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Abstract 
 

This report presents a discussion and illustration of mathematical and conceptual 
models of the morphogenesis of several biological structures.  These biological 
structures serve useful purposes in organisms and they include branching structures, 
tubes, limbs, follicles and bristles, sheets and layers, and segments and somites.  The 
analysis of the mathematical models includes a conceptual description of the 
mechanism behind the algorithm and numerous illustrative examples, which are often 
accompanied by equations and examples of the effects of varying a parameter in the 
system.  Also addressed is the idea that a clearer understanding of the development of 
biological structures will lead future researchers to build artificial nanorobotic structures 
with a much higher level of complexity and sophistication than the current macroscale 
robots. 

                                                 
*  This report may be used for any non-profit purpose provided that the source is credited. 
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1   Introduction 
 
Nanotechnology and nanorobotics are exciting areas of research in the computing world.  Of 
great interest is to obtain the ability to build artificial structures beginning at the molecular level 
as opposed to the current approach of beginning from the macroscale level.  Construction 
beginning from the molecular level would allow much more fine-tuned and sophisticated 
structures to be assembled.  Many of these artificial machines would have the capacity of self 
maintenance and self repair, as would be a necessity for a robot exploring a distant planet, for 
example.  Researchers strongly believe that the best models for building these structures have 
existed in the biological world for a billion years.  Nature has perfected ways to construct 
interesting and useful structures for a multitude of different functions in organisms.  The study of 
morphogenesis and biological development may very well pave the way for the future of robotics 
and nanotechnology.  This report gives a brief overview of the computational and mathematical 
models and mechanisms behind the development of several different biological structures, 
including branching structures, tubes, limbs, follicles and bristles, sheets and layers, and 
segmented structures and somites. 
 
 

2   Interesting and Useful Biological Structures 
 
2.1   Branching Structures 
 
Several examples of branching structures are discussed below, including the lung airway, 
systems of blood vessels in the liver, capillary networks in the liver, leaf venation patterns, and 
general branching structures. 
 
2.1.1   Lung Airway 
 
2.1.1.1   Fractal Model 
 
Fractal geometry is a natural choice as a mathematical model for the lung airway.  Similar to 
fractal patterns, the lung airway is a self-similar structure over many size scales and it contains a 
high degree of heterogeneity.  Lung airway structures are largely determined by geometrical 
parameters such as the length, diameter, angle, and scale of the branches.  Heterogeneity results 
from the existence of the variation of these parameters for branches of different scales.  The 
geometrical properties may depend on boundary constraints as well as environmental factors 
such as illness and injury.  In addition to geometrical parameters, fluid dynamical rules [20] such 
as flow rate also determine the means by which branching structures develop. 
 
The fractal model in [15] is briefly presented here as an illustrative example.  The model consists 
of simple dichotomous branching, that is, a parent branch gives rise to two daughter branches, 
and the length of the daughter branches is a fixed percentage of the length of the parent branch.  
The measure Df is the fractal dimension, which measures the space-filling complexity of the 
structure.  An equation [15] for determining Df is given by 
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Here N indicates the number of branches formed at a branch point (in this case, 2), and r denotes 
the similarity ratio between parent and daughter branch.  The length of a daughter branch is r 
times the length of its parent branch. 
 
Figure 1 shows the different structures resulting from five values of r: 0.53, 0.55, 0.60, 0.66, and 
0.71 respectively.  The measure Df is also given.  The branch angle was selected to result in 
structures that fill the space optimally without branch overlap [15].  It is clear that larger values 
of r produce structures that fill more space and thus become “bushier”. 
 

 
Figure 1. “Bushiness” of branching structures [15]. 

 
Another important factor in branch development is the existence of boundary constraints, 
namely, the chest wall border.  In Figure 2a, a structure with a circular boundary is illustrated.  
At each branching step, the remaining area is successively divided in half.  Many of the junctions 
are now “bent” in order for the branches to properly fill the constrained space. 
 

 
Figure 2. Addition of (a) circular boundary and (b) branch angle restriction [15]. 
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To more accurately represent the real lung airway, an angle restriction must also be imposed on 
the formation of the structure.  Figure 2b above shows the result of limiting the range of the 
branch angle from 40-50 degrees for all branches.  Each successive generation contains more 
rapid curvature, leading to the restricted space becoming more completely filled [15]. 
 
2.1.1.2   Mouse Lung Development 
 
The Nature review article [12] discusses branching modes used in mouse lung development.  The 
three branching modes are domain branching, planar bifurcation, and orthogonal bifurcation.  
Operations involved in branching include periodicity generator, domain specifier, bifurcator, and 
rotator.  Each branching mode will be discussed here briefly. 
 
In domain branching, daughter branches are formed in rows, as shown in the top portion of 
Figure 3.  The rows can be formed in four different directions, dorsal, ventral, lateral, and 
medial.  Two patterning systems are used in directing the branching scheme.  Proximal-distal 
patterning includes a periodicity generator, which controls branching sequencing in each domain.  
Circumferential patterning determines the positions of the domains and specifies the order in 
which the domains will be used. 
 
Planar branching is illustrated in the middle portion of Figure 3.  The tip of a branch expands and 
bifurcates, forming a pair of tertiary branches, which in turn bifurcate to form four quaternary 
branches, all of which lie in the same plane. 
 
Orthogonal branching also involves bifurcation at the tips, but between each round of branching, 
the branch is rotated 90 degrees, resulting in four tertiary branches that are arranged in a rosette 
pattern.  This is depicted in the bottom portion of Figure 3. 

