
Power-aware Manhattan routing on chip

multiprocessors

Anne Benoit1, Rami Melhem2, Paul Renaud-Goud1 and Yves Robert1,3

1. École Normale Supérieure de Lyon France,
{Anne.Benoit | Paul.Renaud-Goud | Yves.Robert}@ens-lyon.fr
2. University of Pittsburgh, PA, USA, melhem@cs.pitt.edu

3. University of Tennessee Knoxville, TN, USA

October 13, 2011

Abstract

We investigate the routing of communications in chip multiprocessors
(CMPs). The goal is to �nd a valid routing in the sense that the amount
of data routed between two neighboring cores does not exceed the max-
imum link bandwidth while the power dissipated by communications is
minimized. Our position is at the system level: we assume that several
applications, described as task graphs, are executed on a CMP, and each
task is already mapped to a core. Therefore, we consider a set of com-
munications that have to be routed between the cores of the CMP. We
consider a classical model, where the power consumed by a communication
link is the sum of a static part and a dynamic part, with the dynamic part
depending on the frequency of the link. This frequency is scalable and it is
proportional to the throughput of the link. The most natural and widely
used algorithm to handle all these communications is XY routing: for each
communication, data is �rst forwarded horizontally, and then vertically,
from source to destination. However, if it is allowed to use all Manhattan
paths between the source and the destination, the consumed power can be
reduced dramatically. Moreover, some solutions may be found while none
existed with the XY routing. In this paper, we compare XY routing and
Manhattan routing, both from a theoretical and from a practical point
of view. We consider two variants of Manhattan routing: in single-path
routing, only one path can be used for each communication, while multi-
paths routing allows to split a communication between di�erent routes.
We establish the NP-completeness of the problem of �nding a Manhat-
tan routing that minimizes the dissipated power, we exhibit the minimum
upper bound of the ratio power consumed by an XY routing over power
consumed by a Manhattan routing, and �nally we perform simulations to
assess the performance of Manhattan routing heuristics that we designed.

Keywords: routing; chip multiprocessor; energy; power; Manhattan;
single-path; multi-paths; complexity.

1

1 Introduction

Advances in technology enabled the integration of large numbers of processor
cores into a single chip multiprocessor (CMP) and this trend is expected to
continue in the future [2]. This integration creates the need for high bandwidth
on-chip communication. It also increases the power consumption of a CMP and
necessitates the use of clever management technique to reduce power consump-
tion and mitigate its e�ect on chip temperature and reliability. A signi�cant
fraction of the CMP power is consumed in the on-chip interconnection [6, 14]
and many schemes has been devised to reduce and manage this power.

In this paper, we consider CMPs with mesh interconnections and we inves-
tigate the reduction of the power consumed for on-chip communication through
power-aware routing. Speci�cally, we consider the following problem: given
a set of inter-node communications on the CMP, each with some bandwidth
requirement expressed in bytes per second, �nd the best routes for these com-
munications so that the total power consumed on all the communication links
is minimized. Here we target the problem at the system level rather than at the
application level: there are several parallel applications executing on the CMP,
and each of them has been mapped onto a set of nodes, resulting in one or
several communications between CMP nodes. From a system's point of view, a
communication between two nodes is characterized by its requested bandwidth
(in terms of bytes per second) irrespective of the application that generates the
communication.

Each communication is routed from source to destination along a given path
using either source routing or table-based routing. The total power consumed
for the communication consists of a static part (mostly resulting from leakage)
and a dynamic part (which depends on the number of bytes transmitted). An
e�ective technique for managing the power consumption of interconnection net-
works is based on scaling the frequency and voltage of the communication links
to match the tra�c traversing those links [17]. Speci�cally, assume that routing
the communications is such that the total tra�c on a link L` resulting from all
communication is D` bytes per second. Hence, to satisfy the requests and min-
imize power consumption, link L` must operate at a frequency f` that matches
or exceeds D`/W , where W is the width of the communication link in bytes.
This translates into f` = D`/W if we have a model with continuous frequencies,
or into f` = fmin ≥ D`/W if frequencies are discrete, where fmin is the lowest
frequency matching the constraint. The dynamic power dissipated by link L`
is proportional to the αth power of f`, where α is between 2 and 3. The total
dynamic power dissipated by the communications is the sum over all links.

The most natural and widely used algorithm to handle communications in
2-dimensional meshes is XY-routing: for each communication, data is �rst for-
warded horizontally, and then vertically, from source to destination. However,
many alternate routing paths can be used in meshes. In fact, all Manhattan
paths from the source to the destination are natural candidates to route the
message. This freedom in routing can help dramatically reduce power con-
sumption, when the static part of the power consumption can be neglected. For

2

example, if there are two equal-volume communications from the same source to
the same destination, the �rst can be routed along an XY path and the second
along a YX path, thus reducing the constraint on each link by half, and thereby
reducing the power consumed on that link by a factor of 2α; this reduces the
total dynamic power consumption by 2α−1. However, the number of links used
is doubled in this case, and the static power consumption is doubled too. In the
general case, given a set of communications, our goal is to determine one or sev-
eral routing paths for each communication, so that the total power consumption
is minimized. This requires that our heuristics achieve good trade-o�s between
static and dynamic power consumption. Note that we consider only shortest
path (Manhattan) routing and we assume that a deadlock avoidance technique
is used (such as resource ordering [5] or escape channels [3]).

The rest of the paper is organized as follows. In Section 2 we survey re-
lated work in the domain of routing in CMPs. Then in Section 3, we expose
the framework in which our results take place. The theoretical results (worst
case analysis and NP-completeness) are presented in Section 4. Finally we de-
scribe the heuristics in Section 5, and show their performance in Section 6. We
conclude in Section 7.

2 Related Work

Routing algorithms for on-chip networks can be oblivious to the application
tra�c [16] or can dynamically adapt to that tra�c [4]. If, however, the char-
acteristics of the tra�c are statically known, then routing algorithms can take
advantage of that knowledge to optimize the performance of the interconnec-
tion network. For on-chip routing, there have been many proposals to design
tra�c-aware routes with the goal of maximizing the communication bandwidth
and/or minimizing its delay [8, 13].

When power consumption of the network was recognized as a major com-
ponent of the total power consumption in CMPs, many techniques have been
investigated to manage the power on the links and switches of the interconnec-
tion network. Dynamic Voltage and Frequency Scaling (DVFS) and turning
o� unused links are among the most e�cient techniques that can take advan-
tage of the variation in tra�c to reduce power [1, 10, 17]. Static knowledge of
the tra�c patterns obtained by compiler analysis was also used to optimize
the frequency/voltage scaling of the individual interconnection links in the net-
work [11]. Recent research proposes the adaptive use of back-gate biasing for
managing the dynamic power of on-chip interconnect [9] and the dynamic re-
distribution of the power between the on-chip cores and routers to adapt to the
variation in the computation and communication demands of applications [12].

