
Using replication for resilience on exascale systems

Marin Bougeret1, Henri Casanova2, Yves Robert3,4, Frédéric Vivien3 and Dounia Zaidouni3
1. LIRMM Montpellier, France, Marin.Bougeret@lirmm.fr

2. Univ. of Hawai‘i at Manoa, Honolulu, USA, henric@hawaii.edu
3. Ecole Normale Supérieure de Lyon, France

{Yves.Robert|Frederic.Vivien|Dounia.Zaidouni}@ens-lyon.fr
4. University of Tennessee Knoxville, USA

December 2011

Abstract

High performance computing applications must be tolerant to faults, which are common
occurrences especially in post-petascale settings. The traditional fault-tolerance solution is
checkpoint-rollback, by which the application saves its state to secondary storage throughout
execution and recover from the latest saved state in case of a failure. An oft studied research
question is that of the optimal checkpointing strategy: when should checkpoints be saved. Un-
fortunately, even using an optimal checkpointing strategy, the frequency of checkpointing must
increase as platform scale increases, leading to higher checkpointing overhead. This overhead
precludes high parallel efficiency for large-scale platforms, thus mandating other more scalable
fault-tolerance mechanisms. One such mechanism is replication, which can be used in addition
to checkpoint-rollback. Using replication, multiple processors perform the same computation
so that a processor failure does not necessarily mean application failure. While at first glance
replication may seem wasteful, it may be significantly more efficient than using solely checkpoint-
rollback at large scale. In this work we investigate two approaches for replication. In the first
approach, each process in a single instance of a parallel application is (transparently) replicated.
In the second approach, entire application instances are replicated. We provide a theoretical
study of these two approaches, comparing them to checkpoint-rollback only, in terms of expected
application execution time.

1 Introduction

As plans are made for deploying post-petascale high performance computing (HPC) systems [8, 17],
solutions need to be developed to ensure that applications on such systems are resilient to faults.
Resilience is particularly critical for applications that enroll large numbers of processors, including
those applications that are pushing the limit of current computational capabilities and that could
benefit from enrolling all available processors. However, for such applications, processor failure is
the common case rather than the exception. For instance, the 45,208-processor Jaguar platform is
reported to experience on the order of 1 failure per day [16, 2], and its scale is modest compared
to platforms in the plans for the next decade. Unfortunately, not all faults can be automatically
detected and corrected in hardware, which leads to failures. For such faults, rollback recovery
is used to resume job execution from a previously saved fault-free execution state, or checkpoint.
Rollback recovery implies frequent (usually periodic) checkpointing events at which the job state
is saved to resilient storage. More frequent checkpoints lead to higher overhead during fault-free

1

execution, but less frequent checkpoints lead to a larger loss when a failure occurs. A checkpointing
strategy then specifies when checkpoints should be taken.

To achieve high performance in a failure-prone environment, it is necessary to design efficient
checkpointing strategies, i.e., ones that minimize expected job execution time. A large literature
is devoted to identifying good strategies, including both theoretical and practical efforts. The
former typically rely on assumptions regarding the probability distributions of times to failure of the
processors (e.g., Exponential, Weibull), while the later rely on simulations driven by failure datasets
obtained on real-world platforms. In a previous paper [4], we have made several contributions in this
context, including optimal solutions for Exponential failures and dynamic programming solutions
for Weibull failures.

A major problem with checkpoint-rollback is its lack of scalability as platforms become large: the
necessary checkpoint frequency for tolerate faults in large-scale platforms is so large that processors
spend more time saving state than computing state. It is thus expected that future platforms will
lead to unacceptably low parallel efficiency if only checkpoint-rollback is used, no matter how good
the checkpointing strategy. Consequently, additional mechanisms must be used. In this work we
focus on replication: several processors perform the same computation synchronously, so that a fault
on one of these processors does not lead to an application failure. Replication is an age-old fault-
tolerant technique, but it has gained traction in the HPC context only relatively recently. While
replication wastes compute resources in fault-free executions, it can alleviate the poor scalability
of checkpoint-rollback.

We study two replication approaches. Consider a parallel application that is moldable, meaning
that it can be executed on an arbitrary number of processors, which each processor running one
application process. In the first approach, process replication, a single instance of the application
is executed but each application process is (transparently) replicated. For instance, instead of
executing the application with 2n distinct processes on a 2n-processor platform, one executes the
application with n processes so that there are two replicas of each process each running on a
distinct physical processor. The advantage of this approach is that the mean time to failure of
a group of two replicas is larger than that of a single processor, meaning that the checkpointing
frequency can be lowered in a view to improving parallel efficiency. In the second approach, group
replication, multiple application instances are executed. For the same example, one could execute
2 distinct n-process application instances on the 2n-processor platform. Each instance runs at a
smaller scale, meaning that it has better parallel efficiency than a single 2n-process instance due to
a smaller checkpointing frequency. Furthermore, once an instance saves a checkpoint, it is possible
for another instance to use this checkpoint immediately.

Given the above, our contributions in this work are:

• A theoretical analysis of the optimal number of processors to use for a checkpoint-rollback
execution of a parallel application for various parallel workload models;

• A theoretical analysis of process replication, which leads to a dynamic programming solution
for determining a good checkpointing policy.

• A simple yet effective algorithm for group replication and a theoretical analysis that yields a
bound on the expected application execution time achieved by this algorithm.

This paper is organized as follows. Section 2 discusses related work. Section 3 defines our
theoretical framework and states our key assumptions. Section 4 discusses the optimal number
of processors for a checkpoint-rollback execution of a parallel application. Section 5 presents our
results for process replication, and Section 6 presents our results for group replication. Finally,
Section 7 provides some final remarks and perspectives.

2

2 Related work

Checkpointing policies have been widely studied in the literature. In [7], Daly studies periodic
checkpointing policies for Exponentially distributed failures, generalizing the well-known bound
obtained by Young [23]. Daly extended his work in [13] to study the impact of sub-optimal check-
pointing periods. In [20], the authors develop an “optimal” checkpointing policy, based on the
popular assumption that optimal checkpointing must be periodic. In [5], Bouguerra et al. prove
that the optimal checkpointing policy is periodic when checkpointing and recovery overheads are
constant, for either Exponential or Weibull failures. But their results rely on the unstated assump-
tion that all processors are rejuvenated after each failure and after each checkpoint. In our recent
work [4], we have shown that this assumption is unreasonable for Weibull failure. We have devel-
oped optimal solutions for Exponential failures and dynamic programming solutions for Weibull
failures, demonstrating performance improvements over checkpointing approaches proposed in the
literature in the case of Weibull failures. Note that Weibull distribution is recognized as a rea-
sonable approximation of failures in real-world systems [12, 19]. The work in this paper relates
to checkpointing policies in the sense that we study a replication mechanism that is used as an
addition to checkpointing. Part of our results build on the algorithms and results developed in [4].

In spite of all the above advances in the areas of checkpointing policies, several studies have
questioned the feasibility of pure checkpoint-rollback for large-scale systems (see [10] for a discussion
of this issue and for references to such studies). In this work we study the used of replication as
a mechanism complementary to checkpoint-rollback. Replication has long been used as a fault-
tolerance mechanism in distributed systems [11] and more recently in the context of volunteer
computing [15]. The idea to use replication together with checkpoint-rollback has been studied
in the context of grid computing [22]. One concern about replication in HPC is the induced
resource waste. However, given the scalability limitations of pure checkpoint-rollback, replication
has recently received more attention in the HPC literature [18, 24, 9]. Most recently, the work by
Ferreira et al. [10] has studied the use of process replication for MPI applications. They provide
a theoretical analysis of parallel efficiency, an implementations of MPI that supports transparent
process replication, and a set of convincing experimental and simulation results. The work in [10]
only considers 2 replicas per application process. The theoretical analysis, admittedly not the
primary objective of the authors, is not developed in details. Furthermore, it relies on an analogy
with the birthday problem to compute the MTTF of the machine, which turns out to be incorrect.
In Section 5 of this work we provide a full-fledge theoretical analysis of process replication.

3 Framework

We consider the execution of a tightly-coupled parallel application, or job, on a large-scale plat-
form composed of p processors. We use the term processor to indicate any individually scheduled
compute resource (a core, a multi-core processor, a cluster node) so that our work is agnostic to
the granularity of the platform. We assume that a standard checkpointing and roll-back recovery
is performed at the system level.

The job must complete W units of (divisible) work, which can be split arbitrarily into separate
chunks. The job can execute on any number q ≤ p processors. Letting W(q) be the time required
for a failure-free execution on q processor, we use three models:
• Perfectly parallel jobs: W(q) =W/q.
• Generic parallel jobs: W(q) = W/q + γW. As in Amdahl’s law [1], γ < 1 is the fraction of

the work that is inherently sequential.

3

• Numerical kernels: W(q) =W/q+γW2/3/
√
q. This is representative of a matrix product or a

LU/QR factorization of size N on a 2D-processor grid, where W = O(N3). In the algorithm
in [3], q = r2 and each processor receives 2r blocks of size N2/r2 during the execution. Here
γ is the communication-to-computation ratio of the platform.

Each participating processor is subject to failures. A failure causes a downtime period of the
failing processor, of duration D. When a processor fails, the whole execution is stopped, and all
processors must recover from the previous checkpointed state. We let C(q) denote the time needed
to perform a checkpoint, and R(q) the time to perform a recovery. The downtime accounts for
software rejuvenation (i.e., rebooting [14, 6]) or for the replacement of the failed processor by a
spare. Regardless, we assume that after a downtime the processor is fault-free and begins a new
lifetime at the beginning of the recovery period. This recovery period corresponds to the time
needed to restore the last checkpoint. Assuming that the application’s memory footprint is V
bytes, with each processor holding V/q bytes, we consider two scenarios:
• Proportional overhead: C(q) = R(q) = αV/q = C/q for some constant α. This is represen-

tative of cases where the bandwidth of the network card/link at each processor is the I/O
bottleneck.
• Constant overhead: C(q) = R(q) = αV = C, which is representative of cases where the

bandwidth to/from the resilient storage system is the I/O bottleneck.
We asssume coordinated checkpointing [21], meaning that no message logging/replay is needed
when recovering from failures. Finally, we assume that failures can happen during recovery or
checkpointing, but not during a downtime (otherwise, the downtime period could be considered
part of the recovery period).