 

 
Figure 3. Modes of branching in lung development [12]. 

 
Domain branches are used first, and they create the supporting structure of each lobe.  Planar 
branches form the thin edges of the lobes, and orthogonal branches build the lobe surface and fill 
the interior of the lobes.  The organization of the three types of branching modes in a developing 
mouse lung are shown in Figure 4.  All three branching modes can be used simultaneously.  A 
single branch can use more than one branching mode.  In different lineages, branching occurs at 
different rates.  The branching mechanism in each lineage is executed independently; it is not 
controlled by a global clock.  The mouse lung structure contains seven or more generations of 
branching.  Occasionally, errors occur in the development of the branching tree.  In a branch 
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displacement error, a branch originates from the wrong parent, and in a skipping generation 
error, a branch is missing.  Despite these errors, branching will continue normally in subsequent 
generations of branches. 
 

 
Figure 4. Mouse lung development using three branching modes [12]. 

 
2.1.1.3   Human Lung Airway 
 
An example of a computer simulation of the human lung airway is given in Figure 5.  This 
branching structure contains approximately 27,000 terminals, which is comparable to the real 
human lung [20].  Quantitative measures, such as the average diameter of the terminals and the 
average volume of their drainage basins are consistent with the real measurements [20]. 
 

 
 

Figure 5. Simulation of human lung airway [20]. 
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2.1.2   Blood Vessels in the Liver 
 
Another useful application of branching structures is a system of blood vessels.  Figure 6 
displays an example of a computer simulation of blood vessels in the liver.  The branches are 
constructed on a grid, which represents the liver boundary.  The branches are connected using a 
branch extension algorithm [20] based on the vacancy of neighboring points on the grid.  The 
system consists of inlet (arteries) and outlet (veins) vessels, and they are shown in the figure in 
different colors. 
 

 
Figure 6. Simulation of blood vessels in the liver [20]. 

 
2.1.3   Capillary Network in the Liver 
 
A third interesting example of branching structures is a capillary network.  In Figure 7, a 
computer simulation of a capillary network in the liver is illustrated.  The network is established 
between the inlet and outlet blood vessels, and is known as a sinusoid.  A cubic grid structure is 
used to represent the system.  The network is established by applying a branch removal 
algorithm [20] that determines which branches remain and which are removed based on flow 
rates and pressure in the capillary lines.  The flow rate and pressure are depicted by the thickness 
and the color intensity of the lines, respectively. 
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Figure 7. Simulation of capillary network in the liver [20]. 

 
2.1.4   Leaf Venation 
 
2.1.4.1   Reaction-Diffusion Model 
 
A reaction-diffusion model leads to interesting patterns that emerge from a medium that is 
initially homogeneous and continuous.  Two or more morphogens diffuse throughout the 
medium and interact with one another, resulting in the formation of patterns.  Partial differential 
equations are used to mathematically model a reaction-diffusion system.  Meinhardt [11] 
proposed a model to construct a network structure in a homogeneous environment.  Figure 8 
depicts a leaf venation pattern produced by Meinhardt’s model on a hexagonal grid.  Four 
morphogens in the form of activators and inhibitors interact with each other to determine the 
extension of growing tips and the development of lateral branches. 
 

 
Figure 8. Leaf venation pattern using Meinhardt’s reaction-diffusion model [18]. 
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2.1.4.2   Space Expansion Model 
 
Another model of branching involves Gottlieb’s geometrical model [6] in which the space 
expands uniformly.  A grid system is used to recursively construct branches based on distance.  
This process is illustrated in the left portion of Figure 9.  The grid is initially 2x2 cells, and new 
branches result from connecting grid cell centers to the structure, provided the distance between 
the cell center and the structure is sufficiently large [18].  The space is then scaled and each cell 
is divided into a smaller 2x2 grid, and the process repeats until the desired level of detail is 
obtained.  An example of the application of this technique to leaf venation is shown in the right 
portion of Figure 9. 
 

 
Figure 9. Leaf venation using Gottlieb’s model of expanding space [18]. 

 
2.1.5   General Branching Structures 
 
2.1.5.1   Cellular Automata Model 
 
The space for cellular automata is represented by a uniform grid of cells where time is 
incremented in discrete steps.  Each cell changes state based on its previous state and the states 
of its closest neighbors.  An example of Maltese crosses [22] generated by the application of 
cellular automata is depicted in Figure 10.  The structure is constructed on a square grid that 
begins with a single cell as the seed.  The pattern spreads into neighboring cells, provided that 
the branches do not collide with one another. 
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Figure 10. Branching structure produced by cellular automata [18]. 

 
2.1.5.2   L-Systems Model 
 
Another mechanism for generating branching structures is L-systems, which simulate the 
development of such structures that are constructed from discrete modules [18].  Either context-
free or context-sensitive L-systems can be used to control the development of these structures.  
L-systems are able to detect changes of shape in extremities or internal parts that occur during 
the developmental process [18].  They can also detect collisions between different branches and 
between branches and the environment.  An example of a branching structure generated by L-
systems is shown in Figure 11.  An environmentally sensitive L-system [8] was used to produce 
this structure. 
 

 
Figure 11. Branching structure resulting from L-systems [18]. 

