
Achieving Numerical Accuracy and High Performance
using Recursive Tile LU Factorization

Jack Dongarra1, Mathieu Faverge1, Hatem Ltaief2, and Piotr Luszczek1

1 Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville

2 KAUST Supercomputing Laboratory
Thuwal, Saudi Arabia

{dongarra,faverge,luszczek}@eecs.utk.edu
Hatem.Ltaief@kaust.edu.sa

Abstract. The LU factorization is an important numerical algorithm for solving
systems of linear equations in science and engineering, and is characteristic of
many dense linear algebra computations. It has even become the de facto numer-
ical algorithm implemented within the LINPACK benchmark to rank the most
powerful supercomputers in the world, collected bt the TOP500 website. In this
context, the challenge in developing new algorithms for the scientific community
resides in the combination of two goals: achieving high performance and main-
taining the accuracy of the numerical algorithm. This paper proposes a novel
approach for computing the LU factorization in parallel on multicore architec-
tures, which not only improves the overall performance, but also sustains the
numerical quality of the standard LU factorization algorithm with partial pivot-
ing. While the update of the trailing submatrix is computationally intensive and
highly parallel, the inherently problematic portion of the LU factorization is the
panel factorization due to its memory-bound characteristic as well as the atomic-
ity of selecting the appropriate pivots. Our approach uses a parallel fine-grained
recursive formulation of the panel factorization step and implements the update
of the trailing submatrix with the tile algorithm. Based on conflict-free partition-
ing of the data and lockless synchronization mechanisms, our implementation lets
the overall computation flow naturally without contention. The dynamic runtime
system called QUARK is then able to schedule tasks with heterogeneous gran-
ularities and to transparently introduce algorithmic lookahead. The performance
results of our implementation are competitive compared to the currently available
software packages and libraries. In particular, it is up to 40% faster when com-
pared to the equivalent Intel MKL routine and up to 3-fold faster than LAPACK
with multithreaded Intel MKL BLAS.

Keywords: recursion; LU factorization; parallel linear algebra; shared-memory syn-
chronization; threaded parallelism

1 Introduction

The multicore era has forced the scientific software community to reshape their state-
of-the-art numerical libraries to be able to address the massive parallelism as well as the

2

memory hierarchy design brought by this architecture. Indeed, LAPACK [1] has shown
some significant limitations on such platforms and can only achieve a small portion of
the theoretical peak performance [2]. The reasons for this are mainly threefold: (1) the
overhead of its fork-join model of parallelism, (2) the coarse-grained task granularity
and (3) the memory-bound nature of the panel factorization.

The PLASMA library [3,4] initiated, with other software packages like FLAME [5],
this effort of redesigning standard numerical algorithms to match the hardware require-
ments of multicore architectures. Successful high performance results have already
been reported for one-sided factorizations (e.g., QR/LQ, LU and Cholesky factoriza-
tions) and more recently, for the tridiagonal reduction needed to solve the symmetric
eigenvalue problems [6]. Based on tile data layout, which consists of splitting the ma-
trix into small square regions of data contiguous in memory, PLASMA has alleviated
the bottlenecks (1) and (2) from LAPACK by rather bringing the parallelism to the fore,
minimizing the synchronization overhead, and relying on dynamic scheduling of fine-
grained tasks. However, the panel factorization phase has not really been improved for
the one-sided factorizations. It is still rich in memory-bound operations and runs se-
quentially. The performance impact of the sequential panel for one-sided factorizations
is somewhat minimal though and mostly hidden by the large amount of fine-grained par-
allelism introduced in the update of the trailing submatrix. However, the performance
gain comes at the price of numerical issues, particularly for the LU factorization. In-
deed, the numerical accuracy of the solution has been deteriorated due to the necessary
replacement of the standard partial pivoting scheme in the panel factorization by an in-
cremental pivoting strategy [7]. The number of pivoted elements dramatically increases,
which may eventually trigger a considerable growth pivot factor and can potentially
make the whole numerical scheme unstable [8–10].

This paper presents a novel approach for computing the LU factorization on multi-
core architectures, which not only improves the overall performance compared to LA-
PACK and PLASMA, but also sustains the numerical quality of the standard LU fac-
torization algorithm with partial pivoting. The originality of this work resides in the
improvement of the panel factorization with partial pivoting. Involving mostly Level
2 BLAS operations, the parallelization of the panel is very challenging because of the
low ratio between the amount of transferred data from memory and the actual compu-
tation. The atomicity of selecting the appropriate pivots is yet another issue, which has
prevented efficient parallel implementation of the panel.

Our approach uses a parallel fine-grained recursive formulation of the panel factor-
ization step while the update of the trailing submatrix follows the tile algorithm prin-
ciples. The fine-grained computation occurs at the level of the small caches associated
with the cores, which may potentially engender super-linear speedups. The recursive
formulation of the panel allows one to take advantage of the different memory hierar-
chy levels and to cast memory-bound kernels into Level 3 BLAS operations to increase
the computational rate even further. Based on conflict-free partitioning of the data and
lockless synchronization mechanisms, our implementation lets the parallel computation
flow naturally without contention and reduces synchronization. The dynamic runtime
system called QUARK [11, 12] (also used in PLASMA) is then able to schedule se-
quential tasks (from the update of the trailing submatrix) and parallel tasks (from the

3

panel factorization) with heterogeneous granularities. The execution flow can then be
depicted by a directed acyclic graph (DAG), where nodes represent computational tasks
and edges define the dependencies between them. The DAG is actually never built en-
tirely since it would obviously not fit in the main memory for large matrix sizes. As the
computation progresses, the DAG is unrolled just enough to initiate lookahead between
subsequent steps of the factorization. Only the tasks located within a particular window
are therefore instantiated. This window size may be tuned for maximum performance.
Moreover, QUARK can transparently integrate algorithmic lookahead in order to over-
lap successive computational steps, and to keep all processing units busy during the
execution time as much as possible.

The remainder of this paper is organized as follows. Section 2 gives an overview of
similar projects in this area. Section 3 recalls the algorithmic aspects and the pivoting
schemes of the existing block LU (LAPACK) and tile LU (PLASMA) factorizations.
Section 4 describes our new approach to compute the tile LU factorization with partial
pivoting using a parallel recursive panel. Section 5 presents some implementation de-
tails. Section 6 presents performance results of the overall algorithm. Also, comparison
tests are run on shared-memory architectures against the corresponding routines from
LAPACK [1] and the vendor library Intel MKL version 10.3 [13]. Finally, Section 7
summarizes the results of this paper and describes the ongoing work.

2 Related Work

This Section presents previous similar works in implementing a recursive and/or paral-
lel panel of the LU factorization.