In [18], an o�-line link speed assignment algorithm was presented for energy
e�cient on-chip networks with voltage scalable links. Given the task graph of
a periodic real-time application, genetic algorithms are used to �rst assign the
tasks to processors and then to assign appropriate communication speeds to
the communication links with the goal of reducing power consumption. In this

3

paper, we isolate the routing problem and provide theoretical results about its
complexity. We also explore a number of heuristics to solve it in polynomial
time.

3 Framework

In this section, we �rst describe the platform and power consumption model
(Section 3.1). Then we formalize the communications that need to be routed
(Section 3.2), and we discuss routing rules (Section 3.3). We are then ready to
formally de�ne the optimization problem (Section 3.4). Finally, we provide a
brief comparison of the routing rules in Section 3.5.

3.1 Platform and power consumption model

The target platform is a CMP (Chip MultiProcessor), composed of p × q ho-
mogeneous cores Cu,v, with 1 ≤ u ≤ p, 1 ≤ v ≤ q, arranged along a rectangu-
lar grid. There are two unidirectional opposite links between neighbor cores.
Hence, vertically, for each (u, v) ∈ {1, . . . , p − 1} × {1, . . . , q}, there is a link
L(u,v)→(u+1,v) from Cu,v to Cu+1,v and a link L(u+1,v)→(u,v) from Cu+1,v to Cu,v.
Similarly, horizontally, for each (u, v) ∈ {1, . . . , p} × {1, . . . , q − 1}, there is a
link L(u,v)→(u,v+1) from Cu,v to Cu,v+1 and a link L(u,v+1)→(u,v) from Cu,v+1 to
Cu,v.

Let succu,v be the set of destination cores of the outgoing links of Cu,v (i.e.,
the neighbor cores). Each link has a maximum bandwidth BW but is scalable:
we can choose the fraction f(u,v)→(u′,v′) of the bandwidth of the link from Cu,v
to Cu′,v′ ∈ succu,v that is active. This means that f(u,v)→(u′,v′)×BW bytes can
go from Cu,v to Cu′,v′ during one second, where 0 ≤ f(u,v)→(u′,v′) ≤ 1.

We de�ne the set of the active links A such that

∀(u, v) ∈ {1, . . . , p} × {1, . . . , q}, ∀Cu′,v′ ∈ succu,v,
L(u,v)→(u′,v′) ∈ A ⇔ f(u,v)→(u′,v′) 6= 0.

We model the power consumption of the platform as the sum of a static part
(the leakage power), and a dynamic part. The leakage power Pleak is the power
consumption of a router that is switched on, while the dynamic power depends
on the active bandwidth of the link. More precisely, Pdyn(L(u,v)→(u′,v′)) =

P0 ×
(
f(u,v)→(u′,v′)BW

)α
, where P0 is a constant and 2 < α ≤ 3 [7].

Hence, if L(u,v)→(u′,v′) ∈ A, the power dissipated to send communications

through L(u,v)→(u′,v′) is P(u,v)→(u′,v′) = Pleak + P0 ×
(
f(u,v)→(u′,v′)BW

)α
. If

L(u,v)→(u′,v′) is inactive, then P(u,v)→(u′,v′) = 0.

3.2 Communications

Since there is no distinction between the applications, we do not have to take
care of which application a communication belongs to. And as the mapping of
the applications is �xed, the communications can be viewed as follows. We are

4

given a set {γ1, γ2, . . . , γnc} of nc di�erent communications; a communication
is de�ned by γi = (Cusrc(i),vsrc(i), Cusnk(i),vsnk(i), δi), where Cusrc(i),vsrc(i) is the
source core, Cusnk(i),vsnk(i) is the destination (sink) core, and δi is the number
of bytes per second required by the message.

The routing of each communication γi is described as a path, denoted pathi.
This path, of length `i, is a sequence of communication links

(L(us1,vs1)→(ud1,vd1), . . . , L(us`i ,vs`i)→(ud`i
,vd`i

)),

such that Cus1,vs1 = Cusrc(i),vsrc(i), Cud`i
,vd`i

= Cusnk(i),vsnk(i), and for all ` ∈
{1, . . . , `i − 1}, Cud`,vd`

= Cus`+1,vs`+1
.

3.3 Routing rules

As stated and motivated earlier, we restrict the study to Manhattan paths,
hence to shortest paths. Therefore, the length of any path for communication γi
between Cusrc(i),vsrc(i) and Cusnk(i),vsnk(i) is `i = |usrc(i)− usnk(i)|+ |vsrc(i)−
vsnk(i)|.

We de�ne diagonals of cores D
(d)
k (as illustrated in Figure 1) for all values

of k ∈ {1, . . . , q + p− 1}, and for d ∈ {1, 2, 3, 4}:

• Cu,v ∈ D(1)
k ⇔ u+ v − 1 = k;

• Cu,v ∈ D(2)
k ⇔ u+ q − v = k;

• Cu,v ∈ D(3)
k ⇔ p− u+ q − v + 1 = k;

• Cu,v ∈ D(4)
k ⇔ p− u+ v = k.

Note that each core is in exactly four diagonals (one for each value of d).
The index d corresponds to the direction of the diagonal.

We also de�ne the direction di of communication γi, and the index ksrc(i)
of the diagonal of direction di that Cusrc(i),vsrc(i) belongs to (i.e., Cusrc(i),vsrc(i) ∈
D

(di)
ksrc(i)), as:

• if usrc(i) ≤ usnk(i) and vsrc(i) ≤ vsnk(i), then di = 1 and ksrc(i) =
usrc(i) + vsrc(i)− 1;

• if usrc(i) ≤ usnk(i) and vsrc(i) > vsnk(i), then di = 2 and ksrc(i) =
usrc(i) + q − vsrc(i);

• if usrc(i) > usnk(i) and vsrc(i) > vsnk(i), then di = 3 and ksrc(i) =
p− usrc(i) + q − vsrc(i) + 1;

• if usrc(i) > usnk(i) and vsrc(i) ≤ vsnk(i), then di = 4 and ksrc(i) =
p− usrc(i) + vsrc(i).

5

Figure 1: Location of the communications.

With those de�nitions, since the paths are shortest paths, communications
always move along the same direction. Formally, the `th communication link

of pathi goes from a core in D
(di)
ksrc(i)+`−1 to a core in D

(di)
ksrc(i)+`. Therefore, the

index ksnk(i) of the diagonal of direction di that Cusnk(i),vsnk(i) belongs to is

ksnk(i) = ksrc(i) + `i, i.e., Cusnk(i),vsnk(i) ∈ D
(di)
ksrc(i)+`i

.