 
 
2.2   Tubes 
 
Tubes allow transportation of substances into and out of cells and tissues.  Biological tube 
structures are useful for fluid secretion, nutrient absorption, and gas exchange.  The development 
of tubes is dependent on factors such as cell polarity, cell proliferation, organization of 
intercellular junctions, invagination, lumen formation, and tube elongation.  Several examples of 
mechanisms for tube formation are discussed below. 
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2.2.1   Sheet Folding and Invagination 
 
One means of forming a tube structure is by the inward folding of an epithelial sheet of cells, as 
illustrated in Figure 12.  Tubes formed in this manner appear in the vertebrate lung, liver, and 
neural tube, as well as Drosophila salivary glands and tracheal sacs [7].  The sheet of cells 
contains polarity in that the top is the apical end and the bottom is the basal end.  The cells in the 
sheet elongate to become columnar.  The cells proceed to become wedge-shaped while the sheet 
invaginates, that is, folds inward to form a channel or tube structure, as shown in the rightmost 
portion of the figure.  The formation of this structure may involve rearrangement of the 
cytoskeleton, increasing cell adhesion, or changes in the extracellular matrix [7]. 
 

 
Figure 12. Tube formation by sheet folding [7]. 

 
The classic paper [16] discusses mechanical operations involved in the formation of tubular 
structures.  Their model considers simple cuboidal epithelium where the cells contain 
microfilament bundles attached to the cell membrane in a “purse-string” configuration around 
the cell apex.  Contraction of these fibers results in the narrowing of the cell apex, and the cell 
transforms from a cylindrical structure to a cone structure, as shown in Figure 13. 

 
Figure 13. Contraction of the cell apex [16]. 

 
The contraction mechanism of the cell apex is involved in several biological functions, including 
invagination (as in gastrulation), exvagination, uniform and periodic thickenings (as in neural 
plate formation), wave propagation, and tube formation.  A simulation of sea urchin gastrulation 
is illustrated in the left side of Figure 14.  The beginning structure is a spherical configuration of 
a single layer of uniform-sized cells.  A trigger cell contracts at its apex, which stimulates the 
propagation of a wave of contraction, causing the neighboring cells to also contract at their apex.  
This process of contraction leads to invagination of the cell layer, where the cells buckle and fold 
inside, creating a cavity.  Further folding of cells can eventually result in the formation of a tube, 
as shown in the right side of Figure 14. 
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Figure 14. Gastrulation (left) and neurulation (all) [16]. 

 
As given in the Appendix of [16], parameters involved in tube formation include number of 
cells, number of active cells, cell height, cavity leakage, cavity fluid compliance, filament band 
trigger, viscosity, and elasticity. 
 
2.2.2   Layers of Sheets 
 
Another way epithelial sheets can form tube structures is by the alignment of layers of sheets, as 
displayed in Figure 15.  Structures of this type appear in the formation of vein systems in insect 
wings.  The two layers of cells actually originate from a single layer, which folds back on itself 
to form two layers in which the cells are aligned [7].  As shown in the figure, the cells 
differentiate to form future vein and intervein cells.  The differentiation is based on adhesive 
properties of the cells. 
 

 
Figure 15. Tube formation from sheets of cells [7]. 

 
2.2.3   Branching 
 
Branching tube structures can also be formed from epithelial sheets of cells, as shown in Figure 
16.  A biological example of this structure is the Drosophila tracheal system.  The primary 
branches are two cells wide and the tubes lengthen by cell narrowing and extension [7].  The 
cells at the tips of the primary tubes elongate, resulting in secondary branches and terminals. 
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Figure 16. Formation of branching tube structures [7]. 

 
2.2.4   Budding 
 
Tubes that arise from buds are depicted in Figure 17.  Biological structures such as mammary 
glands, hair follicles, and the pancreas bud can be formed from a budding mechanism.  The cells 
in these structures lack the apical-basal polarity present in the structures discussed previously.  
As the bud enlarges, a small lumen is formed in its interior.  The bud continues to expand and 
several lumens are formed, which eventually coalesce into one continuous lumen. 
 

 
Figure 17. Tube formation by budding [7]. 

 
2.2.5   Groups of Cells 
 
Lumen formation can result from the congregation of several cells, as shown in Figure 18.  These 
unpolarized cells join together to form a cluster in the center of a cord.  Many of these cells then 
become polar and junctional complexes are formed, which leads to the development of the 
lumen.  The gut of an organism can be formed in this manner. 
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Figure 18. Lumen formation from a cord of cells [7]. 

 
2.2.6   Single Cells 
 
A lumen can also be formed from a single elongated cell, such as that in the secondary branches 
of the Drosophila tracheal system or the C. elegans excretory cell.  This process is illustrated in 
Figure 19.  A channel is formed inside the cell which may have a closed end and an open end. 
 

 
Figure 19. Lumen formation from a single cell [7]. 

 
2.2.7   Stacks of Aggregate Rings 
 
The tubes in Figure 20 are constructed from sphere-shaped aggregates of cells.  Each aggregate 
(sphere) consists of 257 cells, and 10 aggregates are placed in a circular arrangement to form a 
ring.  As shown in the figure, these rings are stacked to form a tube structure.  The rings are 
packed closely together so that each aggregate is adjacent to two other aggregates each above 
and below.  This type of tube structure can represent a component of blood vessels, lungs, 
kidneys, and intestines [14]. 
 

 
Figure 20. Tube formation from cell aggregates [14]. 