Recursive formulation of a one-sided factorization (QR) and its parallel implemen-
tation has been done on a shared memory machine [14]. Three differences stand out.
First, the authors used a sequential panel factorization. This led to the second difference:
lack of nested parallelism that we employ. And thirdly, master-worker parallelization
was used instead of dynamic DAG scheduling.

Georgiev and Wasniewski [15] presented a recursive version of the LU decompo-
sition. They implemented recursive versions of the main LAPACK and BLAS kernels
involved in the factorization i.e., xGETRF and xGEMM, xTRSM, respectively. Their
original code is in Fortran 90 and they relied on the compiler technology to achieve the
desired recursion.

Recursion was also successfully used in the context of sparse matrix LU factoriza-
tion [16]. It lacked pivoting code, which is essential to ensure numerical stability of our
implementation. In addition, here, we focus on dense matrices only – not the sparse
ones.

A distributed memory version of the LU factorization has been attempted and com-
pared against ScaLAPACK’s implementation [17]. One problem cited by the authors
was excessive, albeit provably optimal, communication requirements inherent in the
algorithm. This is not an issue in our implementation because we focus exclusively
on the shared memory environment. Similarly, our open source implementation of the
High Performance LINPACK benchmark [18] uses recursive panel factorization on lo-
cal data, thus avoiding the excessive communication cost.

4

More recently, panel factorization has been successfully parallelized and incorpo-
rated into a general LU factorization code [19] using Level 1 BLAS; this is a flat par-
allelism model with fork-join execution (closely related to Bulk Synchronous Process-
ing). The authors refer to their approach as Parallel Cache Assignment (PCA). Our
work differs in a few key aspects. We employ recursive formulation [20] and therefore
are able to use Level 3 BLAS as opposed to just Level 1 BLAS. Another important
difference is the nested parallelism with which we have the flexibility to allocate only a
small set of cores for the panel work while other cores carry on with the remaining tasks
such as the Schur complement updates. Finally, we use dynamic scheduling that exe-
cutes fine grained tasks asynchronously, which is drastically different from a fork-join
parallelism. A more detailed account of the differences is given in Section 4.

Last but not least, Chan et. al [21] implemented the classical LU factorization with
partial pivoting (within the FLAME framework), in which the authors basically separate
the runtime environment from the programmability issues (i.e., the generation of the
corresponding DAG). There are mainly two differences with the work presented in this
paper: (1) their lookahead opportunities are determined by sorting the enqueued tasks
in a separate stage called an analyzer phase, while in our case, the lookahead occurs
naturally at runtime during the process of pursuing the critical path of the DAG (and
can also be strictly enforced by using priority levels), and (2) we do not require a copy of
the panel, called a macroblock, in standard column-major layout in order to determine
the pivoting sequence, but we had rather implemented an optimized parallel memory-
aware kernel, which performs an in-place LU panel factorization with partial pivoting.
Both of these lead to high performance.

3 The Block and Tile LU Factorizations

This Section describes the block and tile LU factorization as implemented in the LA-
PACK and PLASMA libraries, respectively.

3.1 The Block LU from LAPACK

Block algorithms in LAPACK [1] surfaced with the emergence of cache-based archi-
tectures. They are characterized by a sequence of panel-update computational phases.
The panel phase calculates all transformations using mostly memory-bound operations
and applies them as a block to the trailing submatrix during the update phase. This
panel-update sequence introduces unnecessary synchronization points and lookahead
is prevented, while it can be conceptually achieved. Moreover, the parallelism in the
block algorithms implemented in LAPACK resides in the BLAS library, which follows
the fork-join paradigm. In particular, the block LU factorization is no exception and
the atomicity of the pivot selection has further exacerbated the problem of the lack of
parallelism and the synchronization overhead. At the same time, the LU factorization
is numerically stable in practice, and produces a reasonable growth factor. Last but not
least, the LAPACK library also uses the standard column-major layout from Fortran,
which may not be appropriate in the current and next generation of multicore architec-
tures.

5

3.2 The Tile LU from PLASMA

Tile algorithms implemented in PLASMA [3] propose to take advantage of the small
caches associated with the multicore architecture. The general idea is to arrange the
original dense matrix into small square regions of data which are contiguous in mem-
ory. This is done to allow efficiency by allowing the tiles to fit into the core’s caches.
Figure 1 shows how the translation proceeds from column-major to tile data layout.
Breaking the matrix into tiles may require a redesign of the standard numerical linear
algebra algorithms. Furthermore, tile algorithms allow parallelism to be brought to the
fore and expose sequential computational fine-grained tasks to benefit from any dy-
namic runtime system environments, which will eventually schedule the different tasks
across the processing units. The actual framework boils down to scheduling a directed
acyclic graph (DAG), where tasks represent nodes and edges define the data dependen-
cies between them. This may produce an out-of-order execution and therefore, permits
the removal of the unnecessary synchronization points between the panel and update
phases noticed in the LAPACK algorithms. Lookahead opportunities also become prac-
tical and engender a tremendous amount of concurrent tasks. Unlike the Cholesky fac-
torization, the original QR and LU factorizations had to be redesigned to work on top
of a tile data layout. The tile QR factorization is based on orthogonal transformations
and therefore, it did not numerically suffer from the necessary redesign. However, the
tile LU factorization has seen its pivoting scheme completely revised. The partial piv-
oting strategy has been replaced by the incremental pivoting. It consists of performing
pivoting in the panel computation between two tiles on top of each other, and this mech-
anism is reproduced further down the panel in a pairwise fashion. And obviously, this
pivoting scheme may considerably deteriorate the overall stability of the LU factoriza-
tion [8–10].

Fig. 1. Translation from LAPACK layout (column-major) to tile data layout

As a matter of fact, the goal of our new LU implementation is to achieve high per-
formance, comparable to PLASMA, while sustaining numerical stability of the standard
LU implementation in LAPACK.

6

function xGETRFR(M, N, column) {
if N == 1 { single column, recursion stops

idx = split IxAMAX(...) compute local maximum of modulus

gidx = combine IxAMAX(idx) combine local results

split xSCAL(...) scale local data
} else {

xGETRFR(M, N/2, column) recursive call to factor left half

xLASWP(...) pivoting forward

split xTRSM(...) triangular solve

split xGEMM(...) Schur’s complement

xGETRFR(M, N-N/2, column+N/2) recursive call to factor right half

xLASWP(...) pivoting backward

}
}

Fig. 2. Pseudo-code for the recursive panel factorization on column major layout.

4 Parallel Recursive LU Factorization of a Panel

This Section describes one of our most unique contributions, which is the parallelization
of the LU factorization of a matrix panel using the recursive algorithm [20].