We are now ready to describe the di�erent routing rules:

• XY routing (XY). Each communication goes horizontally �rst, then vertically.

• Single-path Manhattan routing (1-MP). The communication can take any path
as described above.

• s-paths Manhattan routing (s-MP). A communication γi can be split into s′ ≤
s distinct communications γi,1, γi,2, . . . , γi,s′ , of sizes δi,1, δi,2, . . . , δi,s′ , where:

1. for each s′′ ∈ {1, . . . , s′},

γi,s′′ = (Cusrc(i),vsrc(i), Cusnk(i),vsnk(i), δi,s′′);

2.
∑s′

s′′=1 δi,s′′ = δi.

Note that for each i ∈ {1, . . . , nc}, since all γi,j (for j ∈ {1, . . . , s}) have the
same source core and sink core, they all have the same length `i and direction di.
However, since communications have been split, we can now choose di�erent
paths for each part of the former communications.

• max-paths Manhattan routing (max-MP). This is a special case of s-MP where

6

the number of paths is not bounded, i.e., a communication can be split into any
number of distinct communications. We bound this number in Section 4.

3.4 Problem de�nition

We are given a CMP, a set of communications {γ1, . . . , γnc
}, and a routing rule

(XY or s-MP), with a maximum number s of paths for a single communication.
A routing is de�ned by:

• for each i ∈ {1, . . . , nc}, a splitting into {γi,1, . . . , γi,s} if s > 1, otherwise
γi,1 = γi for XY or 1-MP;

• for each j ∈ {1, . . . , s}, the path pathi,j of γi,j ;

• for all (u, v) ∈ {1, . . . , p} × {1, . . . , q} and Cu′,v′ ∈ succu,v, the fraction of
bandwidth f(u,v)→(u′,v′) used for the communication from Cu,v to Cu′,v′ .

Our goal is to �nd a routing that minimizes the total power consumption,
while ensuring that link bandwidths are not exceeded. This last constraint
adds the volume of communication going through each link and checks that the
fraction of bandwidth available is not exceeded: for all (u, v) ∈ {1, . . . , p} ×
{1, . . . , q} and Cu′,v′ ∈ succu,v,∑

i ∈ {1, . . . , nc}, j ∈ {1, . . . , s}
L(u,v)→(u′,v′) ∈ pathi,j

δi,j ≤ f(u,v)→(u′,v′) × BW .

3.5 Comparison of routing rules

Note �rst that XY routing is a restriction of 1-MP routing, which is itself a
restriction of s-MP routing.

We give here an example such that there exists a 1-MP routing that is
better than the XY routing, and there exists a s-MP routing that is better
than any 1-MP routing. We set Pleak = 0, P0 = 1, α = 3, BW = 4, and we
consider two communications γ1 = (C1,1, C2,2, 1) and γ2 = (C1,1, C2,2, 3). The
XY routing is shown in Figure 2(a), and it leads to a power PXY = 2 × 43 =
128. The best 1-MP routing is depicted in Figure 2(b), and leads to a power
P1−MP = 2 × (13 + 33) = 56. In the best 2-MP routing, γ2 is split into
γ2,1 = (C1,1, C2,2, 1) and γ2,2 = (C1,1, C2,2, 2) (see Figure 2(c)). The consumed
power is then P2−MP = 2× (23 + 23) = 32.

4 Theoretical results

In this section, we �rst show (Section 4.1) how much power we can save if
Manhattan routing can be used instead of XY routing. Then, we prove the
NP-completeness of the problem of �nding a Manhattan routing in Section 4.2.

7

(a) XY (b) 1-MP

(c) 2-MP

2(a): PXY = 128
2(b): P1−MP = 56
2(c): P2−MP = 32

Figure 2: Comparison of routing rules.

4.1 Manhattan vs XY

Throughout this section we let Pleak = 0 and P0 = 1, so that routing policies aim
at load-balancing communications as well as possible on all communication links.
This scenario corresponds to communication-intensive applications: as the total
communication volume increases, the dynamic part of the power consumption
becomes more and more predominant. Note that if Pleak is very large and P0

very small, then the problem becomes completely di�erent, since the objective
would be to group many communications on the same links, in order to minimize
the total number of links that would be used in the end.

We start by counting the number of Manhattan paths going from C1,1 to
Cp,q, hence enabling us to characterize the maximum number of paths that can
be used by a max-MP routing.

Lemma 1. There are
(
p+q−2
p−1

)
Manhattan paths going from C1,1 to Cp,q.

8

Proof. Let N(u, v) be the number of paths going from C1,1 to Cu,v. For all
(u, v) ∈ {2, . . . , p}×{2, . . . , q}, we have N(u, v) = N(u−1, v)+N(u, v−1) (one
path �nishing vertically and one �nishing horizontally). In addition, for each
v ∈ {1, . . . , q}, N(1, v) = 1 and for each u ∈ {1, . . . , p}, N(u, 1) = 1 (one single
horizontal or one single vertical path). By immediate recursion, we have, for all
(u, v) ∈ {1, . . . , p} × {1, . . . , q}, N(u, v) =

(
u+v−2
u−1

)
=
(
u+v−2
v−1

)
.

Single source and single destination. We start the comparison with com-
munications that share the same source core and the same destination core. We
study the worst case of an XY routing versus a multi-path Manhattan routing,
in which the maximum number of communications is the number of di�erent
paths in the processor. This corresponds to the max-MP routing rule.

Theorem 1. Given a p × q CMP with q ≥ p, q = O(p), and a set of commu-
nications to be routed from C1,1 to Cp,q, the minimum upper bound for the ratio
of the power consumed by an XY routing (PXY) over the power consumed by a
max-MP routing (Pmax) is in O(q).

Note that the result holds true for a p× p square CMP, or for a CMP with
p ≥ q and p = O(q) (with a minimum upper bound in O(p)).

Proof. We �rst prove that an upper bound of PXY/Pmax is in O(q). Then, we
show that this bound can be achieved on a square CMP.

Let K be the total size of the communications to route (that is to say K =∑
i∈{1,...,nc} δi). The XY routing is forwarding all these communications along

the same route, leading to a power consumption PXY = (p + q) × Kα, and
therefore PXY is in O(p+ q) = O(q).

All communications, even if split in multiple paths (as allowed with a max-
MP routing), follow the same diagonals in direction 1. For each k ∈ {1, . . . , q+
p − 2}, we de�ne by K

(1)
k the sum of the γi for all i ∈ {1, . . . , nc} such that

Figure 3: Ideal sharing of one communication.