We assume that the parallel job is tightly coupled, meaning that all q processors operate syn-
chronously throughout the job execution. These processors execute the same amount of workW(q)
in parallel, chunk by chunk. The total time (on one processor) to execute a chunk of size ω, and
then checkpointing it, is ω + C(q). Finally, we assume that failure arrivals at all processors are
independent and identically distributed (iid).

4 Optimal number of processors for execution

In this section we consider a parallel job of sizeW executing on q processors, with values forW(q),
C(q) and R(q) given by one of the previous scenarios.

We assume that failure laws follow an Exponential distribution law. Let E(q) be the expectation
of the execution time when using q processors. Is it true than choosing q = p minimizes this
quantity? Otherwise, what can we say about the optimal number of processors qopt which minimizes
E(q)? This question was partially and empirically addressed in [20], via experiments for 4 MPI
applications for up to 35 processors. Our approach here is radically different since we target large-
scale platforms and seek theoretical results in the form of optimal solutions. The main objective of
this section is to show analytically that, for Exponential failures, E(q) decreases and then increases
as q increases, and thus admits a unique minimum.

Assume that failure inter-arrival times follow an Exponential distribution with parameter λ. In
our recent work [4], we have shown that the optimal strategy to minimize the expected makespan
E(q) is to splitW into K∗ = max(1, bK0(q)c) or K∗ = dK0(q)e same-size chunks, whichever leads to
the smaller value, where K0(q) = qλW(q)

1+L(−e−qλC(q)−1) is the optimal (non integer) number of chunks.
L denotes the Lambert function, defined as L(z)eL(z) = z. This result shows that the optimal

4

strategy is periodic. The optimal expectation of the makespan is computed as:

E∗(q) = K∗(q)
(1
qλ

+ E(Trec(q))
)(

e
qλW(q)
K∗(q) +qλC(q) − 1

)
(1)

where E(Trec(q)) denotes the expectation of the recovery time, i.e., the time spent recovering from
failure during the computation of a chunk. All chunks have the same recovery time because they
all have the same size and because of the memoryless property of the Exponential distribution. It
turns out that although we can compute the optimal number of chunks (and thus the chunk size),
we cannot compute E∗(q) analytically because E(Trec(q)) is difficult to compute. This is because
failures can occur during recovery. Many previous works conveniently assume that no failure occurs
during recovery. To circumvent this difficulty we write the following recursion:

Trec(q) =

XD(q) +R(q) if no processor fails

during R(q) units of time,
XD(q) + Tlost(R(q)) + Trec(q) otherwise.

(2)

XD(q) is the downtime of a group of q processors, that is the time between the first failure of one
of the processors and the first time at which all of them are available (accounting for the fact a
processor can fail while another one is down, thus prolonging the downtime). Tlost(R(q)) is the
amount of time spent computing by these processors before a first failure, knowing that the next
failure occurs within the next R(q) units of time. In other terms, it is the compute time that is
wasted because checkpoint recovery was not completed. The time until the next failure of a group of
q processors is the minimum of q iid Exponentially distributed variables, and is thus Exponential
with parameter qλ. We can thus compute E(Tlost(R(q))) = 1

qλ −
R(q)

eqλR(q)−1 (see [4] for details).
Plugging this value into Equation 2 leads to:

E(Trec(q)) = e−qλR(q)(E(XD(q)) +R(q))

+ (1− e−qλR(q))
(
E(XD(q)) + 1

qλ
− R(q)
eqλR(q) − 1

+ E(Trec(q))
)

(3)

Equation 3 reads as follows: after the downtime XD(q), either the recovery succeeds for everybody,
or there is a failure during the recovery and we have to make another attempt. Both events are
weighted by their respective probabilities. Simplifying the above expression we get:

E(Trec(q)) = E(XD(q))eqλR(q) + 1
qλ

(eqλR(q) − 1) (4)

The difficulty to compute E(Trec(q)) now comes from the E(XD(q)) term. With a single proces-
sor (q = 1), XD(q) has constant value D, but with several processors there could be cascading
downtimes. At any rate, we can compute the following lower and upper bounds for E(XD(q)):

Proposition 1. Let XD(q) denote the downtime of a group of q processors. Then

D ≤ E(XD(q)) ≤ e(q−1)λD − 1
(q − 1)λ (5)

Proof. We always have XD(q) ≥ XD(1) ≥ D, hence the lower bound. For the upper bound,
consider a date at which one of the q processors, say processor i0, just had a failure and initiates its
downtime period for D time units. Some other processors might be in the middle of their downtime

5

period: for each processor i, 1 ≤ i ≤ q, let ti denote the remaining duration of the downtime of
processor i. We have 0 ≤ ti ≤ D for 1 ≤ i ≤ q, ti0 = D, and ti = 0 means that processor i is up
and running. Let Xt1,..,tq

D (q) be the remaining downtime of a group of q processors, knowing that
processor i, 1 ≤ i ≤ q, will still be down for a duration of ti, and that a failure just happened (i.e.,
there exists i0 such that ti0 = D). Given the values of the ti’s, we have the following equation for
the random variable Xt1,..,tq

D (q):

X
t1,..,tq
D (q) =

D

if none of the processors of the group
fails during the next D units of time

T
t1,..,tq
lost (D) +X

t′1,..,t
′
q

D (q)
otherwise.

In the second case of the equation, consider the next D time-units. Processor i can only fail
in the last D − ti of these time-units. Here the values of the t′i’s depend on the ti’s and on
T
t1,..,tq
lost (D). Indeed, except for the last processor to fail, say i1, for which t′i1 = D, we have
t′i = max{t′i − T

t1,..,tq
lost (D), 0}. More importantly we always have T t1,..,tqlost (D) ≤ TD,0,...,0lost (D) and

X
t1,..,tq
D (q) ≤ XD,0,..,0

D (q) because the probability for a processor to fail during D time units is
always larger than that to fail during D − ti time-units. Thus, E(Xt1,..,tq

D (q)) ≤ E(XD,0,..,0
D (q)).

Following the same line of reasoning, we derive an upper-bound for XD,0,..,0
D (q):

XD,0,..,0
D (q) ≤

D

if none of the q − 1 running processors of the group
fails during the downtime D

TD,0,..,0lost (D) +XD,0,..,0
D (q)

otherwise.

Weighting both cases by their probability and taking expectations, we obtain

E
(
XD,0,..,0
D (q)

)
≤ e−(q−1)λDD + (1− e−(q−1)λD)

(
E
(
TD,0,..,0lost (D)

)
+ E

(
XD,0,..,0
D (q)

))
hence E

(
XD,0,..,0
D (q)

)
≤ D + (e(q−1)λD − 1)E

(
TD,0,..,0lost (D)

)
, with E

(
TD,0,..,0lost (D)

)
= 1

(q−1)λ −
D

e(q−1)λD−1 . We derive

E
(
X
t1,..,tq
D (q)

)
≤ E

(
X0,..,0
D (q)

)
≤ e(q−1)λD − 1

(q − 1)λ .

which concludes the proof. As a sanity check, we observe that the upper bound is at least D, using
the identity ex ≥ 1 + x for x ≥ 0.

We use the lower bound on E(XD(q)) to prove the following result: for several relevant scenarios,
the expected execution time E∗(q) is minimum when using a finite number of processors (while in a
failure free environment, it would always decrease as q increases). We obtain the following theorem:

Theorem 1. E∗(q) reaches its minimum for some finite value of q in the following scenarios: all job
types (perfectly parallel, generic and numerical) with constant overhead, and generic or numerical
jobs with proportional overhead.

6

Proof. We show that limq→+∞ E∗(q) = +∞ for the relevant scenarios. We first plug the lower-
bound of Equation 5 into Equation 4 and obtain:

E(Trec(q)) ≥ DeqλR(q) + 1
qλ

(
eqλR(q) − 1

)
.

From Equation 1 we then derive the lower-bound:

E∗(q) ≥ K0(q)
(1
qλ

+D

)
eqλR(q)

(
e
qλW(q)
K0(q) +qλC(q) − 1

)
using the fact that, by definition, the expression in the right hand-side of Equation 1 is minimized
by K0, where K0(q) = qλW(q)

1+L(−e−qλC(q)−1) .

Perfectly parallel jobs with constant overhead. Here we assume that W(q) =W/q and use
constant overhead C(q) = R(q) = C. We get the lower bound:

E∗(q) ≥ K0(q)
(1
qλ

+D

)
eqλC

(
e

λW
K0(q) +qλC − 1

)
where K0(q) = λW

1+L(−e−qλC−1) . We show that limq→+∞ E∗min(q) = +∞. As a consequence, we will
also have limq→+∞ E∗(q) = +∞, hence the desired result. When q tends to +∞, K0(q) tends to

λW, while (1
qλ +D)eqλC

(
e

λW
K0(q) +qλC − 1

)
tends to +∞. This concludes the proof. This result also

implies that E∗(q) reaches a minimum for a finite q value for other job types (generic, numerical)
with constant overhead, just because the execution time is larger in that case than with perfectly
parallel jobs.