 
2.2.8   Tube Joining 
 
Another way of forming tubes, such as blood vessels, is by the joining of two existing tubes to 
form a single tube.  This mechanism is shown in Figure 21.  Lumen formation resulting from 
tube joining can be seen in the Drosophila tracheal system.  A track is constructed and serves as 
a bridge between the two original tubes, which then proceed to move towards each other until 
they merge into a single tube. 
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Figure 21. Joining of two tubes [7]. 

 
2.2.9   Vasculogenesis 
 
The formation of blood vessels results from cells that assemble into a cord-like structure.  
Networks of cords a few cells thick are formed, which subsequently merge into larger vessels.  A 
schematic of this process is depicted in Figure 22.  The blue and red cells at the bottom migrate 
and are concatenated to the forming cords.  Many of the cells will also merge into cords along 
the way.  Groups of several cords coalesce into larger vessels, such as the dorsal aorta shown in 
part d of the figure. 
 

 
Figure 22. Formation of blood vessels [7]. 

 
 
2.3   Limbs 
 
Limbs begin as homogeneous buds that develop in a thin tube structure.  The early stages of limb 
development are illustrated in Figure 23.  In part A, the center focus becomes a zone of 
recruitment to which cells are attracted to form an aggregate.  The cells migrate to the focus 
through a process of chemotaxis.  The focus is amplified autocatalytically while the cells 
surrounding a focus are depleted.  Foci are prohibited from each other’s zones of influence.  
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Thus, the system is controlled by a process of local activation and lateral inhibition.  The limb 
structures form sequentially in the direction of the proximo-distal axis.  In part B of the figure, 
the focus elongates, and the attraction of cells is limited to the distal end.  Eventually, the foci 
may form a branching structure, as shown in part C of the figure. 
 

 
Figure 23. Growth and development of a limb [17]. 

 
Variations of limb structures arise from different concentrations of activators and inhibitors.  A 
limb bud that is treated with an inhibitor will reduce the number of digits that form, as shown in 
Figure 24.  As the concentration of the inhibitor increases, the number of digits decreases, as 
evident in the figures displaying five, then four, then two digits.  The presence of the inhibitor 
alters characteristics of the system such as cell traction and motility as well as the size of the 
recruitment zones.  These alterations lead to the failure of bifurcation events, and thus, fewer 
digits. 
 

         
Figure 24. Number of digits based on inhibitor concentration [17]. 
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2.3.1   Limb Geometry 
 
There are three basic types of patterns that occur in limbs – focal condensations, branching 
bifurcations, and segmental bifurcations.  Focal condensations result from an isolated focus, as 
shown in part A of Figure 25.  They can result when the surrounding region becomes unstable 
from a certain balance of activation and lateral inhibition.  Part B of the figure shows a branching 
bifurcation, which occurs as a result of a condensation branching into two.  If the existing 
condensation becomes sufficiently large, its borders each attempt to define its own recruitment 
zone, resulting in the condensation splitting in two.  The third type of pattern is a segmental 
bifurcation, depicted in part C of the figure.  Segments can result from a bud splitting off the end 
of an existing condensation or a condensation that longitudinally divides into two smaller 
segments.  Segmentation is similar to branching, except segmentation occurs longitudinally as 
opposed to laterally. 
 

      
Figure 25. Three types of patterns occurring in limbs [17]. 

 
Several limb patterns generated from combinations of focal condensations, branching, and 
segmentation appear in Figure 26. 
 

      
Figure 26. Patterns from focal condensations, branching, and segmentation [17]. 

 
2.3.2   Mathematical Model 
 
As mentioned previously, the development of limbs is based on an activation-inhibition model in 
which cells follow a chemical gradient.  An increase in the chemoattractant concentration defines 
the autocatalysis process, while the depletion of cells in the area surrounding a focus provides the 
lateral inhibition mechanism. 
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Below is an equation [17] for the cell density, n(x,t). 
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where M is the cell motility, α  is the chemotactic motility, and c is the attractant concentration.  
The first term on the right hand side indicates random motility, and the second term denotes 
chemotaxis.  Thus, the equation gives the rate of change for cell density based on motility and 
chemotaxis. 
 
An equation [17] for the attractant concentration c(x,t) follows. 
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where D is the diffusion coefficient of c, b and h are parameters associated with the rate of 
secretion of chemoattractant, and µ  is the degradation rate of the chemoattractant.  The first 
term on the right hand side denotes diffusion, the second term indicates secretion by cells, and 
the third term denotes the decay.  Hence, the equation gives the rate of change for attractant 
concentration based on diffusion, secretion, and decay of the attractant. 
 
 
2.4   Follicles and Bristles 
 
Follicles are derived from a portion of epithelial tissue that buds, elongates, and invaginates.  
From the follicles emerge various skin appendages such as hair, feathers, whiskers, scales, nails, 
claws, horns, and glands.  These useful structures have a variety of functions including 
temperature regulation, movement, secretion, and defense.  The distribution and morphology of 
follicles are based on the activation-inhibition model.  Several examples of the effect of 
activation-inhibition on follicle development are discussed below. 
 
2.4.1   Distribution of Follicles 
 
The distribution and spacing of follicles are dependent on the concentrations of activators and 
inhibitors.  Moderate overexpression of an activator leads to an increase in follicle density.  
Moderate overexpression of an inhibitor results in a decrease in follicle density, i.e., enlarging of 
the space between follicles.  This phenomenon is illustrated in Figure 27. 
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Figure 27. Effect of activator and inhibitor on follicle distribution in first wave [19]. 