9

ksrc(i) ≤ k and ksnk(i) > k. Since all communications have the same source

and destination, K
(1)
k = K for each k.

For a given K
(1)
k , the ideal way to map those communications is to distribute

them among all the communication links fromD
(1)
k toD

(1)
k+1 (see Figure 3). Such

a splitting cannot be achieved but provides a bound on how to load-balance the
communication across the links.

We have:

Pmax ≥
p−1∑
k=1

2k

(
K

(1)
k

2k

)α
+

q−1∑
k=p

(2p− 1)

(
K

(1)
k

2p− 1

)α

+

q+p−2∑
k=q

2(q + p− k − 1)

(
K

(1)
k

2(q + p− k − 1)

)α
,

and, since K
(1)
k = K and

∑p−1
k=1 k

1−α ≥
∫ p
1
dx/x1−α,

Pmax≥Kα

(
2× 1

2α−1
1

2− α
(
1− p2−α

)
+

q − p
(2p− 1)α−1

)
,

and hence Pmax = O(1), since α > 2 and q = O(p).
Finally, we conclude that the worst ratio PXY/Pmax is at most in O(q),

providing us an upper bound on this ratio.

We now exhibit an instance of the problem on a square CMP and a max-MP

routing such that the ratio (in O(p)) is realized, when all communications go
from the same source core to the same destination core. Let p = 2× p′, and K
be the total size of the communications to route. The power consumed with an
XY routing is PXY = 2p×Kα, and therefore PXY is in O(p).

Now we consider the routing pattern depicted in Figure 4. We deal with the

cores in diagonal. On semi-diagonal D
(1)
2k , for j ∈ {1, . . . , k}, the core Cj,2k+1−j

on line j is sending rk,j communications to its right core, and dk,j to its down

core. Between D
(1)
2k and D

(1)
2(k+1), for j ∈ {1, . . . , k + 1}, the core Cj,2k+2−j on

line j is sending hk+1 communications to its right core.
We set:

• for k ∈ {1, . . . , p′}, hk =
K

k
;

• for k ∈ {1, . . . , p′ − 1} and j ∈ {1, . . . , k},

rk,j =
k + 1− j
k(k + 1)

K and dk,j =
j

k(k + 1)
K .

We show that the splits and merges of communications are valid:

• for k ∈ {1, . . . , p′ − 1} and j ∈ {2, . . . , k},

1

K
(rk,j + dk,j−1) =

k

k(k + 1)
= hk+1 ;

10

• for k ∈ {1, . . . , p′ − 1}, rk,1 = hk+1 and dk,k = hk+1;

• for k ∈ {1, . . . , p′ − 1} and j ∈ {1, . . . , k},

1

K
(rk,j + dk,j) =

k + 1

k(k + 1)
= hk .

What is the dissipated power with this max-MP routing? The total power

consumption is twice the power consumed until diagonal D
(1)
2p′ (we de�ne sym-

metrical routes for the other half of the routing). Therefore, we have:

1

2
Pmax =

p′∑
k=1

k (hk)
α
+

p′−1∑
k=1

α∑
j=1

((dk,j)
α
+ (rk,j)

α
)

≤
p′∑
k=1

k (hk)
α
+

p′−1∑
k=1

k∑
j=1

(dk,j + rk,j)
α
.

Also, we know that for k ∈ {1, . . . , p′−1} and j ∈ {1, . . . , k}, dk,j+rk,j = hk.
Therefore,

1

2
Pmax ≤

p′∑
k=1

k (hk)
α
+

p′−1∑
k=1

k (hk)
α ≤ 2Kα

p′∑
k=1

1

kα−1

≤ 2Kα (1 + (1− 1/p′)) .

Finally, since PXY is in O(1), the ratio PXY/Pmax is in O(p), which concludes
the proof.

Figure 4: Routing pattern.

11

This shows that even with an exponential number of paths, using multi-paths
routing on a square CMP, in which all communications have the same source
core and the same destination core, leads to a power improvement factor of up
to O(p), compared to an XY routing. Moreover, this factor can be reached with
a max-MP routing. We did not succeed to derive this factor with a single-path
routing (1-MP), and this is left as an open problem.

In the next paragraph, we investigate whether this factor can be improved
when communications must be routed from/to di�erent core pairs.

Multiple sources and multiple destinations. We now consider that sev-
eral communications with di�erent sources and destinations must be routed on
the CMP. The upper bound on the improvement factor when using (multiple)
Manhattan paths then becomes O(pα−1), and this ratio is reached even for a
1-MP single-path routing.

Theorem 2. Given a p × q CMP with q ≥ p, q = O(p), and a set of commu-
nications, the minimum upper bound for the ratio of the power consumed by an
XY routing (PXY) over the power consumed by a max-MP routing (Pmax) is in
O(pα−1).

Proof. Similarly to the proof of Theorem 1, we �rst show that an upper bound
of PXY/Pmax is in O(pα−1). The tightness result is given in Lemma 2, for a
1-MP routing.

We start by providing a lower bound of Pmax, following the same line of
reasoning as in the proof of Theorem 1. This time, we have to consider diagonals
going into each of the four possible directions: for each k ∈ {1, . . . , q+p−2} and
for each d ∈ {1, . . . , 4}, K(d)

k is the sum of the δi such that di = d, ksrc(i) ≤ k
and ksnk(i) > k.

For a given K
(d)
k , the ideal way to map those communications (with as many

paths as desired) is to distribute them equally among all the communication

links from D
(d)
k to D

(d)
k+1, hence providing us with a lower bound on Pmax. Thus,

if all communications go in direction d, we have:

P (d)
max ≥

p−1∑
k=1

2k

(
K

(d)
k

2k

)α
+

q−1∑
k=p

(2p− 1)

(
K

(d)
k

2p− 1

)α

+

q+p−2∑
k=q

2(q + p− k − 1)

(
K

(d)
k

2(q + p− k − 1)

)α

≥ 1

(2p)α−1

q+p−2∑
i=1

(
K

(d)
i

)α
.

Note that for a given communication link that is between two successive
diagonals in a direction, there exists another direction such that this link is

12

between two successive diagonals in this direction. For instance L(1,1)→(1,2)

goes from D
(1)
1 to D

(1)
2 but also from D

(4)
p to D

(4)
p+1.

However, because of the convexity of the power function, the power dissi-
pated by a routing is less than the power dissipated if the communications in
each direction would not interfere:

Pmax ≥
4∑
d=1

P
(d)
s−MP =

1

(2p)α−1

4∑
d=1

q+p−2∑
i=1

(
K

(d)
i

)α
.

