be stuck.  Each of the three mechanisms were applied to 
configurations that resemble a flat disk, solid ball, hollow ball, and a cup structure, as shown in 
Figure 4.  The simulations involved up to 450 modules.  The convergence time is approximately 
linear in the number of modules. 
 

 
Figure 4. Simulations of flat disk, solid ball, hollow ball, and cup [20]. 

 
 
2.3   Emergent Structures in Modular Self-reconfigurable Robots 
 
Control algorithms for producing emergent structures were applied to simulations of the Proteo 
metamorphic robot system [3].  The modules are homogenous and have a rhombic dodecahedron 
shape.  Rather than achieving an exact goal configuration, it is only necessary to create a 
structure with the appropriate properties to accomplish the given task.  This is more amenable to 
uncertain environments.  In addition, finding an optimal solution in a large search space of exact 
configurations is very difficult.  In this way, emergent structures are created, similar to 
techniques implemented in the field of Artificial Life.  The algorithms are based on local rules, 
where modules only communicate with their immediate neighbors.  The mechanisms in this 
work are useful for forming complex connected structures, object manipulation applications, and 
dynamic adaptation.  The algorithms can easily be scaled up in the number of modules and down 
in the size of the modules.  Features of these algorithms are growth (creating structures), seeds 
(for beginning growth), and scents, which serve as the communication between modules.  There 
is a scent gradient throughout the structure, and these scents indicate the distance between a 
module and a scent-emitting module.  The mode of a module is the current finite state machine 
(FSM) state, which can be one of SLEEP, SEED, SEARCH, FINAL, and NODE (for branching).  
The seeds function as local attractors and the scents serve as global gradients.  By varying the 
number and combination of seeds and scents, different structures can be created.  Several 
different structures are briefly presented below. 
 
Chain: These linear structures are useful for climbing stairs or traversing holes or narrow spaces.  
The control rules for this system [3] are given below and Figure 5 illustrates modules forming a 
chain. 
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* If in SLEEP mode, if a scent is detected, go to SEARCH mode. 
* If in SEARCH mode, propagate scent and move along scent gradient. 
* If in SEED mode, emit scent, and if a module has appeared in the direction of growth, set that 
module to SEED mode, and go to FINAL mode. 
* If in FINAL mode, propagate scent. 
 

 
Figure 5. Formation of chain structure [3]. 

 
Branching: Can be used as an artificial hand, or for manipulation and locomotion tasks.  Limbs 
are grown at several levels.  The regular scent grows the structure and the node scent determines 
the distance to the nearest node.  An example branching structure is shown in Figure 6. 
 

 
Figure 6. Branching structure [3]. 

 
Sponge: Can function as a supporting structure, squeeze through narrow spaces, or push walls 
apart.  Figure 7 depicts an example of a sponge structure. 
 

 
Figure 7. Sponge structure [3]. 

 
Regular lattice: Useful for structural support or scaffolding for disaster relief efforts.  There are 
three possible directions for growth.  The value of the node scent parameter can be varied to 
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create a more or less dense structure.  An example lattice structure is given in Figure 8. 
 

 
Figure 8. Lattice structure [3]. 

 
Grasping an object: The algorithm will function properly if the object has an unknown shape, 
size, or location.  Two types of seeds are utilized: one for reaching the object, and the other for 
growing around the object (i.e., grasping).  Figure 9 shows an example that resembles a hand 
grasping a ball-like structure. 
 

 
Figure 9. Hand-like object grasping a ball-like object [3]. 

 
Dynamically adapting to external forces: For example, a table that repositions its legs based 
on the location of the weight on the table surface.  Figure 10 displays three examples of a table 
adjusting the placement of its legs according to the position of the weight indicated by the arrow. 
 

             
Figure 10. Table adjusting its legs according to position of weight [3]. 

 
 
2.4   Complex Behaviors from Local Rules 
 
In the work of [12], modular self-reconfigurable robots are guided by simple local rules similar 
to colonies of social insects such as ants and termites.  Distributed control algorithms were 
developed and tested on a simulation of hundreds of homogeneous Telecube [17, 18] modules.  
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These algorithms scale well as the number of modules is increased and the size of modules is 
decreased.  Structures perform reconfiguration, locomotion (including turning), and navigation 
(i.e., path planning) to a goal site in an environment containing obstacles.  Global motion of the 
structure arises from local control rules and communication between neighboring modules.  
Similar to the work in [3], the control algorithms use modes, seeds, and scents.  Figure 11 shows 
an example of a collection of robots navigating around obstacles to reach a goal flag.  The 
modules configure into a snake-like structure to squeeze between the two obstacles.  The spine of 
the structure is formed as a result of modules parallel to the spine merging into the spine 
structure, and modules perpendicular to the spine moving towards the spine structure.  The 
locomotion of the entire structure is centipede-like, resulting from a movement scent propagated 
between modules.  In order to achieve turning, the structure forms a new snake in the 
perpendicular direction of movement. 
 