Generic parallel job with proportional overhead. Here we assume thatW(q) =W/q+γW,
and use proportional overhead: C(q) = R(q) = C

q . We get the lower bound:

E∗(q) ≥ K0(q)
(1
qλ

+D

)
eλC

(
e
λW+qλγW
K0(q) +λC − 1

)
where K0(q) = λW+qλγW

1+L(−e−λC−1) . As before, we show that limq→+∞ E∗min(q) = +∞ to get the result.

When q tends to +∞, K0(q) tends to +∞, while (1
qλ +D)eλC

(
e
λW+qλγW
K0(q) +λC − 1

)
tends to some

positive constant. This concludes the proof. Note that this proof also serves for generic parallel
jobs with constant overhead, simply because the execution time is larger in that case than with
proportional overhead.

Numerical kernels with proportional overhead. Here we assume that W(q) = W/q +
γW2/3/

√
q, and use proportional overhead: C(q) = R(q) = C

q . We get the lower bound:

E∗(q) ≥ K0(q)
(1
qλ

+D

)
eλC

(
e
λW+λγW2/3√q

K0(q) +λC − 1
)

where K0(q) = λW+λγW2/3√q
1+L(−e−λC−1) . As before, we show that limq→+∞ E∗min(q) = +∞ to get the result.

When q tends to +∞, K0(q) tends to +∞, while (1
qλ + D)eλC

(
e
λW+λγW2/3√q

K0(q) +λC − 1
)

tends to

some positive constant. This concludes the proof.

7

Note that the only open scenario is with perfectly parallel jobs and proportional overhead: the
lower bound for E∗(q) decreases to some constant while the upper bound tends to infinity as q
tends to infinity.

5 Process Replication

A parallel application is made of several application processes, each process running on a distinct
processor. Process replication was recently studied in [10], where the authors propose to repli-
cate each application process transparently on two processors. Only when both these processors
fail must the job recover from the previous checkpoint. By definition, one replica performs re-
dundant computations, which may be seen as a waste of resources. However, the probability that
both replicas fail is much smaller than that of a single replica, thereby allowing to reduce the
checkpoint frequency. The results in [10] show large performance improvements due to Process
replication. The authors also develop an MPI library that implements transparent Process
replication (failure detection, consistent message ordering among replicas, etc.).

The objective of this section is to provide a full theoretical analysis of Process replication,
considering the general case where each application process is replicated g ≥ 2 times. In the
following we call replica-group the set of all the replicas of a given process, and we denote by nrg
the number of replica-groups. Altogether, if there are p available processors, there are nrg × g ≤ p
processes running on the platform.

5.1 Mean number of failures needed to bring down an application

Following [10], we assume that when one of the g replicas of a replica-group fails, it is not restarted
and the execution of the application proceeds as long as there is still at least one running replica in
each of the replica-groups 1. Then, for the whole application to fail, there must exist a replica-group
whose g replicas have all been hit by a failure. Ferreira et al. [10] consider the case g = 2, and
observe that the generalized birthday problem is related to the problem of determining the number
of process failures needed to induce the failure of the whole application. The generalized birthday
problem answers the following question: what is the smallest integer n such that, when randomly
drawing n integers from a discrete uniform distribution with range [1,m], there is a probability
at least equal to 50% that two numbers are the same? In our scope, m = nrg is the number of
replica-groups, and n denotes the number of failures. In [10] it is stated that the mean number of
faults that can happen so that there is a 50% chance that the application is still running, that is,
that each replica-group still contains one running replica, is:

NF(nrg) = 1 +
nrg∑
k=1

nrg!
(nrg − k)! · nkrg

≈
√
πnrg

2 + 2
3 (6)

1One can envision a scenario where the failed replica is restarted based on the current state of the remaining
replicas in its replica-group. This would increase application resiliency but would also be time-consuming. A certain
amount of time would indeed be needed to copy the state of one of the remaining replicas. Because all replicas of a
same process must have a coherent state, the execution of the still running replicas would have to be paused during
this copying. In our tightly coupled application model, the copying-time would be a time during which the execution
of the whole application must be paused. Consequently, restarting a failed replica would only be beneficial if the
restarting cost were very small, when taking in consideration the frequency of failures, and the checkpoint and restart
costs. The benefit of such an approach is doubtful, and we do not consider it (it was also ignored in [10]). In any
case, if a scheme involving process restart were to be put in place, it is unlikely that there would beneficial cases with
g > 2.

8

However, the target problem is not identical to the generalized birthday problem, and Equation 6
turns out to be incorrect. To illustrate the differences we consider the case g = 2. Then, there are
two possible approaches to counting failures:

1. One counts each failure hitting any of the g · nrg initial processors, including the processors
already hit by a failure. This is the approach followed in [10]. Under this approach, the target
problem is not identical to the generalized birthday problem because the second failure to hit
a given replica-group does not necessarily induce an application interruption. Indeed, if the
failure hits the already stricken processor, whose replica had already been killed by the first
failure, the application is not affected. If, on the contrary, the failure hits the other processor,
both replicas of a same process are killed and the whole application fails.

2. One only counts failures that hit running processors, and thus effectively kill replicas. To
show that the target problem is not identical to the generalized birthday problem under this
approach, we consider the situation right after the first failure occurred. In the generalized
birthday problem one assumes that all integers in the range are uniformly distributed. In our
problem, the replica-group that suffered from the first failure only contains a single running
replica after that failure, while all the other replica-groups still contain two running replicas.
Therefore, if the probability of failures is uniformly distributed among still running processes2

(which is usually assumed), then the replica-group hit by the first failure has a probability
to be stricken by the second failure twice smaller than the other replica-groups, because it
contains half as many running replicas!

The following theorem gives the correct value of the mean number of failures needed for the
whole application to fail. We let MNFTI ah denote the Mean Number of Failures To Interruption,
where “ah” stands for already hit. This is to emphasize that all failures are considered in this
approach, those hitting running processors, as well as those hitting processors whose replicas have
already been killed.
Theorem 2. If the failure inter-arrival times on the different processors are independent, iden-
tically distributed, and independent from the failure history of nodes, then under the Process
replication scheme, with g = 2, we have MNFTI ah = E(NFTI ah|0) where

E(NFTI ah|nf) =
{

2 if nf = nrg,
2nrg

2nrg−nf + 2nrg−2nf
2nrg−nf E

(
NFTI ah|nf + 1

)
otherwise.

Proof. Let E(NFTI ah|nf) be the expectation of the number of failures needed for the whole ap-
plication to fail, knowing that the application is still running and that failures have already hit
nf different replica-groups. Because each process initially has 2 replicas, this means that nf dif-
ferent processes are no longer replicated, and that nrg − nf are still replicated. Overall, there are
nf + 2(nrg − nf) = 2nrg − nf still running processors.

The case nf = nrg is the simplest. A new failure will hit an already stricken replica-group,
that is, a replica-group where one of the two initial replicas is still running and the other one had
already been killed. Then two cases are possible:

1. The failure hits the running processor. This leads to an application failure, and in this case
E(NFTI ah|nrg) = 1.

2. The failure hits the processor that has already been hit. Then the failure has no impact on
the application. The MNFTI ah of this case is then: E(NFTI ah|nrg) = 1 + E

(
NFTI ah |nrg

)
.

2Note that if the failure probability is uniformly distributed among the g · nrg initial processors, including the
processors already hit by a failure, then the probability of failures is uniformly distributed among still running
processes!

9

As the probability of failure is uniformly distributed between the two initial replicas, and thus
between both previous cases, the aggregate MNFTI ah is:

E
(

NFTI ah |nrg
)

= 1
2 × 1 + 1

2 ×
(
1 + E

(
NFTI ah |nrg

))
.

Therefore,
E
(

NFTI ah |nrg
)

= 2.

For the general case 0 ≤ nf ≤ nrg − 1, either the next failure hits a new replica-group, that is
one with 2 still running processors, or it hits a replica-group that has already been stricken. The
latter case leads to the same sub-cases as the nf = nrg case studied above. As we have assumed that
the failure inter-arrival times on the different processors are independent, identically distributed,
and independent from the failure history of nodes the failure probability is uniformly distributed
among the 2nrg processors, including the ones already hit. Hence the probability that the next
failure hits a new replica-group is 2nrg−2nf

2nrg . In this case, the expected number of failures needed
for the whole application to fail is one (the considered failure) plus E

(
NFTI ah|nf + 1

)
. Altogether

we have derived that:

E
(

NFTI ah|nf
)

= 2nrg − 2nf
2nrg

×
(
1 + E

(
NFTI ah|nf + 1

))
+ 2nf

2nrg
×
(1

2 × 1 + 1
2
(
1 + E

(
NFTI ah|nf

)))
.

Therefore,
E
(

NFTI ah|nf
)

= 2nrg
2nrg − nf

+ 2nrg − 2nf
2nrg − nf

E
(

NFTI ah|nf + 1
)
.

It may seem more natural to consider only failures that hit running processors, because these
are the only ones that are important for the application. In this second accounting approach, we
let MNFTI rp denote the Mean Number of Failures To Interruption, where “rp” stands for running
processors. This is to emphasize that only those failures that hit still running processors are taken
into account. We obtain a very similar recursive formula with the new approach:

Theorem 3. If the failure inter-arrival times on the different processors are independent and iden-
tically distributed, then under the Process replication scheme, with g = 2, we have MNFTI rp =
E(NFTI rp|0) where

E(NFTI rp|nf) =
{

1 if nf = nrg,

1 + 2nrg−2nf
2nrg−nf E(NFTI rp|nf + 1) otherwise.

Proof. Let E(NFTI rp|nf) be the expectation of the number of failures needed for the whole ap-
plication to fail knowing that the application is still running and that failures have already hit nf
different replica-groups. Because each process initially has 2 replicas, this means that nf differ-
ent processes are no longer replicated, and that nrg − nf are still replicated. Overall, there are
nf + 2(nrg − nf) = 2nrg − nf still running processors.