There remains to �nd an upper bound on PXY, which is more di�cult to
achieve than in the single source/destination case. First, for a given sum of

communications K
(d)
k and a given occupation of the links from D

(d)
k to D

(d)
k+1,

note that the worst case would be to map the whole K
(d)
k onto the maximum

occupied link, because of the convexity of the power function. Let us consider
now the direction 1. We relax the problem by saying that the set of commu-

nication links from D
(1)
k to D

(1)
k+1 has a non empty intersection with any set of

links from D
(2)
k′ to D

(2)
k′+1, k

′ ∈ {1, . . . , q+ p− 2}, and with any set of links from

D
(4)
k′′ to D

(4)
k′′+1, k

′′ ∈ {1, . . . , q+p−2}. We keep on relaxing by placing the K
(1)
k

both on a link of the �rst set and on a link of the second set.
Then, for d = 2 and d = 4, σ1,d is the permutation of {1, . . . , q+ p− 2} such

that
∑p+q−2
k=1

(
K

(1)
k +K

(d)
σ1,j(k)

)α
is maximum. We map K

(1)
k and K

(d)
σ1,j(k)

onto

the same link, thus K
(d)
σ1,j(k)

cannot interfere anymore with another K
(1)
k′ , hence

the permutation.
We de�ne σ3,2 and σ3,4 in the same way and obtain that:

PXY ≤
p+q−2∑
k=1

(
K

(1)
k +K

(2)
σ1,2(k)

)α
+
(
K

(1)
k +K

(4)
σ1,4(k)

)α
+
(
K

(3)
k +K

(2)
σ3,2(k)

)α
+
(
K

(3)
k +K

(4)
σ3,4(k)

)α
.

Indeed, we account for all communications, in any direction. Since for all
(a, b), (a+ b)α ≤ (2a)α + (2b)α, we deduce that

PXY ≤ 2× 2α
p+q−2∑
k=1

4∑
j=1

(
K

(j)
k

)α
,

and hence PXY is in O(1).
Finally we conclude that the ratio PXY/Pmax is at most in O(pα−1). We

prove that this ratio can indeed be achieved in Lemma 2.

Lemma 2. The ratio in O(pα−1) of Theorem 2 can be achieved with a 1-MP

routing on a square CMP.

13

(a) YX (b) XY

Figure 5: Proof of Lemma 2.

Proof. We consider a p×p CMP, where p = p′+1, and a set of p′ communications
γ1, . . . , γp′ , where for all i ∈ {1, . . . , p′}, γi = (C1,i, Ci,p′+1, 1).

The XY routing depicted in Figure 5(b) has a power consumption of PXY =

2
∑p′

i=1 i
α. We have:

(p′)α+1 ≤ PXY

2(α+ 1)
≤ (p′ + 1)α+1 − 1,

hence PXY is in O((p′)α+1).
The 1-MP routing depicted in Figure 5(a) is a YX routing, and its power

consumption is:

P1−MP =

p′∑
i=1

2i× 1α = p′(p′ + 1).

We conclude that in this example the ratio PXY/P1−MP is in O(pα−1), hence
matching the upper bound.

4.2 NP-completeness

Theorem 3. Finding a s-MP routing that minimizes the total power consump-
tion while ensuring that link bandwidths are not exceeded is a NP-complete prob-
lem.

Proof. Consider the associated decision problem: given a power threshold P , is
there a s-MP routing that does not exceed any link bandwidth, and such that
the total power consumption is not greater than P? The problem is obviously
in NP: given a routing, it is easy to check in polynomial time that it is a s-MP

routing (each communication is split in at most s communications), that the

14

Figure 6: NP-completeness proof.

bandwidth on each link is not exceeded, and that the total power consumption
is not greater than P .

In fact, even without any power consideration, we prove that the problem of
matching the bandwidth constraints is NP-complete. The associated decision
problem is as follows: is there a s-MP routing that does not exceed any link
bandwidth?

To establish the completeness, we use a reduction from 2-partition. We
consider an instance I1 of 2-partition: we are given n strictly positive integers
a1, a2, . . . , an, does there exist a subset I of {1, . . . , n} such that

∑
i∈I ai =∑

i/∈I ai? Let S =
∑n
i=1 ai.

We build an instance I2 of our problem. The CMP is of size p×q, with p = 2
and q = (s − 1)n + 2, and the maximum bandwidth of communication links is
BW = S/2 + (s − 1)n. We have nc = n + q communications (γ1, γ2, . . . , γnc)
to route. The �rst n communications are traversing the CMP: γ1 goes from
C1,1 to Cp,q; γ2 starts from C1,s, and so on: for each i ∈ {1, . . . , n}, γi =
(C1,(i−1)(s−1)+1, Cp,q, ai+s−1). The last q communications are one-hop vertical
communications: for each i′ ∈ {1, . . . , q − 2}, γn+i′ = (C1,i′ , C2,i′ ,BW − 1);
γnc−1 = (C1,q−1, C2,q−1,BW − S

2), and γnc
= (C1,q, C2,q,BW − S

2).
Note that since the routing is using only shortest paths, we do not have any

choice for the routing of communications γn+1, . . . , γnc : each communication
must follow the vertical link, as shown in Figure 6.

Clearly, the size of I2 is polynomial in the size of I1. We now show that I2
has a solution if and only if I1 does. Suppose �rst that I1 has a solution and
let I be a subset of {1, . . . , n} such that

∑
i∈I ai = S/2. For each i ∈ {1, . . . , n},

we split the communication γi into γi,1, . . . , γi,s such that δi,s = ai and for
all k ∈ {1, . . . , s − 1}, δi,k = 1. To de�ne completely a path, we just have
to decide for the vertical link that is used. For each i ∈ {1, . . . , n} and each
k ∈ {1, . . . , s − 1}, γi,k uses L(1,(i−1)(s−1)+k)→(2,(i−1)(s−1)+k). For each i ∈ I,
γi,s uses L(1,q−1)→(2,q−1) and for each i ∈ {1, . . . , n} \ I, γi,s uses L(1,q)→(2,q).
No link bandwidth is exceeded and we obtain a solution to I2.

Suppose now that I2 has a solution. All source cores are on line 1, all
destination cores are on line 2, and the sum of all communications is equal to the
total available bandwidth of the vertical links. Therefore, each vertical link must
be fully utilized, up to the maximum bandwidth BW . Since communication γ1

15

is the only one that can use links L(1,1)→(2,1) to L(1,s−1)→(2,s−1), it must send
a communication with δ1,k = 1 on each of these links, for 1 ≤ k ≤ s− 1. After
that, this communication cannot be split anymore because the routing must use
at most s paths. Because the available bandwidth of the vertical links until
the last two ones is BW − 1, the a1 remaining bytes must wait until C1,q−1 or
C1,q to go down. We can reiterate this reasoning on the next communications
γ2, . . . , γn. Finally the 2-partition comes from the fact that at most S/2 bytes
can go down through L(1,q−1)→(2,q−1) and the vertical links have to be saturated.
This concludes the proof.