 
Figure 28 shows the effect of activation and inhibition during a second wave of follicle 
induction.  The larger blue circles are follicles resulting from the first induction wave, and the 
smaller red circles are produced during the second wave.  The leftmost image shows the result 
from normal levels of activator and inhibitor.  The effect of increased activation is displayed in 
the middle image.  The space between the first wave follicles becomes more densely packed with 
second wave follicles compared to the normal case.  The rightmost image shows the effect of 
increased inhibition.  As expected, fewer second wave follicles are formed in the inter-follicle 
space. 
 

 
Figure 28. Effect of activator and inhibitor on follicle distribution in second wave [19]. 

 
Each successive wave of follicle formation causes new follicles to form between existing 
follicles, as evident in the previous two figures.  Another view of this effect is illustrated in 
Figure 29.  The first follicle that forms is known as a guard follicle, and it is labeled with a 1 in 
the figure.  The follicles numbered 2 then develop from the line of tissue above the guard 
follicle.  Follicles numbered 3 subsequently develop between the number 2 follicles.  Finally, 
number 4 follicles develop between each of the number 2 and number 3 follicles. 
 

 
Figure 29. Successive stages of follicle development [19]. 
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Figure 30 shows the effect of inhibitor concentration on hair growth of mice.  The first image is 
the wild-type (WT) mouse, the second and third are transgenic mice with medium and strong 
overexpression of inhibitor respectively.  There is approximately a 30% reduction of hair 
follicles in the medium mice.  In the strong mice, there is a greater reduction of follicles, 
resulting in nearly hairless mice which only develop guard follicles. 
 

 
Figure 30. Effect of inhibitor on mouse hair coat [19]. 

 
In wild-type mice, hair follicles are nearly distributed evenly, whereas in mice with an increased 
concentration of inhibitor, the follicles become more spread out.  This effect is illustrated in 
Figure 31.  The first panel indicates wild-type mice and the second panel represents transgenic 
mice. 
 

 
Figure 31. Effect of inhibitor on distribution of mouse hair follicles [19]. 

 
Another phenomenon that occurs as a result of an increased concentration of inhibitor is that 
follicles frequently become clustered, whereas the follicles are separated in the normal case.  
Figure 32 illustrates this effect.  The left panel shows the wild-type case and the right panel 
displays the case of transgenic mice. 
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Figure 32. Effect of inhibitor on clustering of mouse hair follicles [19]. 

 
Varying the number of competent cells used for building follicles also affects follicle formation.  
As shown in Figure 33, an increase in the number of competent cells leads to an increase in the 
number of follicle primordia formed.  Follicle buds fail to form under low cell density.  As cell 
density is increased, cells are packed closer together until the highest density is reached, resulting 
in a hexagonal pattern, as indicated by the topmost square of cells in the figure. 
 

 
Figure 33. Number of follicle primordia [23]. 

 
2.4.2   Morphology of Follicles 
 
The concentration of various morphogens also has an effect on the morphology of developing 
follicles in terms of size, shape, orientation, and structure.  Figure 34 gives an example of the 
effect of activator-inhibitor ratio on the size of follicles.  The larger the activator to inhibitor 
ratio, the larger the follicles, whereas a larger inhibitor to activator ratio leads to more space 
between follicle buds. 
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Figure 34. Follicle size [23]. 

 
In Figure 35, an example of the effect of activator concentration on follicle shape is illustrated.  
Increasing the amount of activator causes the follicle bud to stop elongating and flatten at the tip, 
making it plateau-shaped. 
 

 
Figure 35. Effect of activator on follicle bud shape [23]. 

 
The effect of morphogen concentration on feather structure is shown in Figure 36.  A feather is 
comprised of a primary branch called the rachis, secondary branches known as barbs, and tertiary 
branches called barbules.  The leftmost image is the normal case.  The middle image is a result of 
an increase of inhibitor concentration.  The rachis is enlarged and the barbs become fused 
together.  The rightmost image results from an overexpression of an activator.  The effect is that 
the rachis is split and the barbs begin to branch. 
 

 
Figure 36. Effect of morphogen expression on feather formation [23]. 

 
Figure 37 displays the effect of morphogen concentration on the orientation of follicle structures.  
The left image is the control case.  In the right image, inhibitors (black dots) create zones of 
inhibition which repel nearby buds.  These zones appear in the figure as white circular regions 
around the black dots. 
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Figure 37. Change in orientation of follicles [3]. 

 
Concentrations of morphogens can also affect the type of structures formed.  In Figure 38, 
increasing the concentration of a morphogen from the left image to the right image leads to 
feather buds becoming scale structures. 
 

 
Figure 38. Change of feathers to scales [3]. 

 
2.4.3   Mathematical Model 
 
A brief discussion of a mathematical model for skin morphogenesis follows.  For a detailed 
presentation, the reader is referred to [5]. 
 
Skin is comprised of two layers, the epidermis and the dermis.  The epidermis contains sheets of 
columnar cells, while the dermis consists of mesenchymal cells moving on an extracellular 
matrix.  A fibrous basal lamina separates the epidermis and dermis.  The interaction between the 
epidermis and dermis is an important factor in skin morphogenesis and skin pattern development.  
A schematic view of this interaction appears in Figure 39.  The epidermal cell density is denoted 
by N, and the dermal cell density is indicated by n.  Morphogen ê  is produced by the epidermal 
cells and diffuses to the dermal side where it is denoted by e.  Similarly, the dermal cells produce 
morphogen s which diffuses to the epidermal side where it is denoted by ŝ .  The diffusion of 
both morphogens to the other side results in cell aggregation and the development of follicle 
primordia. 
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Figure 39. Interaction between epidermis and dermis [5]. 