 
Figure 11. Snake-like structure of modules navigating through obstacles to a goal flag [12]. 

 
 
2.5   Reconfiguration for Heterogeneous Structures 
 
Most research on self-reconfigurable robots has focused on structures containing homogeneous 
modules.  However, Rus et. al [6] were the first to explore the possibility of using heterogeneous 
modules for self-reconfiguring robots.  An advantage of heterogeneous modules is that modules 
can be specialized in that they contain a different set of sensors and actuators.  A challenge for 
heterogeneous systems is that failed modules can no longer be replaced with any module.  The 
researchers have found that reconfiguration of heterogeneous lattice-based systems does not 
asymptotically take any longer than the homogeneous counterparts, although an underlying 
assumption is that the modules operate in unbounded space, which may not always be the case in 
practical situations.  Their modules apply the sliding-cube model, which is similar to the 
mechanism of Crystalline modules [16].  The algorithm used is the Melt-Sort-Grow algorithm, 
which is an extension of the Melt-Grow algorithm.  The modules in the intermediate structure are 
sorted before they are placed into the final structure.  This allows the goal structure to be easily 
grown from the intermediate structure.  An assembly order of modules is computed and then the 
modules are physically sorted according to this computed ordering.  Both centralized and 
decentralized versions of the algorithm were implemented.  Decentralizing planning is preferred 
for a large number of modules.  The decentralized algorithm uses a message passing protocol of 
communication, where modules are only allowed to communicate with their immediate 
neighbors.  A simulation of the use of the Melt-Sort-Grow algorithm is shown in Figure 12, 
which involves configuring a chair into a table.  There are two types of modules involved, one 
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for the legs, and the other for the rest of the structure. 
 

 
Figure 12. Transforming a chair shape into a table shape [6]. 

 
 

2.6   Distributed Assembly and Repair Algorithms 
 
The work in [10] involves distributed control algorithms for synthesizing various shapes as well 
as repairing holes in structures.  The algorithms are designed to be architecture-independent.  
The algorithms employ the use of rules that only require local information, similar to cellular 
automata.  Restricting the scope of the algorithm to local information allows the algorithm to be 
easily distributed to systems containing a large number of modules.  Each rule contains two 
portions – the precondition (left side) and the postcondition or result (right side).  The basic 
modes of actuation are linear translation, concave transition, and convex transition, as described 
in the work for the Crystalline [16] and Molecule [11, 13] robots.  Algorithms have been 
developed for locomotion, assembly, and repair.  The algorithms involve locomotion with and 
without obstacles and include climbing tall obstacles and traversing tunnels.  An example of 
assembling a cube structure from a sheet arrangement is depicted in Figure 13.  Repair 
algorithms involve redistributing modules so as to retain a continuous structure of modules.  An 
example of a hole-sealing application is illustrated in Figure 14.  Practical applications of this 
technique include repairing space station walls upon colliding with foreign objects, and adaptive 
armor for military vehicles. 
 

 
Figure 13. Building a cube structure from a flat sheet [10]. 

 

 
Figure 14. Repairing a hole [10]. 
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2.7   Shape Sculpting via Hole Motion 
 
The research of [4] is based on shape formation resulting from the random motion of regular 
holes in a lattice-based structure.  Holes are created and deleted at the perimeter of the structure.  
Creating a hole leads to the enclosure of empty space which results in a bulge at that position.  
Deleting a hole will result in the structure caving in at that point.  The creation and deletion 
processes are depicted in Figure 15.  A smoothing technique is applied to prevent the 
development of areas where deletion cannot occur.  Modules are packed into a hexagonal array 
and each module can have up to 6 possible neighbors.  A hole is bordered by 12 modules.  With 
a large enough hole, movement in the immediate neighborhood of a module will always be 
possible, thus many motion constraints can be avoided.  The algorithm is massively parallel and 
fully distributed.  Simulations involving simple structures have been conducted.  These 
simulations include transforming square to T shape, T shape to square, and rectangle to circle.  
These transformations involve creating and deleting corners and creating curvature.  The 
simulations have involved as many as 60,000 modules.  The simulations are limited to 2D lattice 
structures, however, the researchers believe their algorithm can generalize to 3D, as well as scale 
to work with millions of modules.  The Claytronics project [7-9] provides the inspiration for this 
work. 
 