4.1 Recursive Algorithm and Its Advantages

Figure 2 shows a pseudo-code of our recursive implementation. Even though the panel
factorization is a lower order term – O(N2) – from the computational complexity per-
spective [22], it still poses a problem in the parallel setting from the theoretical [23]
and practical standpoints [19]. To be more precise, the combined panel factorizations’
complexity for the entire matrix is

O(N2NB),

where N is panel height (and matrix dimension) and NB is panel width. For good per-
formance of BLAS calls, panel width is commonly increased. This creates tension if
the panel is a sequential operation because a larger panel width results in larger Am-
dahl’s fraction [24]. Our own experiments revealed this to be a major obstacle to proper
scalability of our implementation of tile LU factorization with partial pivoting – a result
consistent with related efforts [19].

Aside from gaining high level formulation free of low level tuning parameters, re-
cursive formulation permits to dispense of a higher level tuning parameter commonly
called algorithmic blocking. There is already panel width – a tunable value used for
merging multiple panel columns together. Non-recursive panel factorizations could po-
tentially establish another level of tuning called inner-blocking [2,4]. This is avoided in
our implementation.

7

4.2 Data Partitioning

The challenging part of the parallelization is the fact that the recursive formulation suf-
fers from inherent sequential control flow that is characteristic of the column-oriented
implementation employed by LAPACK and ScaLAPACK. As a first step then, we ap-
ply a 1D partitioning technique that has proven successful before [19]. We employed
this technique for the recursion-stopping case: single column factorization. The recur-
sive formulation of the LU algorithm poses another problem, namely the use of Level 3
BLAS call for triangular solve – xTRSM() and LAPACK’s auxiliary routine for swap-
ping named xLASWP(). Both of these calls do not readily lend themselves to the 1D
partitioning scheme due to two main reasons:

1. each call to these functions occurs with a variable matrix size and
2. 1D partitioning makes the calls dependent upon each other thus creating synchro-

nization overhead.

The latter problem is fairly easy to see as the pivoting requires data accesses across the
entire column and memory locations may be considered random. Each pivot element
swap would then require coordination between the threads that the column is partitioned
amongst. The former issue is more subtle in that the overlapping regions of the matrix
create a memory hazard that may be at times masked by the synchronization effects
occurring in other portions of the factorization. To deal with both issues at once, we
chose to use 1D partitioning across the rows and not across the columns as before. This
removes the need for extra synchronization and affords us parallel execution, albeit a
limited one due to the narrow size of the panel.

The Schur complement update is commonly implemented by a call to Level 3 BLAS
kernel xGEMM() and this is also a new function that is not present within the panel
factorizations from LAPACK and ScaLAPACK. Parallelizing this call is much easier
than all the other new components of our panel factorization. We chose to reuse the
across-columns 1D partitioning to simplify the management of overlapping memory
references and to again reduce resulting synchronization points.

To summarize the observations that we made throughout the preceding text, we
consider data partitioning among the threads to be of paramount importance. Unlike the
PCA method [19], we do not perform extra data copy to eliminate memory effects that
are detrimental to performance such as TLB misses, false sharing, etc. By choosing the
recursive formulation, we rely instead on Level 3 BLAS to perform these optimizations
for us. Not surprisingly, this was also the goal of the original recursive algorithm and
its sequential implementation [20]. What is left to do for our code is the introduction
of parallelism that is commonly missing from Level 3 BLAS when narrow rectangular
matrices are involved.

Instead of low level memory optimizations, we turned our focus towards avoiding
synchronization points and let the computation proceed asynchronously and indepen-
dently as long as possible until it is absolutely necessary to perform communication
between threads. One design decision that stands out in this respect is the fixed parti-
tioning scheme. Regardless of the current column height (within the panel being fac-
tored), we always assign the same amount of rows to each thread except for the first
thread. Figure 3 shows that this causes a load imbalance as the thread number 0 has

8

T
h

r
e
a
d

 0
T

h
r
e
a
d

 2
T

h
r
e
a
d

 1

Fig. 3. Fixed partitioning scheme used in the parallel recursive panel factorization.

progressively smaller amounts of work to perform as the panel factorization progresses
from the first to the last column. This is counter-balanced by the fact that the panels are
relatively tall compared to the number of threads and the first thread usually has greater
responsibility in handling pivot bookkeeping and synchronization tasks.

The tile data layout specific to PLASMA algorithms does not allow such partition-
ing. In this case, the partition is then following the tile structure and each thread handles
a fixed number of tiles. The second problem due to this data storage is the number of
cache misses generated by the algorithm described previously. If each stage is per-
formed one after another (scale the column, compute the Schur complement and search
the pivot), they will each require a loop over the tiles owned by the current thread, mak-
ing it three loops over all the tiles of the panel. All the benefit from this data storage is
then lost in memory load. The solution is to reorder the three stages to apply them in
one shot to each tile as described by the figure 4).

4.3 Scalability Results of the Parallel Recursive Panel Kernel

Figures 5 and 6 show a scalability study using column-major layout (used in LAPACK)
and tile layout (used in PLASMA), respectively, on the four socket, twelve core NUMA
Opteron-48 machine (see Section 6.1 for detailed hardware specifications) of our par-
allel recursive panel LU factorization with four different panel widths: 32, 64, 128, and
256 against equivalent routines from LAPACK. The idea is to highlight and to under-
stand the impact of the data layout on our recursive parallel panel algorithm. We limit
our parallelism level to 12 cores (one socket) because our main factorization needs the
remaining cores for updating the trailing submatrix. First of all, the parallel panel im-
plementation based on column-major layout achieves the best performance compared
to the tile layout. Indeed, as shown in Figure 3 with column-major layout, thread 0
loads into the local cache memory not only its data partition but also the remaining
data from the other thread partitions, which obviously contributes in preventing invalid

9

function xGETRFR(M, N, column) {
xGETRFR(M, N/2, column) recursive call to factor left half

xLASWP(...) pivoting forward

xTRSM(...) triangular solve on the first tile

foreach local tile {
xSCAL(N/2-1) scale the last column of the left part

xGEMM(...) Schur’s complement

idx = IxAMAX(N/2) update local maximum of the first column in the right part

}
gidx = combine IxAMAX(idx) combine local results

xGETRFR(M, N-N/2, column+N/2) recursive call to factor right half

xLASWP(...) pivoting backward

}

Fig. 4. Pseudo-code for the recursive panel factorization on tile layout.

cache lines. In contrast, the recursive parallel panel LU algorithm with tile layout may
engender high bus traffic since each thread needs to acquire its own data partition in-
dependently from each other (latency overhead). Secondly, when compared with the
panel factorization routine xGETF2() (mostly Level 2 BLAS), we achieve super-linear
speedup for a wide range of panel heights with the maximum achieved efficiency ex-
ceeding 550%. In an arguably more relevant comparison against the xGETRF() routine,
which could be implemented with mostly Level 3 BLAS, we achieve perfect scaling
for 2 and 4 threads and easily exceed 50% efficiency for 8 and 16 threads. This is con-
sistent with the results presented in the related work section [19].