 
The mathematical model [5] consists of differential equations to describe the rate of change of 
the various morphogen concentrations and cell densities.  First, define 
 

=),(ˆ txe epidermal concentration of morphogen produced in epidermis at position x and time t, 
=),( txs dermal concentration of morphogen produced in dermis, 
=),( txe dermal concentration of morphogen received from epidermis, 

=),(ˆ txs epidermal concentration of morphogen received from dermis 
 
The conceptual equations describing the chemical interactions are as follows: 
 

=
∂
∂

t

ê
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The conceptual equations giving the rates of change of cell densities are 
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Variations of the parameters of the system will lead to the development of different skin patterns.  
For example, one set of parameters may produce a stripe pattern, whereas a different set of 
parameters may generate a pattern of spots. 
 
2.4.4   Formation of Bristles 
 
Meinhardt’s reaction-diffusion model can be used to explain the formation of bristles and 
follicles.  Bristles form where activation peaks occur in the epithelial tissue.  These peaks are 
surrounded by a zone of inhibition brought about by a morphogen such as a growth hormone.  As 
cells divide and the tissue expands, the peaks become more spread out.  The next wave of 
activation peaks develop between existing peaks at a certain distance away, where the inhibition 
signal is lower.  Figure 40 illustrates the formation of activation peaks on a 3D surface. 
 

 
Figure 40. Formation of activation peaks [11]. 

 
In Figure 41a, the distribution of new activation peaks among old peaks is shown.  The top 
image shows the configuration of the old peaks.  The tissue grows, causing the peaks to spread 
out as evident in the bottom image.  The new peaks form between the old peaks and they are 
denoted by the x’s in the image. 
 

     
                       a                                               b                                                      c 

Figure 41. Formation of bristles and hairs [11]. 
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Bristles on insects and other animals only form during the first four larval stages.  In the fifth 
stage, hairs instead of bristles develop.  At this point, the most recently formed activation peaks 
are significantly lower than their predecessors.  This may well function as a signal that turns off 
bristle production and turns on hair production.  This phenomenon is illustrated in Figure 41b.  
The open dots denote bristles, which have become more spread out since they were the first to 
develop.  The hairs are denoted by the solid dots, which subsequently fill in the space between 
the previously formed bristles.  Figure 41c gives an image of a cilia pattern on Xenopus. 
 
 
2.5   Sheets and Layers 
 
Tissues composed of sheets and layers are useful structures for secretion, containing glands, or 
serving as a protective covering.  An example of constructing sheets of cells is presented, 
followed by a discussion of the development of convolutions in the cerebral cortex, which is 
followed by a brief example of the effect of growth rate on the geometry of sheet structures. 
 
2.5.1   Sheets of Cell Aggregates 
 
Cellular sheets can be constructed from aggregates of cells.  These sheets can be used for skin or 
the outer layer of organs.  Figure 42 shows an example of forming a sheet of cells.  The sheets 
consist of 25 cell aggregates, each composed of 925 cells.  The initial sheet pattern in image a is 
hexagonal while the image in b assumes a square lattice structure.  The aggregates eventually 
fuse together to form a continuous sheet, as shown in images c and d.  The sheet structures that 
form are dependent on interactions between cells and cell-matrix interactions.  The images in e-h 
are formed using a different cell type, thus resulting in slightly different configurations. 
 

 
Figure 42. Formation of sheets from cell aggregates [14]. 

 
2.5.2   Cerebral Cortex Convolutions 
 
Convolutions are folds that exist in the cortical layer.  The cortex is modeled as a circular 
structure that contains fibers representing glia and axons that pull in a radial direction.  The 
development of convolutions is largely dependent on mechanical factors, such as the elasticity 
and plasticity of the fibers and cortex, and the growth of the cortex itself [21].  Elasticity is a 
measure of flexibility, that is, the ability to restore the initial configuration upon deformation.  
Plasticity refers to the permanent modification of a structure following a strong or continuous 
force.  A geometrical model and mathematical equations for the system can be found in [21].  
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Primary convolutions first develop, then secondary and tertiary convolutions, with each 
successive wave shallower. 
 
2.5.2.1   Formation of Cortex Convolutions 
 
There are three stages involved in the formation of convolutions: symmetric growth, 
development, and accommodation, as illustrated in Figure 43.  The radial elements have been 
omitted in order to simplify the figure, however, they can be imagined as spokes of a wheel.  The 
first stage consists of symmetric growth where the cortex structure expands in a symmetric 
manner.  No convolutions are formed at this point.  In stage II, convolutions begin to develop.  
Stage III involves the accommodation of the convolutions into the cortical layer.  At this stage, 
some convolutions may fuse together, as shown by the convolutions labeled a and b merging 
into one convolution labeled ab.  The numbers at the bottom of the figure denote the iteration 
number in the simulation. 
 

 
Figure 43. Formation of cortex convolutions [21]. 

 
There are three types of asymmetry that trigger the formation of convolutions: geometric 
asymmetries, mechanical asymmetries, and growth asymmetries.  Each of these asymmetries is 
discussed in turn. 
 