5 Heuristics

We present in this section several heuristics to solve the 1-MP problem. Note
that we restrict ourselves to single-path routing heuristics because of the over-
head incurred by routing a given communication across several paths; with the
packets following di�erent paths, reconstructing the message becomes a time-
consuming task and may well involve complicated bu�ering policies. Instead,
we envision a table-driven scheduling algorithm, which the system can safely
call each time there is a new set of applications to be routed along the CMP.
Furthermore, thanks to the theoretical results of Section 4, we hope signi�cant
gains over XY routing when using single-path routing, as is shown in Lemma 2.

In all the heuristics, when we deal with the communications greedily, these
are sorted by decreasing number of bytes per second δi, which we call weight in
the following. We have considered variants of the heuristics, where communica-
tions are sorted according to another criterion (as for instance their length, or
the ratio of their weight over their length). It turns out that decreasing weights
gives the best results, hence we report only this variant. The source code for all
heuristics and simulations is available at [15].

5.1 Simple greedy (SG)

We route communications one by one, and for each communication, we build
the path from the source core to the destination core hop by hop, the next used
link being the least loaded link among the one or two possible next links. If
there is a tie, we choose the link that gets closer to the diagonal, from the source
core to the sink core.

5.2 Improved greedy (IG)

We pre-route the communications as if all possible links between two diagonals
could be used and if we could share each communication among all those links,
similarly to Figure 3. As mentioned in Section 4.1, such a pre-routing cannot
be achieved, and we merely use it as a virtual initial distribution. We sort
the communications by decreasing weights, and deal with the communications
greedily.

16

When processing a communication γi, we �rst remove all its contributions
to the loads of the links (remove its pre-routing) and then �nd a unique route
for this communication (with the pre-routing loads of the yet un-processed com-
munications still on the links). Starting from the source core, we choose at each
step the next link that will be used in the following way (there are at most two
possible links). Recall that di is the direction of γi, and let k0 be such that the

current core Cu,v belongs to D
(di)
k0

. If u = usnk(i) (resp. v = vsnk(i)), we have
no choice, the next link is horizontal (resp. vertical). Otherwise, we choose the

one of the two links between diagonals D
(di)
k0

and D
(di)
k0+1 that could lead to the

lowest power consumption. For each of the two possible links, we compute a
lower bound on the power consumption to reach the sink core after the chosen
link: for each k ∈ {k0 + 1, . . . , usnk(i) + vsnk(i)− 1}, we keep the least loaded

possible link between D
(di)
k and D

(di)
k+1, and we compute the power consumption

if we add communication γi. The lower bound is obtained by summing all these
power consumptions, together with the power consumption of the link chosen

between D
(di)
k0

and D
(di)
k0+1. Finally, we choose the link with the smallest lower

bound, and we iterate until the destination core is reached.

5.3 Two-bend (TB)

We authorize at most two bends for the routing of a given communication. Once
again, we sort the communications by decreasing weights. For each communi-
cation γi, we try all possible routings (there are at most |usrc(i) − usnk(i)| +
|vsrc(i) − vsnk(i)| di�erent two-bend routings), and we keep the best one (in
terms of power consumption).

5.4 XY improver (XYI)

The idea is to start with an XY-routing and to try to decrease the load of the
most loaded links. We �rst route the communications using XY-routing, and
we build a list of links, containing all the links, from the most loaded one to
the least loaded one. We take the �rst link in the list. For each communication
going through this link, we try to move it, so that it avoids this highly loaded
link. More precisely, if the link is vertical, we use instead the horizontal link
going to the same core, from the core that is the closest to the source core of the
communication. If the link is horizontal, we instead use the vertical link going
from the same core, and going to the core that is closest to the sink core of the
communication. If the communication cannot be moved without violating the
Manhattan path constraint, it is removed from the list of the communications
going through this link.

For each communication, we compute the power consumption with the mod-
i�ed routes. If none of the modi�cations lead to a lower power consumption (or
simply if no modi�cation is available), we remove the link from the list, and
iterate with the next link in the list. If at least one modi�cation leads to a
power improvement, we keep the new routing that consumes the lowest power,

17

update the load of the links, and we sort again the list of links by decreasing
load. We then iterate. Note that there are at most p × q modi�cations per
communication.

5.5 Path remover (PR)

Similarly to heuristic IG, we �rst assume that each communication is (virtu-
ally) pre-routed with all paths from its source node to its destination node, as
in Figure 3. Then, we iteratively remove links for the communications, until
there remains only one path for each of them. While there remains a commu-
nication with two or more paths, we consider the most loaded link, and the
largest communication that uses this link. We remove this link from the list
of links used by this communication, unless this removal would break its last
remaining path for this communication. Otherwise, we consider removing the
second communication, and so on.

After removing a link for a communication γi, we need some path cleaning
operation. We update the array of possible links for γi (initially, it contains all
Manhattan paths), in such a way that it is easy to check, when considering a sub-
sequent deletion, if there remains a path for γi. For example, assume that di = 1.
If we delete L(u,v)→(u,v+1), and if the link L(u,v)→(u+1,v) has already been re-
moved, we delete as well the links L(u−1,v)→(u,v) and L(u,v−1)→(u,v). Also,
if we delete L(usrc(i),v)→(usrc(i),v+1), then all the links L(usrc(i),v′)→(usrc(i),v′+1)

for all v′ ∈ {v, . . . , vsnk(i) − 1}, and L(usrc(i),v′′)→(usrc(i)+1,v′′) for all v′′ ∈
{v, . . . , vsnk(i)}, can be deleted. Finally, we can remove a link between diago-

nals D
(d)
k and D

(d)
k+1 only if there are at least two valid links between those two

diagonals. Please refer to [15] for further details on the implementation.

6 Simulations

As mentioned earlier, the source code for the simulations is available at [15].
The CMP is of size 8 × 8. Given that implementing continuous frequencies is
not practical, we use the characteristics of the links described in [7]. The given
discrete values for the frequencies �t our model with Pleak = 16.9mW, P0 = 5.41
and α = 2.95. We have then three possible frequencies: 1 Gb/s, 2.5 Gb/s
and 3.5 Gb/s. Note that the heuristics presented in the previous section work
with both continuous frequencies and discrete frequencies; in this latter case
(which is the case of these simulations), each time that we compute the power
consumption, we pick the �rst frequency in the set of possible frequencies higher
than the required continuous frequency. We use random source and sink nodes
for the communications.