4.4 Further Implementation Details and Optimization Techniques

We exclusively use lockless data structures [25] throughout our code. This choice was
dictated by fine granularity synchronization, which occurs during the pivot selection
for every column of the panel and at the branching points of the recursion tree. Syn-
chronization using mutex locks was deemed inappropriate at such frequency as it has a
potential of incurring system call overhead.

Together with lockless synchronization, we use busy waiting on shared-memory
locations to exchange information between threads using a coherency protocol of the
memory subsystem. While fast in practice [19], this causes extraneous traffic on the
shared-memory interconnect, which we aim to avoid. We do so by changing busy wait-
ing for computations on independent data items. Invariably, this leads to reaching the
parallel granularity levels that are most likely hampered by spurious memory coherency
traffic due to false sharing. Regardless of the drawback, we feel this is a satisfactory
solution as we are motivated by avoiding busy waiting, which creates even greater de-
mand for inter-core bandwidth because it has no useful work to interleave with the
shared-memory polling. We refer this optimization technique as delayed waiting.

Another technique we use to optimize the inter-core communication is what we
call synchronization coalescing. The essence of this method is to conceptually group

10

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000 25000 30000 35000

P
e

rf
o

rm
a

n
c
e

 [
G

fl
o

p
/s

]

Panel height (Panel width is 32)

recGETRF 12 threads
recGETRF 6 threads
recGETRF 3 threads
recGETRF 2 threads

GETRF
GETF2

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000 25000 30000 35000

P
e

rf
o

rm
a

n
c
e

 [
G

fl
o

p
/s

]

Panel height (Panel width is 64)

recGETRF 12 threads
recGETRF 6 threads
recGETRF 3 threads
recGETRF 2 threads

GETRF
GETF2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000 25000 30000 35000

P
e

rf
o

rm
a

n
c
e

 [
G

fl
o

p
/s

]

Panel height (Panel width is 128)

recGETRF 12 threads
recGETRF 6 threads
recGETRF 3 threads
recGETRF 2 threads

GETRF
GETF2

 0

 10

 20

 30

 40

 50

 0 5000 10000 15000 20000 25000 30000 35000

P
e

rf
o

rm
a

n
c
e

 [
G

fl
o

p
/s

]

Panel height (Panel width is 256)

recGETRF 12 threads
recGETRF 6 threads
recGETRF 3 threads
recGETRF 2 threads

GETRF
GETF2

Fig. 5. Scalability study of the recursive parallel panel factorization in double precision on LA-
PACK layout with various panel widths: 32 (top-left), 64 (top-right), 128 (bottom-left), and 256
(bottom-right).

unrelated pieces of code that require a synchronization into a single aggregate that syn-
chronizes once. The prime candidate for this optimization is the search and the write of
the pivot index. Both of these operations require a synchronization point. The former
needs a parallel reduction operation while the latter requires global barrier. Neither of
these are ever considered to be related to each other in the context of sequential paral-
lelization. But with our synchronization coalescing technique, they are deemed related
in the communication realm and, consequently, we implemented them in our code as a
single operation.

Finally, we introduced a synchronization avoidance paradigm whereby we opt for
multiple writes to shared memory locations instead of introducing a memory fence (and
potentially a global thread barrier) to ensure global data consistency. Multiple writes are
usually considered a hazard and are not guaranteed to occur in a specific order in most of
the consistency models for shared memory systems. We completely side step this issue,
however, as we guarantee algorithmically that each thread writes exactly the same value
to memory. Clearly, this seems as an unnecessary overhead in general, but in our tightly
coupled parallel implementation this is a worthy alternative to either explicit (via inter-
core messaging) or implicit (via memory coherency protocol) synchronization. In short,
this technique is another addition to our contention-free design.

Portability, and more precisely, performance portability, was also an important goal
in our overall design. In our lock-free synchronization, we heavily rely on shared-
memory consistency – a problematic feature from the portability standpoint. To address

11

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000 25000 30000 35000

P
e

rf
o

rm
a

n
c
e

 [
G

fl
o

p
/s

]

Panel height (Panel width is 32)

recGETRF 12 threads
recGETRF 6 threads
recGETRF 3 threads
recGETRF 2 threads

GETRF
GETF2

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000 25000 30000 35000

P
e

rf
o

rm
a

n
c
e

 [
G

fl
o

p
/s

]

Panel height (Panel width is 64)

recGETRF 12 threads
recGETRF 6 threads
recGETRF 3 threads
recGETRF 2 threads

GETRF
GETF2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000 25000 30000 35000

P
e

rf
o

rm
a

n
c
e

 [
G

fl
o

p
/s

]

Panel height (Panel width is 128)

recGETRF 12 threads
recGETRF 6 threads
recGETRF 3 threads
recGETRF 2 threads

GETRF
GETF2

 0

 10

 20

 30

 40

 50

 0 5000 10000 15000 20000 25000 30000 35000

P
e

rf
o

rm
a

n
c
e

 [
G

fl
o

p
/s

]

Panel height (Panel width is 256)

recGETRF 12 threads
recGETRF 6 threads
recGETRF 3 threads
recGETRF 2 threads

GETRF
GETF2

Fig. 6. Scalability study of the recursive parallel panel factorization in double precision on tile
layout with various panel widths: 32 (top-left), 64 (top-right), 128 (bottom-left), and 256 (bottom-
right).

this issue reliably, we make two basic assumptions about the shared-memory hardware
and the software tools. Both of which, to our best knowledge, are satisfied the major-
ity of modern computing platforms. From the hardware perspective, we assume that
memory coherency occurs at the cache line granularity. This allows us to rely on global
visibility of loads and stores to nearby memory locations. What we need from the com-
piler tool-chain is an appropriate handling of C’s volatile keyword. This, combined with
the use of primitive data types that are guaranteed to be contained within a single cache
line, is sufficient in preventing unintended shared-memory side effects.

5 Dynamic Scheduling and Lookahead

This Section provides further details about the dynamic scheduling of the recursive tile
LU factorization along with the runtime environment system employed to schedule the
various heterogeneous computational tasks.