                 
Figure 15. Hole creation (left) and deletion (right) [4]. 

 
 
2.8   Hierarchical Motion Planner 
 
Researchers working on the Claytronics project [7-9] have developed a prototype hierarchical 
planning system [2] for their catoms (Claytronics atoms).  It uses a divide and conquer approach 
where the algorithm calls a base planner and reuses precomputed plans at each level of the 
hierarchy.  Modules are recursively grouped into metamodules, analogous to the self-similar 
structure of fractals.  This technique minimizes the number of module moves.  The highest level 
has the fewest meta-catoms, which allows traditional A* search algorithms to quickly compute a 
plan at this level.  A metamodule contains seven metamodules (or modules at the lowest level) 
and a motion plan is determined for those seven metamodules.  This scheme is depicted in Figure 
16.  The base planner uses a greedy nearest mismatched neighbor heuristic.  This heuristic is 
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based on the distance between a module and its nearest neighbor in the goal state, and it also 
considers the desire to move towards free goal positions and not positions already occupied.  
Simulations using the algorithm have involved several thousands of modules.  This metamodule 
scheme only works in the 2D case, but it is relatively straightforward to apply it in the 3D case. 
 

 
Figure 16. Metamodules containing modules [2]. 

 
 
2.9   Movement Primitives for Lattice-Based Modules 
 
Movement primitives for closed lattice systems [19] have been devised based on Telecube [17, 
18] and Crystalline [16] robots.  A movement primitive is defined as an actuation sequence of 
one or more neighbors that can be applied to any subgroup of modules matching a target pattern 
[19].  This mechanism also allows for correcting misalignment and parallel actuation of modules.  
Seven different movement primitives are briefly outlined below: 
 
1. Mini-slide over, up, or across: Moving a single module one position in the cases of slide-
over and slide-up, and two positions in the case of slide across.  Figure 17 illustrates this 
movement scheme. 
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Figure 17. Mini-slide movement primitive [19]. 

 
2. Slide: Same as mini-slide except it involves moving a 2x2 group of modules, as in Figure 18. 
 

 
Figure 18. Slide movement primitive [19]. 

 
3. Round: A group of modules move around a convex corner, as seen in Figure 19. 

 
Figure 19. Round movement primitive [19]. 

 
4. Blister: A 2x2 piece is popped out from a two-module thick surface, as Figure 20 shows. 

 
Figure 20. Blister movement primitive [19]. 

 
5. Bubble: An extension of blister that pushes out 8 modules and forms a 2x2x2 hole which can 
move around. 
 
6. Burst: Pushes a bubble out of the interior, which leaves a depression in the surface. 
 
7. Spike: Pushes one module out from the surface to function as a surface feature. 
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2.10   Shape Transformation for Multi-Robot Systems 
 
Goldstein et al. [14] have developed an algorithm for multi-robot applications, which include 
sensor networks and formations.  This algorithm is fully distributed with no need for global 
communication.  The Hierarchical Median Decomposition (HMD) algorithm is based on the 
median consensus estimator.  A collection of agents which have possibly different initial 
estimates of a global variable attempt to reach an agreement on the true value of the variable 
[14].  The basic idea of the algorithm is to establish a bijection from the initial configuration to 
the goal configuration.  The algorithm consists of two steps; the first establishes the relative 
position of the agent, and the second establishes the final position in the goal configuration of the 
agent.  The first step involves the agents achieving agreement on the median value of the x and y 
coordinates of their position.  The algorithm iteratively builds a kd-tree, where the space is split 
into quadrants, left and right sides to determine the x coordinate, and up and down directions to 
determine the y coordinate, as illustrated in Figure 21.  The second step of the algorithm is 
essentially the reverse of the first step. 
 

 
Figure 21. kd-tree scheme used in HMD algorithm to determine relative position [14]. 

 
 
2.11   Declarative Programming 
 
Declarative programming approaches [1] have been implemented and applied to the shape 
planning problem.  The execution of these languages is automatically distributed, but it appears 
that a single program is executing across the entire ensemble.  States of a structure are modified 
by a rearrangement of labels representing them, where each label denotes a module or empty 
space in the lattice.  The planner generates a sequence of rearrangements leading to the goal 
state.  To ensure the structure remains globally connected, trees are grown from the connected 
sections, and only the leaves of the trees are allowed to be deleted.  Two declarative 
programming languages for shape planning have been analyzed: Meld and LDP (Locally 
Distributed Predicates).  Meld is a forward chaining system where a set of base facts is checked 
against a collection of production rules, and existing facts are combined to generate new facts.  
This process is iterated until all provable facts have been generated.  In some cases, the 
generation of facts will result in side effects, such as actuation and locomotion.  This system can 
also be applied to metamodules.  The base facts include neighbor, position, vacant, and 
resources, while the facts with physical side effects are create, destroy, and give.  LDP involves 
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predicates over the local neighborhood of a given node.  Each predicate consists of a named node 
list, an expression, and any actions.  A pattern matcher object in the form of an expression tree is 
used to detect predicates, and a match will trigger any actions associated with the predicate. 
 