2.5.2.2   Geometric Asymmetries 
 
One type of geometric asymmetry is a perturbation of a single point, as indicated by the large 
arrow in Figure 44.  This perturbation leads to the formation of a primary convolution at the 
perturbation point, which then triggers several waves of convolutions to form towards the top 
and bottom of the cortex.  The primary convolution is the deepest, and each successive 
convolution formed thereafter is shallower, as evident in the figure. 
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Figure 44. Effect of perturbation on convolution formation [21]. 

 
Another type of geometrical asymmetry is modification of the initial shape of the cortex.  Instead 
of using a circular configuration, an elliptical shape is used in Figure 45.  In this case, the 
convolutions begin at the top and bottom of the cortex, and spread towards the side, with each 
successive convolution becoming shallower. 
 

 
Figure 45. Effect of ellipse shape on convolution formation [21]. 
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2.5.2.3   Mechanical Asymmetries 
 
Two types of mechanical asymmetries discussed here are steps and gradients in the elastic 
constant of the cortex.  Figure 46 shows the simulation from using steps in the elastic constant.  
The darker region of the cortex is more elastic.  The primary convolution forms in the middle 
where the darker and lighter halves meet.  This induces a wave of convolutions to propagate 
towards the top and bottom of the cortex.  The convolutions are notably deeper in the more 
elastic half. 
 

 
Figure 46. Effect of mechanic step on convolution formation [21]. 

 
Figure 47 shows the result of introducing a gradient in the elastic constant.  Convolutions 
develop simultaneously at several points and they are deeper in the more elastic half of the 
cortex. 
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Figure 47. Effect of mechanic gradient on convolution formation [21]. 

 
2.5.2.4   Growth Asymmetries 
 
Similar to the mechanical asymmetry cases, applying steps and gradients to the growth of the 
cortex leads to the development of convolutions.  The steps and gradients are introduced in the 
carrying capacity parameter of the logistic-growth function.  Figure 48 shows the effect of 
growth step on convolution development.  There is larger growth at the top half of the cortex, 
and smaller growth at the bottom.  The primary convolution forms at the border of the top and 
bottom halves, and this induces successive waves of convolutions to develop towards the top and 
bottom of the cortex which are progressively shallower.  The convolutions are more pronounced 
in the area containing more growth, i.e., the top half. 
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Figure 48. Effect of growth step on convolution formation [21]. 

 
Figure 49 shows the result of applying gradient to the carrying capacity of the cortex.  The 
convolutions are formed simultaneously and they become deeper as they move from the region 
of less growth to the region of more growth. 
 

 
Figure 49. Effect of growth gradient on convolution formation [21]. 
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2.5.3   Effect of Growth Rate on Geometry of Structures 
 
The shape of a given structure can be influenced by the varying rate of growth in different areas 
of the structure [4].  This phenomenon can be seen in Figure 50.  In a, the rate of growth 
increases from left to right.  The cells of the faster-growing right end begin to rotate relative to 
each other, resulting in a curved shape at that end.  In b, the growth rate is higher at the edges 
than it is in the center, thus, the edges bend and the structure forms a wavy edge.  This 
phenomenon is also present in cincinnata mutants [4], where the leaves show significant rippling 
at the edges, resulting from a delay in the arrest of growth at the leaf’s edges. 

 

 
Figure 50. Growth rate’s effect on geometry [4]. 

 
 
2.6   Segments and Somites 
 
In the developing vertebrate embryo, segments of cells form along the anterior-posterior axis.  
These undifferentiated segments eventually become somites, which are precursors to muscle, 
skeletal, and skin components of the organism.  Somites are repeating, periodic structures that 
occur in pairs straddling the notochord.  The formation of somites is largely based on cell 
rearrangements and changes in cell shape.  Somites become rounded as they separate from each 
other.  Somite borders are formed either by fissures or by a ball and socket separation of somites.  
Figure 51 illustrates somite pattern formation in a developing embryo.  The somites labeled s0 
are newly developing somites, and development progresses in the anterior to posterior direction.  
The neural tube is denoted by nt, and PSM indicates the presomatic mesoderm, from which 
somites develop. 
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Figure 51. Formation of somites in embryo [10]. 

 
Several models have been developed in attempt to describe the process of somite formation.  The 
three models discussed here are more commonly studied: the clock and wavefront model, the cell 
cycle model, and the reaction-diffusion model.  There are numerous other models that have 
recently been proposed including the cell-cell adhesion model [1] and the oscillator model [13].  
A more detailed listing of models is given in [10]. 
 
2.6.1   Clock and Wavefront Model 
 
The clock and wavefront model is based on two parameters, a cellular oscillator (clock), which 
controls when somite borders form, and a wavefront, which controls where somite borders form 
[10].  The clock determines when cells undergo major changes in adhesive and migratory 
properties in preparation to form somites.  Cells follow a gradient of fibroblast growth factor 
(FGF) until the FGF signal reaches a limit known as the determination front, the point at which 
cells become committed to form somites.  The clock controls the wavefront by periodically 
enabling its propagation down the axis.  This process is illustrated in Figure 52.  Somites form in 
the anterior (left) to posterior (right) direction.  The PSM is initially homogeneous and the 
passing wavefront triggers several cells to form segments, which are somite precursors. 
 

 
Figure 52. The clock and wavefront model of somite formation [10]. 
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The clock and wavefront also determine the size of the developing somites.  Decreasing the 
frequency of clock oscillations and accelerating the passing wavefront will both increase somite 
size [2]. 
 