5.1 Discussion of Implementation Variants

Our implementation is qualified as tile algorithm because of the way it accesses the
matrix data and not due to the way the matrix is stored in memory. In fact, our algorithm
works equally well on matrices stored using either column-major or tile data layout.

Additionally, our code has been originally formulated while having in mind the
right-looking variant of LU factorization [26] as it makes it easier to take advantage to

12

xGETRF-REC Swap + xTRSM

xGEMM

Swap + xTRSM

xGEMM

xGEMM xGEMM

Fig. 7. Execution breakdown for recursive tile LU factorization: factorization of the first panel
using the parallel kernel is followed by the corresponding updates to the trailing submatrix.

the available parallelism. This variant was also chosen for LAPACK [1] and ScaLA-
PACK [27]. However, the execution flow of our code is driven by the data depen-
dencies that are communicated to the QUARK runtime system. This may result in
an asynchronous out-of-order scheduling. The dynamic runtime environment ensures
that enough parallelism is available through the entire execution (right looking), while
advancing the critical path for lookahead purposes (left looking). Therefore, the strict
right-looking variant available in LAPACK [1] and ScaLAPACK [27] cannot be guar-
anteed anymore. The asynchronous nature of the DAG execution provides sufficient
lookahead opportunities for many algorithmic variants to coexist with each other re-
gardless of the visitation order of the DAG [28].

5.2 Snapshot of the Parallel Recursive Tile LU Factorization

Figure 7 shows the initial factorization steps of a matrix subdivided into 9 tiles (a 3-
by-3 grid of tiles). The first step is a recursive parallel factorization of the first panel
consisting of three leftmost tiles. Only when this finishes, the other tasks may start
executing, which creates an implicit synchronization point. To avoid the negative impact
on parallelism, we execute this step on multiple cores (see Section 4 for further details)
to minimize the running time. However, we use nested parallelism model as most of the
tasks are handled by a single core and only the panel tasks are assigned to more than one
core. Unlike similar implementations [19], we do not use all cores to handle the panel.
There are two main reasons for this decision. First, we use dynamic scheduling that
enables us to hide the negative influence of the panel factorization behind more efficient
work performed by concurrent tasks. And second, we have clearly observed the effect

13

of diminishing returns when using too many cores for the panel. Consequently, we do
not use them all and instead we keep the remaining cores busy with other critical tasks.

The next step is pivoting to the right of the panel that has just been factorized. We
combine in this step the triangular update (xTRSM in the BLAS parlance) because there
is no advantage of scheduling them separately due to cache locality considerations. Just
as the panel factorization locks the panel and has a potential to temporarily stall the
computation, the pivot interchange has a similar effect. This is indicated by a rectangu-
lar outline encompassing the tile updated by xTRSM of the tiles below it. Even though
so many tiles are locked by the triangular update, there is still a potential for parallelism
because pivot swaps and the triangular update itself for a single column is independent
of other columns. We can then easily split the operations along the tile boundaries and
schedule them as independent tasks. This observation is depicted in Figure 7 by show-
ing two xTRSM updates for two adjacent tiles in the topmost row of tiles instead of one
update for both tiles at once.

The last step shown in Figure 7 is an update based on the Schur complement. It is
the most computationally intensive operation in the LU factorization and is commonly
implemented with a call to a Level 3 BLAS kernel called xGEMM. Instead of a single
call that performs the whole update of the trailing submatrix, we use multiple invoca-
tions of the routine because we use a tile-based algorithm. In addition to exposing more
parallelism and the ability to alleviate the influence the algorithm’s synchronization
points (such as the panel factorization), by splitting the Schur update operation we are
able to obtain better performance than a single call to a parallelized vendor library [2].

One thing not shown in Figure 7 is pivoting to-the-left because it does not occur
in the beginning of the factorization. It is necessary for the second and subsequent
panels. The swaps originating from different panels have to be ordered correctly but
are independent for each column, which is the basis for running them in parallel. The
only inhibitor of parallelism then is the fact that the swapping operations are inherently
memory-bound because they do not involve any computation. On the other hand, the
memory accesses are done with a single level of indirection, which makes them very
irregular in practice. Producing such memory traffic from a single core might not take
advantage of the main memory’s ability to handle multiple outstanding data requests
and the parallelism afforded by NUMA hardware. It is also noteworthy to mention that
the tasks performing the pivoting behind the panels are not located on the critical path,
and therefore, are not essential for the remaining computational steps in the sense that
they could potentially be delayed toward the end of the factorization (see the tracing
figures in Section 6.4). This is also highlighted in Figure 8, which draws the DAG of
the parallel recursive tile LU factorizations of a 3-by-3 tile matrix. The nodes marked
as xLASWP are end nodes and do not directly participate to the completion of the
factorization.

5.3 QUARK: Parallel Runtime System for Dynamic Scheduling

Our approach to extracting parallelism is based on the principle of separation of con-
cerns [29,30]. We define high performance computational kernels and the effect on their
parameters and submit them to the QUARK [11,12] scheduler for parallel execution as

14

1:1

2:2

3:2

4:4

5:1

6:2

7:1

8:1

9:1

10:2

xGETRF-REC(1)

xLASWP(1, 2)xLASWP(1, 3)

Critical

xTRSM(1, 2)xTRSM(1, 3)

xGEMM(1,2,2)xGEMM(1,3,2)xGEMM(1,2,3) xGEMM(1,3,3)

GATHERV

xGETRF-REC(2)

xLASWP(2, 3)xLASWP(2, 1)

Critical

xTRSM(2, 3)

xLASWP(3, 1)

xGEMM(2, 3, 3)

xGETRF-REC(3)

xLASWP(3, 2)

Critical

Fig. 8. Annoted DAG for parallel recursive tile LU factorization of a 3-by-3 tile matrix. The
annotations are indicated with triangles.

dependent tasks. Due to the data dependences between the tasks, the amount of avail-
able parallelism is limited and may be increased by decreasing the computational load
of each task which results an increase in the total number of tasks. The optimal sched-
ule for the tasks is the one with the shortest height of the spanning tree of the DAG.
But QUARK does not seek to attain the optimal schedule, but rather uses a localized
heuristic that works very well in practice [2, 6, 31, 32]. The heuristic is based on gener-
ative exploration of the DAG that caps the number of outstanding tasks with a tunable
parameter called task window size.

To explore more advanced features of QUARK we turn to Figure 8 which shows an
annotated DAG of tasks that results from executing our LU factorization on a matrix
with 3-by-3 tiles. One feature that we believe makes QUARK stand out is availability
of nested parallelism without any constraints on the number of threads executing within
a parallel task. The tasks that use these features (and thus are parallel tasks) are the
nodes marked as xGETRF-REC(). Each of these tasks may use a variable number of

15

threads to execute, and this is determined at runtime as the panel height decreases with
the progress of the factorization.