In addition to the heuristics described in Section 5 (SG, IG, TB, XYI,
PR), we run the XY heuristic, and we de�ne the BEST heuristic as the best
heuristic among all six ones on the given problem instance. Each point of the
graph is obtained by averaging on 50000 sets of communications. For each
simulation, we plot the inverse of the power of each heuristic (which we set to 0

18

if the heuristic fails), that we normalized by the inverse of the power of BEST,
and the ratio of failures (instances where the heuristic does not �nd a solution).

6.1 Sensitivity to the number of communications

We �rst assess the impact of the number of communications, for both small,
mixed and big communications. Results are reported in Figure 7.

6.1.1 Small communications

We draw the weight of each communication uniformly between 100Mb/s and
1500Mb/s. Concerning the capacity of the heuristics to �nd a solution, the
failure ratio de�nes a clear hierarchy among the heuristics. From the worst one
to the best one, we have XY, SG, TB, IG, XYI and �nally PR. XY begins
to fail with less than 10 communications. With 80 communications, XY and
SG fail almost all the time, while PR succeeds four times out of �ve, XYI half
the time, IG every �fth time and TB every tenth time. PR succeeds almost
every time when at least one heuristic succeeds.

The power inverse keeps this hierarchy, except that PR is not the best
heuristic when the constraints are low, because it does not care about static
power. PR stays at 80% of BEST for any number of communications, but
XYI is the best heuristic when there are less than 70 communications, and
then its performance drops.

BESTIG PRXYIXY TBSG

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

N
or

m
al

iz
ed

 p
ow

er
 in

ve
rs

e

Number of communications
0 10 20 30 40 50 60 70

Number of communications
0 5 10 15 20 25 30

Number of communications

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

F
ai

lu
re

 r
at

io

Number of communications

(a) Small communications

0 10 20 30 40 50 60 70
Number of communications

(b) Mixed communications

0 5 10 15 20 25 30
Number of communications

(c) Big communications

Figure 7: Sensitivity to the number of communications.

19

Figure 8: Sensitivity to the size of communications.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

N
or

m
al

iz
ed

 p
ow

er
 in

ve
rs

e

Average weight
0 500 1000 1500 2000 2500 3000 3500

Average weight
0 200 400 600 800 1000 1200 1400 1600 1800

Average weight

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500

F
ai

lu
re

 r
at

io

Average weight

(a) Few communications

0 500 1000 1500 2000 2500 3000 3500
Average weight

(b) Some communications

0 200 400 600 800 1000 1200 1400 1600 1800
Average weight

(c) Numerous communica-
tions

BESTIG PRXYIXY TBSG

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

N
or

m
al

iz
ed

 p
ow

er
 in

ve
rs

e

Average length
2 4 6 8 10 12 14

Average length
2 4 6 8 10 12 14

Average length

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14

F
ai

lu
re

 r
at

io

Average length

(a) Numerous small commu-
nications

2 4 6 8 10 12 14
Average length

(b) Some mixed communi-
cations

2 4 6 8 10 12 14
Average length

(c) Few big communica-
tions

Figure 9: Sensitivity to the length of communications.

20

6.1.2 Mixed communications

We draw the weight of each communication uniformly between 100Mb/s and
2500Mb/s. With these parameters, we reach more or less the same conclusions,
except that TB and IG now have almost the same results.

6.1.3 Big communications

We draw the weight of each communication uniformly between 2500Mb/s and
3500Mb/s. With such large communications, PR is still the best heuristic, and
it is closer to BEST than previously: it is always within 95% of BEST.

6.2 Sensitivity to the size of communications

Here we study the behavior of the heuristics, when the size of communications
gets larger, for three di�erent sizes of the communication set. Results are re-
ported in Figure 8.

6.2.1 Few communications

In this experiment, we draw 10 communications. XYI is clearly the best heuris-
tic if the average weight is less than 1600Mb/s, otherwise PR is the best: in
their best range, their inverse power always is up to 98% of BEST. One can
remark that the performance of all heuristics is suddenly decreasing around
1750Mb/s. This comes from the fact that as soon as the weight of every com-
munication reaches 1751Mb/s, then two communications cannot share the same
link any more.

6.2.2 Some communications

We now draw 20 communications. Even thoughXYI is always at 99% of BEST
when the average weight is less than 1750Mb/s, it falls at only 35% of BEST
for weights larger than 2000Mb/s. Conversely PR is not a�ected.

6.2.3 Numerous communications

Finally we draw 40 communications. Here XYI is at 90% of BEST until
1100Mb/s, and then falls down. PR is always at 60% of BEST.

6.3 Sensitivity to the average length of communications

Finally, we study the in�uence of the length of the communications, i.e., the
Manhattan distance between the source core and the destination core, on the
performance of the various heuristics. In both previous simulation sets, we have
drawn the source core and the sink core randomly, regardless of the length of
the communication. Now we draw only communications whose length is around
the target average length. Results are reported in Figure 9.

21

6.3.1 Numerous small communications

We draw 100 communications, whose weight is between 200Mb/s and 800Mb/s.
We see that XYI is the best heuristic until the average length is 10, and stays
at least within 90% of BEST. Moreover, PR is around 80% of BEST before
a length of 10 and then becomes the best heuristic.

6.3.2 Some mid-weighted communications

We draw 25 communications, whose weight is between 100Mb/s and 3500Mb/s.
Except for a length of 2, PR is the best heuristic, and stays at least within
85% of BEST. We observe that XYI is the second best heuristic, decreasing
regularly from 95% to 10%.

6.3.3 Few big communications

We draw 12 communications, whose weight is between 2700Mb/s and 3300Mb/s.
For any length, PR is the best heuristic, within about 90% of BEST. Com-
pared to BEST, XYI decreases from 95% to 40%. IG is slightly better than
TB for communications of length less than 5, and after that, TB is better than
IG.

The number of failures of BEST decreases from communications of length 2
to communications of length 5: this is because short communications are more
likely to occur on X-axis or Y-axis; in this case, if two communications are on
the same axis, we do not have any choice to separate these communications.

6.4 Summary of simulations

Altogether, XYI and PR are the best two heuristics: XYI is better than PR
when the problem is not severely constrained, but PR is more and more compet-
itive, compared to the other heuristics, when the problem becomes constrained.
This last observation holds true for any constraint type, be it a high number
of communications, or heavily-weighted communications. TB is slightly better
than IG in almost all situations, and these heuristics return a solution in fewer
cases; in addition, whenever they succeed, their solution is worse than those of
XYI and PR. Finally, SG improves the solution given by XY, but this solution
is far from BEST.