The case nf = nrg is the simplest: a new failure will hit an already hit replica-group and hence
leads to an application failure, hence

E (NFTI rp |nrg) = 1.

10

For the general case 0 ≤ nf ≤ nrg − 1, either the next failure hits a new replica-group with 2
still running replicas, or it hits a replica-group that had already been hit. The latter case leads to
an application failure; in that case, after nf failures, the expected number of failures needed for the
whole application to fail is exactly one. The failure probability is uniformly distributed among the
2nrg − nf running processors, hence the probability that the next failure hits a new replica-group
is 2nrg−2nf

2nrg−nf . In this case, the expected number of failures needed for the whole application to fail
is one (the considered failure) plus E (NFTI rp|nf + 1). Altogether we have derived that:

E (NFTI rp|nf) = 2nrg − 2nf
2nrg − nf

× (1 + E (NFTI rp|nf + 1)) + nf
2nrg − nf

× 1.

Therefore,
E (NFTI rp|nf) = 1 + 2nrg − 2nf

2nrg − nf
E (NFTI rp|nf + 1) .

We point out that Theorem 3 does not make any assumption on the failure distribution, it
only assumes that all processors are subject to independent and identically distributed failures.
However, to establish Theorem 2, in addition to the same hypotheses, we also needed to assume
that the probability of failures of a node was not affected by the fact that it had already been hit.
This assumption seems to restrict this theorem to failures following Exponential laws.

It turns out that both failure counting approaches lead to very similar results:

Proposition 2. If the failure inter-arrival times on the different processors are independent, iden-
tically distributed, and independent from the failure history of nodes, then

MNFTI ah = 1 + MNFTI rp.

Proof. We prove by induction that E(NFTI ah|nf) = 1 + E(NFTI rp|nf), for any nf ∈ [0, nrg]. The
base case is for nf = nrg and the induction uses non-increasing values of nf .

For the base case, we have E(NFTI rp|nrg) = 1 and E(NFTI ah|nrg) = 2. Hence the property
is true for nf = nrg. Consider a value nf < nrg, and assume to have proven that E(NFTI ah|i) =
1 + E(NFTI rp|i), for any value of i ∈ [1 + nf , nrg]. We now prove the equation for nf . According
to Theorem 2, we have:

E(NFTI ah|nf) = 2nrg
2nrg − nf

+ 2nrg − 2nf
2nrg − nf

E
(

NFTI ah|nf + 1
)
.

Therefore, using the induction hypothesis, we have:

E(NFTI ah|nf) = 2nrg
2nrg−nf + 2nrg−2nf

2nrg−nf (1 + E (NFTI rp|nf + 1))
= 2 + 2nrg−2nf

2nrg−nf E (NFTI rp|nf + 1)
= 1 + E (NFTI rp|nf)

the last equality being established using Theorem 3. Therefore, we have proved by induction that
E(NFTI ah|0) = 1 + E(NFTI rp|0). To conclude, we remark that E(NFTI ah|0) = MNFTI ah and
E(NFTI rp|0) = MNFTI rp.

Finally, we show that Theorems 2 and 3 can both be generalized to arbitrary values of g > 2.
Because proofs are very similar, we only give the one for the MNFTI rp accounting approach (failures
on running processors only), as it does not make any assumption on the failure distribution:

11

Proposition 3. If the failure inter-arrival times on the different processors are independent and
identically distributed, then under the Process replication scheme, for the general case with

g > 2, we have MNFTI rp = E

NFTI rp| 0, ..., 0︸ ︷︷ ︸
g−1 zeros

 where:

E
(

NFTI rp|n(1)
f , ..., n

(g−1)
f

)
=

1 +
g ·
(
nrg −

∑g−1
i=1 n

(i)
f

)
g · nrg −

∑g−1
i=1 i · n

(i)
f

· E
(

NFTI rp|n(1)
f , n

(2)
f , ..., n

(g−1)
f

)

+
g−2∑
i=1

(g − i) · n(i)
f

g · nrg −
∑g−1
i=1 i · n

(i)
f

·E
(

NFTI rp|n(1)
f , ..., n

(i−1)
f , n

(i)
f −1, n(i+1)

f +1, n(i+2)
f , ..., n

(g−1)
f

)
(7)

Proof. We now consider the general case g ≥ 2. Let E
(

NFTI rp|n(1)
f , ..., n

(g−1)
f

)
be the expectation

of the number of failures needed for the whole application to fail, knowing that the application is
still running and that, for i ∈ [1..g − 1], there are n(i)

f replica-groups that have already been hit
by exactly i failures. Note that a replica-group hit by i failures still contains exactly g − i running
replicas. Therefore, in a system where n(i)

f replica-groups have been hit by exactly i failures, there
are still overall exactly g · nrg −

∑g−1
i=1 i · n

(i)
f running replicas, g ·

(
nrg −

∑g−1
i=1 n

(i)
f

)
of which are in

replica-groups that have not yet been hit by any failure. Now, consider the next failure to hit the
system. There are three cases to consider.

1. The failure hits a replica-group that has not been hit by any failure so far. This happens
with probability:

g ·
(
nrg −

∑g−1
i=1 n

(i)
f

)
g · nrg −

∑g−1
i=1 i · n

(i)
f

and, in that case, the expected number of failures needed for the whole application to fail
is one (the studied failure) plus E

(
NFTI rp|1 + n

(1)
f , n

(2)
f , ..., n

(g−1)
f

)
. Remark that we should

have conditioned the above expectation with the statement “if nrg >
∑g−1
i=1 n

(i)
f ”. In order to

keep Equation 7 as simple as possible we rather do not explicitly state the condition and use
the following abusive notation:

g ·
(
nrg −

∑g−1
i=1 n

(i)
f

)
g · nrg −

∑g−1
i=1 i · n

(i)
f

·
(
1 + E

(
NFTI rp|1 + n

(1)
f , n

(2)
f , ..., n

(g−1)
f

))
,

considering than when nrg =
∑g−1
i=1 n

(i)
f the first term is null and thus that it does not matter

that the second term is not defined.

2. The failure hits a replica-group that has already been hit by g − 1 failures. Such a failure
leads to a failure of the whole application. As there are n(g−1)

f such groups, each containing
exactly one running replica, this event happens with probability:

n
(g−1)
f

g · nrg −
∑g−1
i=1 i · n

(i)
f

.

12

In this case, the expected number of failures needed for the whole application to fail is exactly
equal to one (the considered failure).

3. The failure hits a replica-group that had already been hit by at least one failure, and by at
most g − 2 failures. Let i be any value in [1..g − 2]. The probability that the failure hits a
group that had previously been the victim of exactly i failures is equal to:

(g − i) · n(i)
f

g · nrg −
∑g−1
i=1 i · n

(i)
f

as there are n(i)
f such replica-groups and that each contains exactly g− i still running replicas.

In this case, the expected number of failures needed for the whole application to fail is one (the
studied failure) plus E

(
NFTI rp|n(1)

f , ..., n
(i−1)
f , n

(i)
f − 1, n(i+1)

f + 1, n(i+2)
f , ..., n

(g−1)
f

)
as there

is one less replica-group hit by exactly i failures and one more hit by exactly i+ 1 failures.

We aggregate all the cases to obtain:

E
(

NFTI rp|n(1)
f , ..., n

(g−1)
f

)
=

g ·
(
nrg −

∑g−1
i=1 n

(i)
f

)
g · nrg −

∑g−1
i=1 i · n

(i)
f

·
(
1 + E

(
NFTI rp|1 + n

(1)
f , n

(2)
f , ..., n

(g−1)
f

))

+
g−2∑
i=1

(g − i) · n(i)
f

g · nrg −
∑g−1
i=1 i · n

(i)
f

·
(
1 + E

(
NFTI rp|n(1)

f , ..., n
(i−1)
f , n

(i)
f − 1, n(i+1)

f + 1, n(i+2)
f , ..., n

(g−1)
f

))
+

n
(g−1)
f

g · nrg −
∑g−1
i=1 i · n

(i)
f

· 1

which can be rewritten as

E
(

NFTI rp|n(1)
f , ..., n

(g−1)
f

)
=

1 +
g ·
(
nrg −

∑g−1
i=1 n

(i)
f

)
g · nrg −

∑g−1
i=1 i · n

(i)
f

· E
(

NFTI rp|1 + n
(1)
f , n

(2)
f , ..., n

(g−1)
f

)

+
g−2∑
i=1

(g − i) · n(i)
f

g · nrg −
∑g−1
i=1 i · n

(i)
f

·E
(

NFTI rp|n(1)
f , ..., n

(i−1)
f , n

(i)
f − 1, n(i+1)

f + 1, n(i+2)
f , ..., n

(g−1)
f

)

5.2 Application failure distribution and mean time to interruption

In [10], for the case g = 2, the Mean Time To application Interruption (MTTI) is computed using
the formula:

MTTI = systemMTBF(2nrg)×NF(nrg) (8)

13

where the value of FN (nrg) is given by Equation 6. Here systemMTBF denotes the mean time
between failures of a platform made up with 2nrg processors. This expression assumes that the
failures follow an Exponential distribution. This expression becomes exact if one replaces NF by
the expression of MNFTI ah given by Theorem 2.

As a sanity check, we would like to verify that we obtain the same value of the MTTI using
the two approaches to counting failures, i.e., whether or not we only count the failures hitting
still running processors. However, there is not such a simple relation as Equation 8 linking the
MTTI and the value of MNFTI rp. The reason is the following: while systemMTBF(2nrg) is the
expectation of the date at which the first failure will happen, this is not the expectation of the
inter-arrival time of the first and second failures when only considering failures on not already
stricken processors. Indeed, after the first failure there only remains, overall, 2nrg − 1 running
processors. Therefore, the inter-arrival time of the first and second failure has an expectation
of systemMTBF(2nrg − 1). With a reasoning similar to the proof of Theorem 3, we obtain the
following recursive expression for the MTTI :

Theorem 4. If the failure inter-arrival times on the different processors follow an Exponential
law of parameter λ then, under the Process replication scheme with g = 2, the MTTI is:
MTTI = E(TTI |0) where

E(TTI |nf) =
{ 1

nrg
1
λ if nf = nrg,
1

(2nrg−nf)
1
λ + 2nrg−2nf

2nrg−nf E(TTI |nf + 1) otherwise.