Another feature of QUARK that we use in our code is the ability to assign priorities
to tasks. For our particular situation we only use two priorities: critical and non-critical.
The former is reserved for the panel factorization and is marked with a triangle in Fig-
ure 8. The former is used for the remaining tasks. This choice was made because the
xGETRF-REC() tasks are on the critical path and cannot be overlapped with other tasks
in an optimally scheduled DAG. Even though in practice the schedule is not optimal due
to a fixed number of cores and the scheduling heuristic, highly prioritized panel factor-
ization is still beneficial.

A feature that is also useful for our code is marked with a triangular node that is
labelled as GATHERV in Figure 8. This feature allows for submission of tasks that
write to different portions of the same submatrix. The Schur’s complement update is
performed with xGEMMs and can either be seen as four independent tasks that update
disjoint portions of the trailing matrix, or as a single task that updates the trailing matrix,
as a whole. In the latter case, the parallelism so abundant in the update would have been
lost. GATHERV allows for the recovery of this parallelism by submitting, not one, but
multiple tasks that update the same portion of memory. The GATHERV annotations
inform QUARK that these multiple tasks are independent of each other even though
their data dependencies indicate otherwise.

And finally, QUARK can optionally generate DAGs such as the one featured in Fig-
ure 8. This is controlled with an environment variable and can be turned on as necessary
as a debugging or profiling feature.

6 Experimental Results

In this section, we show results on the largest shared memory machines we could access
at the time of writing this paper. They are representative of a vast class of servers and
workstations commonly used for computationally intensive workloads. They clearly
show the industry’s transition from chips with few cores to few tens of cores; from com-
pute nodes with order O(10) cores to O(100) designs, and from Front Side Bus memory
interconnect (Intel’s NetBurst and Core Architectures) to NUMA and ccNUMA hard-
ware (AMD’s HyperTransport and Intel’s QuickPath Interconnect).

6.1 Environment Settings

All the experiments are run on a single system that we will call MagnyCour-48. MagnyCour-
48, is composed of four AMD Opteron Magny Cour 6172 Processors of twelve cores
each, running at 2.1 GHz, with 128 GB of memory. The theoretical peak for this ar-
chitecture in single and double precision arithmetics is 806.4 Gflop/s (16.8 Gflop/s per
core) and 403.2 Gflop/s (8.4 Gflop/s per core), respectively.

We compare the results against the latest parallel version of the Intel MKL 10.3.2
library released in January 2011, and against the reference LAPACK 3.2 from Netlib
linked against the Intel MKL BLAS multithreaded library. We also link against the
sequential version of Intel MKL for our code and PLASMA.

16

6.2 Performance Results

Figures 9 and 10 present the performance comparisons of the parallel recursive tile
LU algorithm against Intel MKL and PLASMA libraries on MagnyCour-48, in sin-
gle and double precision arithmetics, respectively. Each curve is obtained by using the
maximum number of cores available on the architecture, and by tuning the parame-
ters to achieve the best asymptotic performance. Five configurations are shown: the
LAPACK implementation from Netlib linked against the parallel BLAS from Intel
MKL to study the fork-join model, the Intel MKL version of DGETRF, the previous algo-
rithm of PLASMA based on incremental pivoting on the two different layouts studied:
column-major (or LAPACK) and tile layout proper to PLASMA tile algorithms, and fi-
nally, our new algorithm LU rec - Par. Panel equally on both layouts. Both PLASMA
versions correspond to the tile LU algorithm with incremental pivoting and use QUARK
as a dynamic scheduling framework. The first version handles the LAPACK interface
(native interface), which requires an input matrix in column-major data layout, similar
to Intel MKL. It thus implies that PLASMA has to convert the matrix in tile data layout
before the factorization can proceed and converts it back to column-major data layout
at the end of the computation, as originally given by the user. The second configuration
is the tile interface (expert interface), which accepts matrices already in tile data layout
and therefore, avoids both layout conversions. For our algorithm, the kernel used for the
panel is chosen according to the data layout, so no conversions are required.

We used a tile size NB = 240 and an inner-blocking IB = 20 for PLASMA algo-
rithms and a panel width NB = 280 for our parallel recursive tile LU. Those param-
eters have been tuned for asymptotic performances. The recursive parallel panel LU
algorithm based on column-major and tile data layout obtains roughly a similar perfor-
mance, which at first glance, may look surprising after the conclusions drawn previously
in Section 4.3. It is important to understand that the step of the trailing submatrix update
becomes the leading phase in such factorizations because it is rich in Level 3 BLAS op-
erations, and thus, the overhead of memory accesses in the panel is completely hidden
by the efficiency of the compute-intensive kernels on tile layout, which makes the re-
cursive parallel panel LU algorithm based on tile data layout competitive compared to
the column-major data layout version.

Moreover, Figures 9 and 10 show that asymptotically, we take advantage of the
monolithic xGEMM kernel by increasing the performance up to 20% compared to both
PLASMA versions. Our implementation, however, is significantly better than Intel
MKL asymptotically. The curves also show that the recursive LU algorithm is more
sensitive for tuning small sizes than PLASMA algorithms, which produces good per-
formance numbers on small matrix sizes even with the selected couple NB/IB for large
matrices. For example, the configuration N = 5000 with 16 threads, gives the same per-
formance (≈ 75 Gflop/s) on PLASMA’s incremental pivoting algorithm as on our new
algorithm.

The parallel recursive tile LU algorithm thus provides good performances on many-
core architectures. It also retains the standard numerical accuracy as opposed to the

1 PLASMA incpiv on column-major data Layout includes the translation of the matrix to tile
layout for the factorization step, and the translation back to LAPACK layout to return the
result to the user.

17

 0

 100

 200

 300

 400

 500

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
fl
o

p
/s

Matrix order

PLASMA recLU on Tile Layout (NB=280)
PLASMA recLU on Lapack Layout (NB=280)
PLASMA IncPiv LU on Tile Layout (NB=240, IB=20)
PLASMA IncPiv LU on Lapack Layout* (NB=240, IB=20)
MKL
LAPACK

Fig. 9. Performances of SGETRF on MagnyCour-48.