The wavefront is determined by the interaction between FGF and retinoic acid which act in a 
negative feedback loop with one another.  This feedback loop controls the FGF signal gradient 
which in turn regulates the wavefront.  The clock is determined by the interaction of an mRNA 
and its protein product which causes a delay by suppressing its own gene expression.  
Mathematical equations for the clock and wavefront model can be found in [10]. 
 
2.6.2   Cell Cycle Model 
 
The cell cycle model associates the cell cycle with somite formation.  It assumes a level of cell 
synchronicity between cells in the PSM.  The process works in the anterior to posterior direction, 
with anterior cells being more mature.  Figure 53 illustrates the process of segmentation given by 
the cell cycle model.  The model defines two points in the PSM cell cycle, P1 and P2, which are 
90 minutes apart.  Cells that have not reached P1 in their cell cycle are not yet ready for 
segmentation.  These cells are located posterior to the forming somite.  Between P1 and P2 is 
when cells gain competency for segmentation.  Because of synchronicity, some of the cells that 
will form a somite together reach P2 before the others in that future somite.  These cells produce 
a signal to which the other cells between P1 and P2 in their cycle respond by undergoing cell 
changes to prepare for somite formation.  Beyond P2, cells are considered somitic.  A 
mathematical model of the cell cycle process is presented in [2]. 
 

 
Figure 53. The cell cycle model of somite formation [2]. 

 
In Figure 54, the effect of applying the morphogen FGF is shown.  The bottom rows correspond 
to a control embryo and the top rows correspond to an embryo to which FGF is applied.  The 
application of FGF causes some of the somites to be smaller than normal, these being followed 
by a larger than normal somite.  The right side of the figure illustrates the effect of increasing the 
strength of the FGF morphogen.  Unusually small and large somites are formed as in the 
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previous case; in addition, an extra somite is developed.  Varying the concentration of the FGF 
morphogen can produce different numbers and sizes of somites. 
 

 
Figure 54. Effect of applying morphogen to forming somites [2]. 

 
2.6.3   Reaction-Diffusion Model 
 
The reaction-diffusion model for the formation of somites was developed by Meinhardt [11].  A 
cell can either be in state a (anterior) or state p (posterior).  Cells in state a produce substance X 
and cells in state p produce substance Y.  For cells in state a, the ability to produce X is turned 
on, and similar for cells in p producing Y.  The two states inhibit one another at the local level 
and activate each other over a distance.  Cells alternate between states until they become stable.  
Thus, a pattern of …apap… is produced in the anterior to posterior direction.  A pair ap 
represents a segment with an anterior and a posterior half, the transition between the two 
indicating a change of specification of the segment.  There are two possibilities for controlling a 
cell’s change in state.  One possibility is the existence of a morphogen gradient and the other is 
the growth of the domain in the posterior direction [2]. 
 
 

3   Conclusions 
 
In this review, the formation of several different useful and interesting biological structures was 
discussed.  Many of the mathematical models behind their development were analyzed, such as 
the reaction-diffusion model and the clock and wavefront model.  Acquiring an understanding of 
the underlying processes driving the development of biological structures will provide 
substantial insight into the creation of innovative artificial structures for useful purposes.  The 
ability to build such structures from the bottom up will lead the field of nanotechnology into a 
direction of unprecedented sophistication. 
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Appendix – Reaction-Diffusion (RD) Model 
 
Two morphogens, known as activator and inhibitor, diffuse throughout a medium at different 
rates.  The activator triggers the production of itself and an inhibitor, which inhibits the 
production of the activator.  Thus, the activator engages in an autocatalytic process while the 
inhibitor provides negative feedback to the system.  The coupling of short range activation and 
long range inhibition leads to periodic waves of activation and inhibition.  When the inhibitor 
diffuses faster than its activator, interesting patterns can emerge.  Three important aspects of a 
reaction-diffusion system are that it is autonomous, the formed patterns are stable, and a pattern 
can restore its original configuration upon perturbation [9].  Patterns generated by a reaction-
diffusion system include patterns of stripes or spots on animal skin, as shown in Figure 55.  The 
stripes on the zebra (left image) exhibit regional variation, whereas the stripe pattern on the 
catfish (right image) is uniform throughout. 
 

   
Figure 55. Stripe patterns in zebra and catfish [9]. 

 
Figure 56 gives several examples of patterns generated by varying a parameter in the reaction-
diffusion equations.  As the parameter is varied, different structures are developed.  Smaller 
values of the parameter lead to stripes (left), medium values result in maze-like patterns 
(middle), and larger parameter values generate isolated spots (right). 
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Figure 56. Various patterns from different parameter values in RD equations [9]. 

 
Below are given equations for the activator and inhibitor respectively [11]: 
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The first equation gives the rate of change of the activator concentration, and the second equation 
gives the rate of change of the concentration of the inhibitor.  The first term of the activator 
equation denotes the present concentration of the activator, which is inversely proportional to the 
concentration of the inhibitor.  The second term indicates the decay of the activator.  The third 
term gives the rate of diffusion of the activator, where Da is a diffusion constant.  In the inhibitor 
equation, the first term gives the concentration of the activator rather than that of the inhibitor 
since the inhibitor’s presence is dependent on the activator’s concentration.  The second term 
denotes the decay of the inhibitor.  The rate of diffusion of the inhibitor is indicated by the third 
term of the equation, where Dh is a diffusion constant.  Details of the mathematical model can be 
found in Meinhardt’s text [11].  
 