Proof. We denote by E(TTI |nf) the expectation of the time an application will run before failing,
knowing that the application is still running and that failures have already hit nf different replica-
groups. Since each process initially has 2 replicas, this means that nf different processes are no
longer replicated and that nrg−nf are still replicated. Overall, there are thus still nf+2(nrg−nf) =
2nrg − nf running processors.

The case nf = nrg is the simplest: a new failure will hit an already stricken replica-group
and hence leads to an application failure. As there are exactly nrg remaining running processors,
the inter-arrival times of the nrg-th and (nrg + 1)-th failures is equal to 1

λnrg
(minimum of nrg

Exponential laws). Hence:
E (TTI |nrg) = 1

λnrg
.

For the general case, 0 ≤ nf ≤ nrg − 1, either the next failure hits a replica-group with still
2 running processors, or it strikes a replica-group that had already been victim of a failure. The
latter case leads to an application failure; then, after nf failures, the expected application running
time before failure is equal to the inter-arrival times of the nf -th and (nf + 1)-th failures, which is
equal to 1

(2nrg−nf)λ . The failure probability is uniformly distributed among the 2nrg − nf running
processors, hence the probability that the next failure strikes a new replica-group is 2nrg−2nf

2nrg−nf . In
this case, the expected application running time before failure is equal to the inter-arrival times of
the nf -th and (nf + 1)-th failures plus E (TTI |nf + 1). We derive that:

E (TTI |nf) = 2nrg − 2nf
2nrg − nf

×
(

1
(2nrg − nf)λ + E (TTI |nf + 1)

)

+ nf
2nrg − nf

× 1
(2nrg − nf)λ.

14

Therefore,
E (TTI |nf) = 1

(2nrg − nf)λ + 2nrg − 2nf
2nrg − nf

E (TTI |nf + 1) .

One can generalize Theorems 3 and 4 to deal with any value of g. Similarly, and more directly,
one can generalize Theorem 2 and use Equation 8 to obtain the MTTI for any value of g, but
under strong assumptions on the failure distribution. However, this approach, based on recurrence
equations, is limited to failures following an Exponential distribution. To extend the computation
of the MTTI to arbitrary distributions, we use another approach, based on the failure distribution
law at the platform level. We explicit in Theorem 5 the probability of successfully completing a
work of sizeW under the Process replication scheme, and this for any failure distribution. This
theoretical result (Theorem 5) enables us to compute the MTTI for arbitrary failure distributions,
using numerical integration schemes. We refine the result and provide closed-form expressions for
the MTTI when failures follow an Exponential distribution (Theorem 6) or a Weibull distribu-
tion with fresh processors (Theorem 7). These closed-form expressions are directly amenable to
numerical evaluation (see Section 5.4)

Theorem 5. Consider an application with nrg processes, each replicated g times under the Pro-
cess replication scheme, such that processor Pi, 1 ≤ i ≤ g · nrg, executes a replica of process⌈
i
g

⌉
. Assume that the failure inter-arrival times on the different processors are independent and

identically distributed, and let τi denote the time elapsed since the last failure of processor Pi. Let F
denote the cumulative distribution function of the failure probability, and F (t|τ) be the probability
that a processor fails in the next t units of time, knowing that its last failure happened τ units of
time ago. The probability that the application will still be running after t units of time is equal to:

R(t) =
nrg∏
j=1

(
1−

g∏
i=1

F
(
t|τi+g(j−1)

))
(9)

and the Mean Time To application Interruption is equal to:

MTTI =
∫ +∞

0

nrg∏
j=1

(
1−

g∏
i=1

F
(
t|τi+g(j−1)

))
dt. (10)

While failure independence is necessary to prove Theorem 5, the hypothesis that the failures
are identically distributed can be removed. We have added this assumption to simplify the writing
of Equations 9 and 10.

Proof. The probability that processor Pi suffers from a failure during the next t units of time,
knowing that the time elapsed since its last failure is τi, is equal by definition to Fi(t) = F (t|τi).
Then the probability that the g processors running the replicas of process j, 1 ≤ j ≤ nrg, all suffer
from a failure during the next t units of time is then equal to:

F
(g)
j (t) =

g∏
i=1

Fi+g(j−1)(t) =
g∏
i=1

F
(
t|τi+g(j−1)

)
.

Therefore, the probability that at least one of the g duplicates of process j is still running after t
units of time is equal to:

R
(g)
j (t) = 1− F (g)

j (t) = 1−
g∏
i=1

F
(
t|τi+g(j−1)

)
.

15

For the whole application to still be running after t units of time, each of the nrg application
processes must still be running (i.e., each must have at least one of its g initial replicas still
running). So, the probability that the application is still running after t units of time is:

R(t) =
nrg∏
j=1

R
(g)
j (t) =

nrg∏
j=1

(
1−

g∏
i=1

F
(
t|τi+g(j−1)

))
.

We can then compute the Mean Time To Interruption of the whole application:

MTTI =
∫ +∞

0
R(t)dt =

∫ +∞

0

nrg∏
j=1

(
1−

g∏
i=1

F
(
t|τi+g(j−1)

))
dt.

We now consider the case of the Exponential law.

Theorem 6. Consider an application made of nrg processes, each replicated g times under the
Process replication scheme. If the probability distribution of the time to failure of each processor
follows an Exponential law of parameter λ, then the Mean Time To application Interruption is equal
to:

MTTI = 1
λ

nrg∑
i=1

i·g∑
j=1

(nrgi)(i·gj)(−1)i+j

j

Proof. According to Theorem 5, the probability that the application is still running after t units of
time is:

R(t) =
(
1−

(
1− e−λt

)g)nrg

16

and the Mean Time To Interruption of the whole application is:

MTTI =
∫ +∞

0
R(t)dt

=
∫ +∞

0

(
1−

(
1− e−λt

)g)nrg
dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i

(
1− e−λt

)i·g
dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i

 i·g∑
j=0

(
i · g
j

)
(−1)j e−λjt

 dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i

1 +
i·g∑
j=1

(
i · g
j

)
(−1)j e−λjt

 dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i +

nrg∑
i=0

(nrg
i

)
(−1)i

i·g∑
j=1

(
i · g
j

)
(−1)j e−λjt

dt

=
∫ +∞

0

nrg∑
i=0

(nrg
i

)
(−1)i

i·g∑
j=1

(
i · g
j

)
(−1)j e−λjt

dt

=
nrg∑
i=0

(nrg
i

)
(−1)i

i·g∑
j=1

(
i · g
j

)
(−1)j

∫ +∞

0
e−λjtdt

=

nrg∑
i=0

(nrg
i

)
(−1)i

i·g∑
j=1

(i·g
j

)
(−1)j

λj

=

nrg∑
i=1

(nrg
i

)
(−1)i

i·g∑
j=1

(i·g
j

)
(−1)j

λj

Thus,

MTTI =
nrg∑
i=1

i·g∑
j=1

(nrg
i

)(i·g
j

)
(−1)i+j

jλ
.

Corollary 1. Consider an application made of nrg processes, each replicated 2 times under the
Process replication scheme. If the probability distribution of the time to failure of each processor
follows an Exponential law of parameter λ, then the Mean Time To application Interruption is equal
to:

MTTI = 1
λ

nrg∑
i=1

i·2∑
j=1

(nrgi)(i·2j)(−1)i+j

j

 = 2nrg
λ

nrg∑
i=0

(−1
2

)i (nrg
i

)
(nrg + i) ·

Proof. The first expression is a simple corollary of Theorem 6 for the case g = 2. The second
expression is obtained through direct computation. Let f(t) be the probability density function

17

associated to the cumulative distribution function F (t). Then, we have:

MTTI =
∫ +∞

0
t · f(t)dt

=
∫ +∞

0
t 2kkλ

(
1− e−λt

)
e−λkt

(
1− e−λt

2

)k−1

dt

= 2kkλ
∫ +∞

0
t
(
1− e−λt

)
e−λkt

k−1∑
i=0

(
k − 1
i

)(−1
2

)i
e−λitdt

= 2kkλ
k−1∑
i=0

(
k − 1
i

)(−1
2

)i ∫ +∞

0
t
(
1− e−λt

)
e−λ(k+i)tdt

= 2kkλ
k−1∑
i=0

(
k − 1
i

)(−1
2

)i ∫ +∞

0

(
te−λ(k+i)t − te−λ(k+i+1)t

)
dt.

As
∫ +∞

0
te−λt = 1

λ2 , the expression of MTTI can be further refined as follows:

MTTI = 2kkλ
k−1∑
i=0

(
k − 1
i

)(−1
2

)i(1
(k + i)2 λ2

− 1
(k + i+ 1)2 λ2

)

= 2kk
λ

k−1∑
i=0

(
k − 1
i

)(−1
2

)i(1
(k + i)2 −

1
(k + i+ 1)2

)

= 2kk
λ

k−1∑
i=0

[(
k − 1
i

)(−1
2

)i 1
(k + i)2

]
− 2kk

λ

k−1∑
i=0

[(
k − 1
i

)(−1
2

)i 1
(k + i+ 1)2

]

= 2kk
λ

(
k−1∑
i=0

[(
k − 1
i

)(−1
2

)i 1
(k + i)2

]
−

k∑
I=1

[(
k − 1
I − 1

)(−1
2

)I−1 1
(k + I)2

])

= 2kk
λ

(
k−1∑
i=1

[(
k − 1
i

)(−1
2

)i 1
(k + i)2

]
+
(
k − 1

0

)(−1
2

)0 1
(k)2

+2
k−1∑
I=1

[(
k − 1
I − 1

)(−1
2

)I 1
(k + I)2

]
+ 2

(
k − 1
k − 1

)(−1
2

)k 1
(2k)2

)

= 2kk
λ

(
1
k2 +

(−1
2

)k 1
2k2 +

k−1∑
i=1

[(−1
2

)i 1
(k + i)2

((
k − 1
i

)
+ 2

(
k − 1
i− 1

))])
.