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
fl
o

p
/s

Matrix order

PLASMA recLU on Tile Layout (NB=280)
PLASMA recLU on Lapack Layout (NB=280)
PLASMA IncPiv LU on Tile Layout (NB=240, IB=20)
PLASMA IncPiv LU on Lapack Layout* (NB=240, IB=20)
MKL
LAPACK

Fig. 10. Performances of DGETRF on MagnyCour-48.

incremental pivoting strategy from PLASMA. This obviously comes at a price of a
synchronization point added right after each panel computation. And this synchroniza-
tion point has been considerably weakened by efficiently parallelizing the panel factor-
ization, and by the increase of the level of parallelism during the phase of the trailing
submatrix updates, compared to the PLASMA’s algorithms. Taking into account the
fact that PLASMA’s algorithm loses digits of precision, especially when the number
of tiles increases [10], our new recursive tile LU factorization clearly appears to be a
good alternative, and will eventually replace the current LU algorithm in PLASMA.

18

6.3 Scalability

Figures 11 and 12 show the scalability of the parallel recursive tile LU algorithm on
MagnyCour-48 in single and double precision arithmetics, respectively. The scaling
experiments have been done according to the number of cores per socket (i.e., twelve
cores), using 6, 12, 24 and 48 threads. For each curve, we used a panel width NB = 280,
which gives the best performance on 48 threads. Since the data is usually allocated
by the user and we do not move it around, we used the linux command numactl

--interleave=0-X, where X is one less than the number of threads. This command
allows us to control NUMA policy by allocating the memory close to the cores, where
the threads are bound. We observe that our algorithm scales almost linearly up to 48
threads

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
fl
o

p
/s

Matrix order

48 threads - Tile Layout
48 threads - Lapack Layout
24 threads - Tile Layout
24 threads - Lapack Layout
12 threads - Tile Layout
12 threads - Lapack Layout
6 threads - Tile Layout
6 threads - Lapack Layout

Fig. 11. Scalability of PLASMA recursive LU on MagnyCour-48 in single precision.

6.4 Execution Trace

This section shows the execution traces of three different versions of the LU algorithm
on MagnyCour-48 with 16 threads on matrices of size 5000×5000. These traces have
been generated thanks to the EZTrace library [33] and ViTE software [34]. On each
trace, the green color is dedicated to the factorization of the panel (light for dgetrf and
dark for dtstrf), the blue color illustrates the row update (dtrsm+dlaswp or dgessm),
the yellow color represents the update kernel (dgemm or dssssm), the orange color
shows the backward swaps, and finally, the gray color highlights the idle time.

The first trace 13(a) is the result of the execution of the PLASMA algorithm. It
shows that the tile algorithm results in increasing the degree of parallelism triggered
by the first task. The second trace 13(b) depicts the recursive tile LU, where the panel

19

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
fl
o

p
/s

Matrix order

48 threads - Tile Layout
48 threads - Lapack Layout
24 threads - Tile Layout
24 threads - Lapack Layout
12 threads - Tile Layout
12 threads - Lapack Layout
6 threads - Tile Layout
6 threads - Lapack Layout

Fig. 12. Scalability of PLASMA recursive LU on MagnyCour-48 in double precision.

is rather performed by a call to the sequential dgetrf routine from Intel MKL. This
algorithm releases as much parallelism as the previous one after the first task, but we
clearly observe on the execution trace that the time spent to factorize the first panel is
longer than the time needed to factorize the block in the tile algorithm. Another concern
in this version is that the time spent on the critical path is significant, which leads to
substantial idle time intervals, especially after the first half of the factorization.

Finally, Figure 13(c) shows the execution trace of the same algorithm but with a par-
allel panel computation instead. This results in a reduced factorization step, which dras-
tically reduces the overall idle time. It is also noteworthy to mention how the lookahead
transparently comes into effect at runtime, thanks to the dynamic scheduler QUARK.
Moreover, the non-critical tasks, which perform pivot interchanges behind the panel
(xLASWP), are postponed until the end of the factorization in order to stress the pursuit
of the critical path.

7 Summary and Future Work

This paper introduced a novel parallel recursive LU factorization with partial pivoting
on multicore architecture. Our implementation is characterized by a parallel recursive
panel factorizations while the computation on the trailing submatrix is carried on by
using a tiled algorithm. Not only does this implementation achieve higher performance
than the corresponding routines in LAPACK, (up to 3-fold speed-up) and MKL (up to
40% speed-up), but it also maintains the numerical quality of the standard LU factoriza-
tion algorithm with partial pivoting which is not the case for PLASMA. Our approach
uses a parallel fine-grained recursive formulation of the panel factorization step. Based
on conflict-free partitioning of the data and lockless synchronization mechanisms, our
implementation lets the overall computation naturally flow without contention. The dy-

20

(a) Incremental pivoting DGETRF with N = 5000, NB = 220
and IB = 20

(b) Recursive LU DGETRF with sequential panel factoriza-
tion, N = 5000 and NB = 220

(c) Recursive LU DGETRF with parallel panel factorization,
N = 5000 and NB = 220

Fig. 13. Execution traces of the different variant of LU factorization using Quark. Light green:
dgetrf, dark green: dtstrf, light blue: dtrsm or dgessm, yellow: dgemm or dssssm and orange:
dlaswp.

namic runtime system QUARK is then able to schedule tasks with heterogeneous gran-
ularities and to transparently introduce algorithmic lookahead.

The natural extension for this work would be the application of our methodology
and implementation techniques to tile QR factorization. Even though, the tile QR factor-
ization does not suffer from loss of numerical accuracy when compared to the standard

21

QR factorization thanks to the use of orthogonal transformations, a performance hit has
been noticed for asymptotic sizes (also seen for the tile LU from PLASMA). And this
is mainly due to the most compute intensive kernel, which is composed of successive
calls to Level 3 BLAS kernels. If the QR panel would have been parallelized (similarly
to the LU panel), the update would be much simpler (especially when targeting dis-
tributed systems) and based on single calls to xGEMM. The overall performance will
then be guided solely by the performance of the matrix-matrix multiplication kernel,
which is crucial when targeting asymptotic performance.

References

1. Anderson E, Bai Z, Bischof C, Blackford SL, Demmel JW, Dongarra JJ, Croz JD, Green-
baum A, Hammarling S, McKenney A, et al.. LAPACK User’s Guide. 3rd edn., Society for
Industrial and Applied Mathematics: Philadelphia, 1999.

2. Agullo E, Hadri B, Ltaief H, Dongarrra J. Comparative study of one-sided factorizations with
multiple software packages on multi-core hardware. SC ’09: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis, ACM: New York, NY,
USA, 2009; 1–12, doi:http://doi.acm.org/10.1145/1654059.1654080.

3. University of Tennessee. PLASMA Users’ Guide, Parallel Linear Algebra Software for Mul-
ticore Architectures, Version 2.3 November 2010.

4. Agullo E, Demmel J, Dongarra J, Hadri B, Kurzak J, Langou J, Ltaief H, Luszczek P, To-
mov S. Numerical linear algebra on emerging architectures: The PLASMA and MAGMA
projects. Journal of Physics: Conference Series 2009; 180.