On average, over all problem instances, XY succeeds only 15% of the times,
while XYI and PR succeeds respectively 46% and 50% of the times. This last
value con�rms that PR is the best heuristic to �nd a valid solution, because
BEST succeeds 51% of the times. A �rst conclusion is that Manhattan routing
�nds three times more solutions than XY routing, which is a very signi�cant
result.

Concerning the absolute inverse of power consumption, its average value
is 2.44 (resp. 2.57) times higher in XYI (resp. PR) than in XY, and even
2.95 times higher in BEST. Moreover, this dramatic gain of energy is achieved

22

within quite a reasonable time: in average, the solution is obtained in 24ms for
XYI, and in 38ms for PR.

We conclude this section with an interesting statistical value: averaging over
all the experiments, static power accounts for 1/7-th of the total power (and
dynamic power accounts for the remaining 6/7-th fraction). These fractions
obviously depend upon (i) the absolute values of the parameters, and (ii) the
total communication volume. For instance a lower value of the ratio Pleak/P0

would favor PR over other heuristics.

7 Conclusion

In this paper, we have investigated the problem of routing communications
in chip multiprocessors. While the most natural and widely used algorithm
to handle communications is XY routing, we have shown that the consumed
power can be dramatically reduced when using Manhattan routing instead of
XY routing, and this with both a theoretical and a practical perspective.

On the theoretical side, we establish the NP-completeness of the problem
of �nding a Manhattan routing that minimizes the dissipated power, and we
exhibit the minimum upper bound of the ratio of the power consumed by an
XY routing over the power consumed by a Manhattan routing. We consider
either that multiple paths may be used to route a single communication, or
that a unique Manhattan route must be chosen (single-path). When several
concurrent communications should be routed, it turns out that the worst case
ratio of power consumption can be achieved even when restricting to single-path
Manhattan routing.

On the practical side, we design several single-path polynomial time heuris-
tics, and we compare them through extensive simulations. The use of a Manhat-
tan path allows us to �nd valid routing solutions more than three times more
often than the XY routing. Moreover, the power consumed by a Manhattan
routing is always much lower than that consumed by an XY routing. Thanks to
our two best heuristics, XYI and PR, power e�cient solutions can be achieved
in a reasonable time.

As future work, we still need to estimate how much can be gained by a
single-path Manhattan routing when all communications share the same source
and destination nodes. Also, we would like to establish a bound on the opti-
mal solution for single-path Manhattan routings (or even compute the optimal
solution for small problem instances), so that we could give an insight on the
absolute performance of our heuristics. Finally, it may be interesting to design
multi-path heuristics, since these may allow for an even better load-balance
of communications throughout the CMP. Of course, one would then need to
account for their potential overhead at the system level.

Acknowledgments. A. Benoit and Y. Robert are with the Institut Universitaire
de France. This work was supported in part by the ANR RESCUE project.

23

References

[1] M. Alonso, S. Coll, J.-M. Martínez, V. Santonja, P. Lòpez, and J. Duato.
Dynamic power saving in fat-tree interconnection networks using on/o�
links. In Proceedings of HPPAC 2006. IEEE Computer Society, 2006.

[2] G. Blake, R. Dreslinski, and T. Mudge. A survey of multicore processors.
Signal Processing Magazine, IEEE, 26(6):26 �37, Nov. 2009.

[3] J. Duato. A new theory of deadlock-free adaptive routing in wormhole
networks. IEEE Trans. Parallel Distrib. Syst., pages 1320�1331, 1993.

[4] L. Gravano, G. D. Pifarré, P. E. Berman, and J. L. C. Sanz. Adaptive
deadlock- and livelock-free routing with all minimal paths in torus net-
works. IEEE Transactions on Parallel and Distributed Systems, pages
1233�1251, 1994.

[5] K. Gunther. Prevention of deadlocks in packet-switched data transport
systems. IEEE Transactions on Communications, 29(4):512 � 524, Apr.
1981.

[6] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar. A 5-ghz mesh
interconnect for a tera�ops processor. Micro, IEEE, 27(5):51 �61, Sept.
2007.

[7] J. Kim and M. A. Horowitz. Adaptive supply serial links with sub-1V
operation and per-pin clock recovery. In Proceedings of Int. Solid-State
Circuits Conf., pages 1403�1413, 2002.

[8] M. A. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van Dijk, and S. Devadas.
Application-aware deadlock-free oblivious routing. In Proceedings of the
36th annual Int. Symp. on Computer architecture, pages 208�219. ACM,
2009.

[9] C.-Y. Lee and N. Jha. FinFET-based dynamic power management of on-
chip interconnection networks through adaptive back-gate biasing. In Pro-
ceedings of ICCD 2009, the IEEE Int. Conf. on Computer Design, pages
350 �357, Oct. 2009.

[10] S. E. Lee and N. Bagherzadeh. A variable frequency link for a power-aware
network-on-chip (NoC). Integration, pages 479�485, 2009.

[11] F. Li, G. Chen, and M. T. Kandemir. Compiler-directed voltage scaling on
communication links for reducing power consumption. In Proc. ICCAD'05,
pages 456�460, 2005.

[12] J. Li, W. Huang, C. Lefurgy, L. Zhang, W. E. Denzel, R. R. Treumann, and
K. Wang. Power shifting in thrifty interconnection network. In Proceedings
of HPCA 2011, pages 156�167, 2011.

24

[13] N. Michael, M. Nikolov, A. Tang, G. E. Suh, and C. Batten. Analysis of
application-aware on-chip routing under tra�c uncertainty. In Proceedings
of NOCS, pages 9�16. IEEE Computer Society, 2011.

[14] J. D. Owens, W. J. Dally, R. Ho, D. N. J. Jayasimha, S. W. Keckler, and
L.-S. Peh. Research challenges for on-chip interconnection networks. IEEE
Micro, 27:96�108, 2007.

[15] P. Renaud-Goud. Source code for the simulations.

[16] D. Seo, A. Ali, W.-T. Lim, and N. Ra�que. Near-optimal worst-case
throughput routing for two-dimensional mesh networks. In Proceedings
of ISCA'05, the 32nd Int. Symp. on Computer Architecture, pages 432 �
443, June 2005.

[17] L. Shang, L.-S. Peh, and N. Jha. Dynamic voltage scaling with links for
power optimization of interconnection networks. In Proceedings of 9th Int.
Symp. on High-Performance Computer Architecture, pages 91 � 102, Feb.
2003.

[18] D. Shin. Power-aware communication optimization for networks-on-chips
with voltage scalable links. In Proceedings of CODES+ISSS'04, pages 170�
175, 2004.

25