18

Using the equation
(k−1
i

)
+ 2

(k−1
i−1
)

=
(k
i

) (k+i)
k , we derive the desired expression for MTTI :

MTTI = 2kk
λ

(
1
k2 −

(−1
2

)k+1 1
k2 +

k−1∑
i=1

(−1
2

)i (k
i

)
(k + i)2

(k + i)
k

)

= 2kk
λ

(
1
k2

(
1−

(−1
2

)k+1
)

+
k−1∑
i=1

(−1
2

)i (k
i

)
(k + i) k

)

= 2k

λ

(
1
k

(
1 + 1

2

(−1
2

)k)
+
k−1∑
i=1

(−1
2

)i (k
i

)
(k + i)

)

= 2k

λ

k∑
i=0

(−1
2

)i (k
i

)
(k + i)

We now consider the case of the Weibull law.

Theorem 7. Consider an application made of nrg processes, each replicated g times under the
Process replication scheme. If the probability distribution of the time to failure of each pro-
cessor follows a Weibull law of scale parameter λ and shape parameter k, then the Mean Time To
application Interruption is equal to:

λ

k
Γ
(1
k

) nrg∑
i=1

i·g∑
j=1

(nrg
i

)(i·g
j

)
(−1)i+j

j
1
k

.

Proof. According to Theorem 5, the probability that the application is still running after t units of
time is:

R(t) =
(

1−
(

1− e−(tλ)k
)g)nrg

19

and the Mean Time To Interruption of the whole application is:

MTTI =
∫ +∞

0
R(t)dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i

(
1− e−(tλ)k

)i·g
dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i

 i·g∑
j=0

(
i · g
j

)
(−1)j e−j(

t
λ)k
 dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i

1 +
i·g∑
j=1

(
i · g
j

)
(−1)j e−j(

t
λ)k
 dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i +

nrg∑
i=0

(
nrg
i

)
(−1)i

 i·g∑
j=1

(
i · g
j

)
(−1)j e−j(

t
λ)k
dt

=
∫ +∞

0

nrg∑
i=0

(
nrg
i

)
(−1)i

 i·g∑
j=1

(
i · g
j

)
(−1)j e−j(

t
λ)k
dt

=
nrg∑
i=1

(
nrg
i

)
(−1)i

 i·g∑
j=1

(
i · g
j

)
(−1)j

∫ +∞

0
e−j(

t
λ)kdt

We consider any value j ∈ [0..nrg · g] and we make the following change of variable: u = j

λk
tk.

This is equivalent to t = λ
(
u
j

) 1
k and thus dt = λ

k

(
1
j

) 1
k u(1

k
−1)du. With this notation,

∫ +∞

0
e−j(

t
λ)kdt = λ

kj
1
k

Γ
(1
k

)
.

Therefore,

MTTI =
nrg∑
i=1

(
nrg
i

)
(−1)i

 i·g∑
j=1

(
i · g
j

)
(−1)j λ

kj
1
k

Γ
(1
k

) .
Thus,

MTTI = λ

k
Γ
(1
k

) nrg∑
i=1

i·g∑
j=1

(nrg
i

)(i·g
j

)
(−1)i+j

j
1
k

.

5.3 Comparison of MNFTI values

Table 1 shows the MNFTI ah values as computed by the formula in [10] and by Theorem 2, for various
values of nrg and for g = 2. The percentage relative difference of the formula from [10] from our
formula is indicated as well. We see that the two values diverge significantly, with relative differences
between 29% and 33%. We conclude that the formula in [10] significantly under-estimates the value
of the MNFTI for either failure accounting approaches (recall that the values of MNFTI ah and
MNFTI rp differ by only one unit).

20

Table 1: Comparison of the MNFTI ah as computed by the formula in [10] and by Theorem 2, for
nrg = 20, . . . , 220, with g = 2.

Number of processes (nrg) 20 21 22 23 24 25 26

Formula in [10] 2 2.5 3.22 4.25 5.7 7.77 10.7
Recursive Formula (Theorem 2) 3 3.67 4.66 6.09 8.15 11.1 15.2
% Relative Diff -33 -32 -31 -30 -30 -30 -30
Number of processes (nrg) 27 28 29 210 211 212 213

Formula in [10] 14.9 20.7 29 40.8 57.4 80.9 114
Recursive Formula (Theorem 2) 21.1 29.4 41.1 57.7 81.2 114 161
% Relative Diff –30 -29 -29 -29 -29 -29 -29
Number of processes (nrg) 214 215 216 217 218 219 220

Formula in [10] 161 228 322 454 642 908 1284
Recursive Formula (Theorem 2) 228 322 455 643 908 1284 1816
% Relative Diff -29 -29 -29 -29 -29 -29 -29

Table 2: Comparison of the MTTI as computed by the formula in [10] and by Theorem 4, for
nrg = 20, . . . , 220, with g = 2.

Number of processes (nrg) 20 21 22 23 24 25 26

Formula in [10] 1 0.625 0.402 0.265 0.178 0.121 0.0836
Recursive Formula (Theorem 4) 1.5 0.917 0.582 0.381 0.255 0.173 0.119
% Relative Diff -33.33 -31.82 -30.89 -30.32 -29.97 -29.75 -29.6
Simulated MTTI 1.498 0.9184 0.5831 0.3808 0.2542 0.1725 0.1188
Number of processes (nrg) 27 28 29 210 211 212 213

Formula in [10] 0.058 0.0405 0.0284 0.0199 0.014 0.00987 0.00696
Recursive Formula (Theorem 4) 0.0823 0.0574 0.0402 0.0282 0.0198 0.014 0.00985
% Relative Diff -29.5 -29.44 -29.39 -29.36 -29.34 -29.33 -29.31
Simulated MTTI 0.08226 0.05738 0.0401 0.02825 0.01982 0.01399 0.009853
Number of processes (nrg) 214 215 216 217 218 219 220

Formula in [10] 0.00492 0.00347 0.00245 0.00173 0.00123 0.00086 0.000612
Recursive Formula (Theorem 4) 0.00695 0.00491 0.00347 0.00245 0.00173 0.00122 0.000866
% Relative Diff -29.31 -29.3 -29.3 -29.3 -29.29 -29.29 -29.29
Simulated MTTI 0.006929 0.004913 0.00347 0.002448 0.001732 0.001225 0.0008677

21

Algorithm 1: DPNextFailure (W, C, nrg, g, τ1, ..., τg·nrg , quantum)
Function RecDPNextFailure (x, n)
begin

if x = 0 then
return 0

if solution[x][n] = unknown then
best← 0
δ ← (W − x · quantum) + n · C/* Time elapsed since beginning of execution

*/
for i = 1 to x do

work = first(RecDPNextFailure(x− i, n+ 1))
cur ←

∏nrg
j=1

(
1−

∏g
i=1 F

(
i · quantum + C|τi+g(j−1) + δ

))
× (i · quantum + work)

if cur > best then
best← cur; chunksize ← i

solution[x][n]← (best, chunksize)
return solution[x][n]

return RecDPNextFailure (0, 0)

5.4 Comparison of MTTI values

Table 2 shows the MTTI values as computed by the formula in [10] and by Theorem 4, for var-
ious values of nrg and for g = 2. The percentage relative difference of the formula of [10] from
our recursive formula is indicated as well. We see that the two values diverge significantly, with
relative differences between 29% and 33%. We conclude that the formula in [10] significantly
under-estimates the MTTI .

Of course, the recursive formula of Theorem 4, and the two formulas of Corollary 1, lead to the
same numerical values. A fourth possibility is to use Theorem 2 and Equation 8 to retrieve the
same results. Furthermore, to assess the validity of these four approaches, we have computed the
MTTI through simulations. For each studied value of nrg, we have randomly generated 200, 000
instances of failure dates, and computed the Time To application Interruption for each instance
and then the mean. This simulated MTTI , also reported in Table 2, is in full agreement with our
formulas.

5.5 Checkpointing policy

Theorem 5 gives the probability that the application will still be running after t units of time,
knowing the history of the failures of the different processors. It is then straightforward to adapt the
DPNextFailure algorithm proposed in [4] to be used in the context of the Process replication
scheme. Algorithm 1 presents the resulting algorithm.

6 Group replication

In Group replication, different application instances execute on different groups of processors.
But instead of having completely independent concurrent executions, groups can help each other.
All groups always compute the same chunk simultaneously, and do so until one of the groups
succeeds, potentially after several failed trials. Then all other groups stop executing the current
chunk and recover from the checkpoint stored by the successful group. All groups then attempt to

22

compute the next chunk. Like for Process replication, Group replication wastes resources.
However, the groups co-operate to face failures.

A key difference between Process replication and Group replication is that Process
replication requires a sophisticated replication-aware implementation of the MPI library so as
to make Process replication transparent. Instead, Group replication can work with any
MPI implementation. As far as the application is concerned, checkpointing is only slightly more
complex (for implementing the aggressive use of a saved checkpoint from another group as soon as
it is produced).