5. The FLAME project April 2010. http://z.cs.utexas.edu/wiki/flame.wiki/FrontPage.
6. Luszczek P, Ltaief H, Dongarra J. Two-stage tridiagonal reduction for dense symmetric ma-

trices using tile algorithms on multicore architectures. IEEE International Parallel and Dis-
tributed Processing Symposium May 2011; .

7. Sorensen DC. Analysis of pairwise pivoting in gaussian elimination. IEEE Tranasactions on
Computers March 1985; C-34(3).

8. Buttari A, Langou J, Kurzak J, Dongarra JJ. A Class of Parallel Tiled Linear Algebra Algo-
rithms for Multicore Architectures. Parellel Comput. Syst. Appl. 2009; 35:38–53.

9. Quintana-Ortı́ G, Quintana-Ortı́ ES, Geijn RAVD, Zee FGV, Chan E. Programming ma-
trix algorithms-by-blocks for thread-level parallelism. ACM Trans. Math. Softw. July 2009;
36:14:1–14:26.

10. Agullo E, Augonnet C, Dongarra J, Faverge M, Langou J, Ltaief H, Tomov S. LU Factor-
ization for Accelerator-based Systems. ICL Technical Report ICL-UT-10-05, Submitted to
AICCSA 2011 December 2010; .

11. Kurzak J, Ltaief H, Dongarra J, Badia R. Scheduling dense linear algebra operations on mul-
ticore processors. Concurrency and Computation: Practice and Experience January 2010;
22(1):15–44.

12. Ltaief H, Kurzak J, Dongarra J, Badia R. Scheduling two-sided transformations using tile
algorithms on multicore architectures. Journal of Scientific Computing 2010; 18:33–50.

13. Intel, Math Kernel Library (MKL). http://www.intel.com/software/products/mkl/.
14. Elmroth E, Gustavson FG. New serial and parallel recursive QR factorization algorithms for

SMP systems. Proceedings of PARA 1998, 1998.
15. Georgiev K, Wasniewski J. Recursive Version of LU Decomposition. Revised Papers from

the Second International Conference on Numerical Analysis and Its Applications 2001;
:325–332.

http://z.cs.utexas.edu/wiki/flame.wiki/FrontPage
 http://www.intel.com/software/products/mkl/

22

16. Dongarra J, Eijkhout V, Luszczek P. Recursive approach in sparse matrix LU factorization.
Sci. Program. January 2001; 9:51–60.

17. Irony D, Toledo S. Communication-efficient parallel dense LU using a 3-dimensional ap-
proach. Proceedings of the 10th SIAM Conference on Parallel Processing for Scientific Com-
puting, Norfolk, Virginia, USA, 2001.

18. Dongarra JJ, Luszczek P, Petitet A. The LINPACK benchmark: Past, present, and future.
Concurrency and Computation: Practice and Experience 2003; 15:1–18.

19. Castaldo AM, Whaley RC. Scaling LAPACK panel operations using Parallel Cache Assign-
ment. Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice of
parallel programming 2010; :223–232.

20. Gustavson FG. Recursion leads to automatic variable blocking for dense linear-algebra algo-
rithms. IBM Journal of Research and Development November 1997; 41(6):737–755.

21. Chan E, van de Geijn R, Chapman A. Managing the complexity of lookahead for LU factor-
ization with pivoting. Proceedings of the 22nd ACM symposium on Parallelism in algorithms
and architectures 2010; :200–208.

22. Anderson E, Dongarra J. Implementation guide for lapack. Technical Report UT-CS-90-101,
University of Tennessee, Computer Science Department April 1990. LAPACK Working Note
18.

23. Amdahl GM. Validity of the single-processor approach to achieving large scale computing
capabilities. AFIPS Conference Proceedings, vol. 30, AFIPS Press, Reston, VA: Atlantic
City, N.J., 1967; 483–485.

24. Gustafson JL. Reevaluating Amdahl’s Law. Communications of ACM 1988; 31(5):532–533.
25. Sundell H. Efficient and practical non-blocking data structures. Department of computer

science, Chalmers University of Technology, Göteborg, Sweden November 5 2004. PhD
dissertation.

26. Yi Q, Kennedy K, You H, Seymour K, Dongarra J. Automatic blocking of QR and LU
factorizations for locality. 2nd ACM SIGPLAN Workshop on Memory System Performance
(MSP 2004), 2004.

27. Blackford LS, Choi J, Cleary A, D’Azevedo EF, Demmel JW, Dhillon IS, Dongarra JJ, Ham-
marling S, Henry G, Petitet A, et al.. ScaLAPACK Users’ Guide. Society for Industrial and
Applied Mathematics: Philadelphia, 1997.

28. Haidar A, Ltaief H, YarKhan A, Dongarra JJ. Analysis of Dynamically Scheduled Tile Algo-
rithms for Dense Linear Algebra on Multicore Architectures. ICL Technical Report UT-CS-
11-666, LAPACK working note #243, Submitted to Concurrency and Computations 2010;
.

29. Dijkstra EW. On the role of scientific thought. Selected writings on Computing: A Personal
Perspective, Dijkstra EW (ed.). Springer-Verlag New York, Inc.: New York, NY, USA, 1982;
6066. ISBN 0-387-90652-5.

30. Reade C. Elements of Functional Programming. Addison-Wesley Longman Publishing Co.,
Inc.: Boston, MA, USA, 1989. ISBN 0201129159.

31. Buttari A, Langou J, Kurzak J, Dongarra JJ. Parallel Tiled QR Factorization for Multi-
core Architectures. Concurrency Computat.: Pract. Exper. 2008; 20(13):1573–1590. http:
//dx.doi.org/10.1002/cpe.1301 DOI: 10.1002/cpe.1301.

32. Perez J, Badia R, Labarta J. A dependency-aware task-based programming environment for
multi-core architectures. Cluster Computing, 2008 IEEE International Conference on, 2008;
142 –151, doi:10.1109/CLUSTR.2008.4663765.

33. Dongarra J, Faverge M, Ishikawa Y, Namyst R, Rue F, Trahay F. Eztrace: a generic frame-
work for performance analysis. Technical Report, Innovative Computing Laboratory, Uni-
versity of Tennessee dec 2010.

34. Visual Trace Explorer. http://vite.gforge.inria.fr/.

http://dx.doi.org/10.1002/cpe.1301
http://dx.doi.org/10.1002/cpe.1301
 http://vite.gforge.inria.fr/

	Achieving Numerical Accuracy and High Performance using Recursive Tile LU Factorization