 
2.12   Self-Organization of Environmentally-Adaptive Shapes 
 
Nagpal et. al [21, 22] have constructed a robot that functions as a self-balancing table by 
automatically adapting to changes in its environment.  The structure is a chain-style robot that is 
formed from a flexible sheet with supporting legs.  Applications of this type of robot include 
self-balancing furniture, terrain-adaptive bridges, and dynamic rendering for 3D media, as 
depicted in Figure 22.  Modules contain tilt sensors, follow simple local rules, and communicate 
with their immediate neighbors.  Structures perform shape change using a deformation 
mechanism in which modules compress or expand.  Rather than specifying an absolute 
configuration, a shape is represented by a set of local sensor constraints between neighboring 
modules.  This technique enables easier adaptation to environmental changes.  Thus, the 
algorithm implements constraint maintenance in the form of distributed consensus, similar to the 
mechanism of biological activities such as flocking and firefly synchronization.  A table-like 
structure is composed of surface (table top) and support (legs) groups of modules.  Pivot modules 
are located between surface and support modules.  The motion of the modules is determined by a 
distributed feedback control algorithm that iterates between two steps.  In step 1, modules sense 
the tilt angle of each surface group.  Each pivot collects the tilt data and computes the aggregate 
feedback.  In step 2, each support group receives the tilt feedback and actuates accordingly by 
compressing or decompressing in an accordion-like fashion.  The researchers have both 
developed a prototype and physics-based simulations.  Experiments include simulations of six 
different shapes: statue, teapot, knot, bunny, donut, and face.  The algorithms are effective for as 
many as 16,000 modules in simulation. 
 

 
Figure 22. Environmentally adaptive structures. Self-balancing table, terrain-adaptive bridge, and 

dynamic rendering of 3D face [21]. 
 
 
2.13   Generalized Metamodules 
 
Two reasons in favor of developing metamodules are for reducing the motion constraints of 
modules due to blocking, and to reduce the planning complexity.  The metamodule itself is used 
as the basic unit of operation.  The research of [5] involves developing generalized metamodules 
(and the associated generalized planner) that can be used in a variety of robots including robot 
arms, expanding cubes, and hex-packed spheres.  A metamodule can be created or destroyed at 
any point in the lattice, as long as the creation or deletion occurs adjacent to an existing 
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metamodule.  Thus, the system behaves similar to a compressible fluid that can expand or 
contract freely, as opposed to a set of discrete particles [5].  Metamodules are able to contain a 
variable number of modules, while maintaining physical stability and connectivity of the global 
structure.  Metamodules move by exchanging modules between other metamodules and 
absorbing modules from a neighbor and moving them to another place.  This mechanism is 
depicted in Figure 23.  Experiments with these metamodules have indicated that the time to 
completion scales linearly with the diameter of the ensemble.  A 400 metamodule simulation of 
transforming a flat rectangle to a standing rectangle is given in Figure 24. 
 

 
Figure 23. Motion of metamodules [5]. 

 

 
Figure 24. Converting a flat sheet into a standing wall using metamodules [5]. 

 
 

3   Conclusions 
 
This report has presented several different algorithms for self-reconfigurable robot locomotion, 
assembly, reconfiguration, navigation, and repair.  Most of the experiments with these algorithms 
have involved simulations of hundreds or thousands of modules.  Many of the experimenters 
believe that their algorithms will scale well with increasing the number of modules, decreasing 
the size of modules, and operating in 3D as opposed to 2D.  There have been promising results 
using heterogeneous modules as well as metamodules.  Many of the algorithms analyzed in this 
report are distributed control algorithms based on local communication among neighboring 
modules.  Several of the mechanisms for robot behavior are inspired by biological phenomena, 
such as amoeba inchworm movement, flocking, and scent gradients among social insect 
colonies.  It would be interesting to learn how well these algorithms perform when applied to 
physical robotic modules and real-life tasks and environments.  Also of interest would be to 
apply these algorithms to more complex structures, rather than the simple structures that most of 
these projects have worked with thus far.  Results of such experiments would provide insight into 
the usefulness of these algorithms for real-world situations. 
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