In addition, Process replication induces a larger increase in the number and volume of
communications. Let Vtot be the total volume of inter-processor communications for a traditional
execution. With Process replication using g replicas per replica-groups, each original commu-
nication now involves g sources and g destinations, hence the total communication volume becomes
Vtot × g2. Now with Group replication using g groups, each original communication takes place
g times, hence the total communication volume increases only to Vtot × g.

In this section we describe an execution protocol called ASAP (As Soon As Possible) for imple-
menting Group replication. We then analyze its performance for Exponential failures.

6.1 The ASAP execution protocol

We start with some notations. We consider g groups, where each group has q processors, with
g × q ≤ p. Recall that a group is available for execution if and only if all its q processors are
available. As before, let R(q) and C(q) denote the recovery and checkpointing time for one group.
Moreover, recall that in case of a failure, the downtime of a group is a random variable XD(q) ≥ D,
whose expectation is bounded in Proposition 1. If a group encounters a first failure at time t, the
group is down between t and t + XD(q). Finally, the total size of the work is W, and thus the
total amount of work that must be executed by each processor of each group is W(q), as defined
in Section 3.

An execution of the ASAP algorithm can be described as k macro-steps, where macro-step j,
1 ≤ j ≤ k, corresponds to all groups executing the j-th chunk of size ωj . Note that the value of
k, the total number of chunks, as well as the values of the ωj ’s, the chunk sizes, are inputs to the
algorithm (we always have

∑k
j=1 ωj =W(q)). We discuss how to optimally choose these values for

Exponential distributions in Section 6.2.
During macro-step j, each group independently attempts to execute the j-th chunk of size ωj

and then to checkpoint, restarting as soon as possible in case of failure. As soon as one of the
groups succeeds, say at time tend

j , all the other groups are immediately stopped, macro-step j is
over, and macro-step (j + 1) starts (if j < k). Let ∆j = tend

j − tend
j−1 be the length of macro-step j,

where tend
0 is the starting time of the algorithm. The total execution time of the ASAP algorithm

is
∑k
j=1 ∆j .

The previous description hides two important things. First, before being able to start macro-
step (j + 1), a group that has been stopped must execute a recovery, in order to restart from the
checkpoint of the successful group. Second, this recovery may well start later than at time tend

j ,
in the case where the group is down at time tend

j (see group 1 in Figure 1). The only group that
does not need to recover at the beginning of the next step is the group that was successful for the
previous step, except during the first step where all groups can start computing right away.

In the next section, we provide an analytical evaluation of ASAP for Exponential failure laws,
and show how to compute the optimal set of inputs, namely the number of macro-steps k and the
values of the chunk sizes ωj .

23

Downtine (of a group)

Recover

Downtine (of a processor)

Failure

ω1

ω2

Group 1

Group 2

Group 3 R(q)

C(q)R(q)

C(q)

tend
1 tend

2

Figure 1: Execution of chunks ω1 and ω2 (macro-steps 1 and 2) using the ASAP protocol. At time
tend
1 , group 1 is not ready, and group 2 is the only one that does not need to recover.

X2
1 Y 2

3X2
3L

Group 1

Group 2

Group 3

and is followed by a downtime of size Y 2
i

Attempt i (of step 2) has size X2
i

tend
1 tend

2

Job1

Job2

Job3

Job4

R(q) + ω2 + C(q)X2
2 Y 2

2Y 2
1

Figure 2: Zoom on macro-step 2 of the execution depicted in Figure 1, using the (X,Y) notation of
Algorithm 3. Recall that Jobi has size X2

i + Y 2
i for 1 ≤ i ≤ 3, and Job4 has size R(q) + ω2 +C(q).

24

6.2 Exponential law

In this section, we consider the case where the failure rate of each processor obeys an Exponential
law of parameter λ. For the sake of the theoretical analysis, we introduce a slightly modified version
of the ASAP protocol, where each group, including the successful one, executes a recovery at the
beginning of each macro-step. This strategy includes the first macro-step. This new version of
ASAP is described in Algorithm 2. It is completely symmetric, which renders its analysis easier:
now the amount of work to be executed at macro-step j is R(q) + ωj + C(q) for all groups.

Algorithm 2: ASAP (ω1, . . . , ωk)
for j = 1 to k do

todo ← R(q) + ωj + C(q)
for each group do in parallel

repeat
finish current downtime (if any)
try to execute chunk of size todo
if execution successful then

signal other groups to immediately stop their attempt
tend
j ← time of success

else
restart immediately

until one of the groups has a successful attempt
makespan ← tend

k

Let us now turn to the analysis of Algorithm 2. Consider the j-th macro step, number the
attempts of all groups by their start time, and let Nj be the index of the earliest started attempt
that succeeds to process ωj . For example in Figure 2, the successful chunk of size R + ωj + C is
the fourth attempt, so N2 = 4. Now, to represent each attempt, we sample random variables Xj

i

and Y j
i , where 1 ≤ i ≤ Nj , that correspond respectively to the ith tentative execution of the chunk

and to the ith downtime that follows it (if i 6= Nj). Note that Xj
i < R + ωj + C for i < Nj , and

Xj
Nj
≥ R + ωj + C. All the Xj

i follow the same distribution DX , namely an Exponential law of
parameter qλ. And all the Y j

i follow the same distribution DXD(q), that of the the random variable
XD(q) corresponding to the downtime of a group of q processors.

The main idea here is to view the Nj execution attempts as jobs, where the size of job i is
Xj
i + Y j

i , and to distribute them across the g groups in a greedy manner (see Proposition 4). The
key point is that this formulation allows us to provide an upper bound for the starting time of
job Nj , and hence for the length of macro-step j, using a well-known scheduling argument (see
Proposition 5).

Proposition 4. The j-th macro-step of the ASAP protocol can be simulated using Algorithm 3:
the last job scheduled by Algorithm 3 ends exactly at time tend

j .

Proof. The Greedy Scheduling algorithm distributes the next job to the first available group. Be-
cause of the memoryless property of Exponential laws, it is equivalent (i) to generate the attempts
a priori and greedily schedule them, or (ii) to generate them independently within each group.

25

Algorithm 3: Step j of ASAP (ω1, . . . , ωk)
i← 1
/* i represents the number of attempts/jobs */
L ← ∅
/* L represents the list of attempts/jobs */
sample Xj

i and Y j
i using DX and DXD(q) respectively

while Xj
i < R(q) + ωj + C(q) do

add Jobi, with processing time Xj
i + Y j

i , to L
i← i+ 1
sample Xj

i and Y j
i using DX and DXD(q) respectively

Nj ← i
add JobNj

, with processing time R(q) + ωj + C(q), to L
/* the first successful job has size R(q) + ωj + C(q), not Xj

Nj
+ Y j

Nj
*/

from time tend
j−1 on, execute a Greedy Scheduling algorithm to distribute jobs of L to the different

groups (recall that some groups may be not be ready at time tend
j−1)

tend
j−1

T
(R(q)+ωj+C(q))
truestart R(q) + ωj + C(q)

Xj
Nj

tend
j

∆j

Figure 3: Notations used in Proposition 5.

26

Proposition 5. Let T (R(q)+ωj+C(q))
truestart be the time elapsed between tend

j−1 and the beginning of JobNj
(see Figure 3). We have

E
(
T

(R(q)+ωj+C(q))
truestart

)
≤ E(Y) +

E(Nj)E(X)− E(XNj
j) + (E(Nj)− 1)E(Y)
g

where X and Y are random variables corresponding to an attempt (sampled using DX and DXD(q)
respectively). Moreover, we have

E(Nj) = eλq(R(q)+ωj+C(q)) and E(XNj
j) = 1

qλ
+R(q) + ωj + C(q).

Proof. For group x, 1 ≤ x ≤ g, let Ỹx denote the time elapsed before it is ready for macro-step
j. For example in Figure 2, we have Ỹ1 > 0 (group 1 is down at time tend

j−1), while Ỹ2 = Ỹ3 = 0
(groups 2 and 3 are ready to compute at time tend

j−1). Proposition 4 has shown that executing
macro-step j can be simulated by executing a Greedy Schedule on a job list L (see Algorithm 3).
We now consider g “jobs” ˜Jobx, x = 1, . . . , g, so that ˜Jobx has duration Ỹx. We now consider the
augmented job list L′ = L ∪

⋃g
x=1

˜Jobx. Note that L′ may contain more jobs than macro-step j:
the jobs that start after the successful job JobNj are discarded from the list L′. However, both
schedules have the same makespan, and jobs common to both systems have the same start and

completion dates. Thus, we have T (R(q)+ωj+C(q))
truestart ≤

∑g

x=1(Ỹx)+
∑Nj−1

i=1 (Xj
i +Y ji)

g : this key inequality
is due to the property of greedy scheduling: the group which is assigned the last job is the least
loaded when this assignment is decided, hence its load does not exceed the average load (which is
the total load divided by the number of groups). Given that E(Ỹx) ≤ E(Y), we derive

E
(
T

(R(q)+ωj+C(q))
truestart

)
≤ E(Y) +

E
(∑Nj−1

i=1 Xj
i

)
+ E

(∑Nj−1
i=1 (Y j

i)
)

g

But Nj is the stopping criterion of the (Xj
i) sequence, hence using Wald’s theorem we have

E(
∑Nj
i=1X

j
i) = E(Nj)E(X) which leads to E(

∑Nj−1
i=1 Xj

i) = E(Nj)E(X) − E(XNj
j). Moreover, as

Nj and Y j
i are independent variables, we have E(

∑Nj−1
i=1 Y j

i) = (E(Nj) − 1)E(Y), and we get the
desired bound for E(T (R(q)+ωj+C(q))

truestart).
Finally, as the expected number of attempts when repeating independently until success an

event of probability α is 1
α (geometric law), we get E(Nj) = eλq(R(q)+ωj+C(q)). The value of E(XNj

j)
can be directly computed from the definition, recalling that XNj

j ≥ R(q) + ωj +C(q) and each Xi
j

follows an Exponential distribution of parameter qλ.

Building on Proposition 5, we derive the following upper bound on the execution time of ASAP:

Theorem 8. The expected execution time of ASAP has the following upper bound:

g − 1
g
W(q) + 1

g

(1
qλ

+ E(Y)
)
eλq(R(q)+C(q))k∗eλq

W(q)
k∗

+ k∗
(
g − 1
g

(E(Y) +R(q) + C(q))− 1
g

1
qλ

)
which is obtained when using k∗ = max(1, bk0c) or k∗ = dk0e same-size chunks, whichever leads to
the smaller value, where

k0 = λqW(q)
1 + L

((
g − 1 + (g−1)qλ(R(q)+C(q))−g

1+qλE(Y)

)
e−(1+λq(R(q)+C(q)))

) ·
27

Here L, the Lambert function, is defined as L(z)eL(z) = z.

Proof. From Proposition 5, the expected execution time of ASAP has upper bound TASAP =∑k
j=1 αj , where

αj = E(Y) +
E(Nj)E(X)− E(XNj

j) + (E(Nj)− 1)E(Y)
g

+ (R(q) + ωj + C(q)).

Our objective now is to find the inputs to the ASAP algorithm, namely the number k of macro-steps
together with the chunk sizes (ω1, . . . , ωk), that minimize this TASAP bound.

We first have to prove that any optimal (in expectation) policy uses only a finite number of
chunks. Let α be the expectation of the ASAP makespan using a unique chunk of size W(q).
According to Proposition 5, α = E(T (R(q)+W(q)+C(q))

truestart) + C(q) +W(q) + R(q), and is finite. Thus,
if an optimal policy uses k∗ chunks, we must have k∗C(q) ≤ α, and thus k∗ is bounded.

In the proof of Theorem 1 in [4], we have shown that any deterministic strategy uses the same
sequence of chunk sizes, whatever the failure scenario, thanks to the memoryless property of the
exponential distribution. We cannot prove such a result in the current context. For instance, the
number of groups performing a downtime at time tend

1 depends on the scenario. There is thus no
reason a priori for the size of the second chunk to be independent of the scenario. To overcome this
difficulty, we restrict our analysis to strategies that use the same sequence of chunk sizes whatever
the failure scenario. We optimize TASAP in that context, at the possible cost of finding a larger
upper bound.

We thus suppose that we have a fixed number of chunks, k, and a sequence of chunk sizes
(ω1, . . . , ωk), and we look for the values of (ω1, . . . , ωk) that minimize TASAP =

∑k
j=1 αj . Let us

first compute one of the αj term. Replacing E(Nj) and E(XNj
j) by the values given in Proposition 5,

and E(X) by 1
qλ , we get

αj = g − 1
g

ωj + 1
g
eλq(R(q)+ωj+C(q))

(1
qλ

+ E(Y)
)

+ g − 1
g

(E(Y) +R(q) + C(q))− 1
g

1
qλ

TASAP = g − 1
g
W + 1

g

(1
qλ

+ E(Y)
)
eλq(R(q)+C(q))

k∑
j=1

eλqωj

+ k

(
g − 1
g

(E(Y) +R(q) + C(q))− 1
g

1
qλ

)
By convexity, the expression

∑k
j=1 e

λqωj is minimal when all ωj ’s are equal (to W(q)/k). Hence all
the chunks should be equal for TASAP to be minimal. We obtain:

TASAP = g − 1
g
W + 1

g

(1
qλ

+ E(Y)
)
eλq(R(q)+C(q))keλq

W(q)
k

+ k

(
g − 1
g

(E(Y) +R(q) + C(q))− 1
g

1
qλ

)
.

Let f(x) = τ1xe
λq
W(q)
x + τ2x, where

τ1 = 1
g

(1
qλ

+ E(Y)
)
eλq(R(q)+C(q)) and

28

τ2 =
(
g − 1
g

(E(Y) +R(q) + C(q))− 1
g

1
qλ

)
.

A simple analysis using differentiation shows that f has a unique minimum, and solving f ′(x) = 0
leads to τ1e

λq
W(q)
k

(
1− λqW(q)

k

)
+ τ2 = 0, and thus to k = λqW(q)

1+L
(

τ2
τ1·e

) = k∗, which concludes the

proof.

Using the upper-bound of E(Y) = E(XD(q)) provided in Proposition 1, we can compute numer-
ically the number of chunks and the expectation of the upper bound of ASAP ’s makespan given
by Theorem 8 .

7 Conclusion

In this paper we have presented a rigorous study of replication techniques for large-scale platforms.
These platforms are subject to failures, the frequencies of which increase dramatically with platform
scale. For a variety of job types (perfectly parallel, generic or numerical) and checkpoint cost models
(constant or proportional overhead), we show that using the largest possible number of processors
does not always lead to the smallest execution time. This is because using more resources implies
facing more failures during execution, hence wasting more time tolerating them (via an increase in
checkpointing frequency) and recovering from them. This waste results in a slow-down despite the
additional hardware resources.

This observation leads us to investigate replication as a technique to better use all the resources
provided by the platform. Replication comes in two flavors, Group replication and Process
replication. Group replication consists in partitioning the platform into several groups, which
each executes an instance of the application concurrently in phases. All groups synchronize as soon
as one of them completes a phase. Instead, Process replication replicates each application
process onto several processors (a replica-group), thereby reducing the need to recover from a failure
only when all processors in a replica-group have failed. Process replication is the approach
followed in [10] with two processors per replica-group.

While both replication techniques improve reliability, they have very different characteristics.
Group replication can be used for any kind of parallel application, while Process replication
is much more intrusive than Group replication, in that it requires a sophisticated replication-
aware implementation of the MPI library. Also, the total communication volume is increased by
a factor proportional to the square of the replication degree, while the increase is only linear for
Group replication.

We have provided a thorough analysis of Process replication, providing recursive formulas
for the MNFTI and MTTI , analytical expressions for arbitrary distributions, and closed-form
expressions for Exponential and Weibull distributions. We have explained why the MNFTI and
MTTI values determined in [10] are not accurate, leading to a different of roughly 30% with our
own calculations, which are validated via simulation experiments.

We also have provided a detailed analysis of Group replication for Exponential failures,
owing to an analogy with a Greedy Schedule to bound the number of attempts and the execution
time of each group. We have derived the optimal number of chunks, together with their sizes. We
do not have a closed-form formula because we do not know the expectation of the downtime of a
processor group, but we have provided lower and upper bounds.

Ongoing work is devoted to conducting an extensive set of simulations for Exponential, Weibull
and trace-based failures. We use a realistic set of failure rates and checkpoint/recovery overheads,
and we explore all the combinations of job types and checkpoint cost models that we have presented

29

in this report. Preliminary results confirm that both Group replication and Process repli-
cation do reduce total execution time for a wide range of typical exascale parameters. Within a
few weeks, we expect to be able to produce an extended version of this report with comprehensive
simulations.

Acknowledgment

We would like to thank Kurt Ferreira and Leonardo Bautista Gomez for their comments. This
work has been supported in part by the French ANR White Project RESCUE. Yves Robert is with
Institut Universitaire de France.

References

[1] G. Amdahl. The validity of the single processor approach to achieving large scale computing
capabilities. In AFIPS Conference Proceedings, volume 30, pages 483–485. AFIPS Press, 1967.

[2] L. Bautista Gomez, A. Nukada, N. Maruyama, F. Cappello, and S. Matsuoka. Trans-
parent low-overhead checkpoint for GPU-accelerated clusters. https://wiki.ncsa.
illinois.edu/download/attachments/17630761/INRIA-UIUC-WS4-lbautista.pdf?
version=1&modificationDate=1290470402000.

[3] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’
Guide. SIAM, 1997.

[4] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien. Checkpointing strategies for
parallel jobs. In Proceedings of 2011 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’11, pages 33:1–33:11, New York, NY, USA, 2011.
ACM.

[5] M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent. A flexible checkpoint/restart
model in distributed systems. In PPAM, volume 6067 of LNCS, pages 206–215, 2010.

[6] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi, K. Vaidyanathan, and
W. P. Zeggert. Proactive management of software aging. IBM J. Res. Dev., 45(2):311–332,
2001.

[7] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart dumps.
Future Generation Computer Systems, 22(3):303–312, 2004.

[8] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka, P. Messina,
T. Moore, R. Stevens, A. Trefethen, and M. Valero. The international exascale software
project: a call to cooperative action by the global high-performance community. Int. J. High
Perform. Comput. Appl., 23(4):309–322, 2009.

[9] C. Engelmann, H. H. Ong, and S. L. Scorr. The case for modular redundancy in large-scale
highh performance computing systems. In Proc. of the 8th IASTED Infernational Conference
on Parallel and Distributed Computing and Networks (PDCN), pages 189–194, 2009.

30

[10] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield, K. Pedretti, R. Brightwell, R. Riesen, P. G.
Bridges, and D. Arnold. Evaluating the viability of process replication reliability for exascale
systems. In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11. ACM, 2011.

[11] F. Gärtner. Fundamentals of fault-tolerant distributed computing in asynchronous environ-
ments. ACM Computing Surveys, 31(1), 1999.

[12] T. Heath, R. P. Martin, and T. D. Nguyen. Improving cluster availability using workstation
validation. SIGMETRICS Perf. Eval. Rev., 30(1):217–227, 2002.

[13] W. Jones, J. Daly, and N. DeBardeleben. Impact of sub-optimal checkpoint intervals on
application efficiency in computational clusters. In HPDC’10, pages 276–279. ACM, 2010.

[14] N. Kolettis and N. D. Fulton. Software rejuvenation: Analysis, module and applications. In
FTCS ’95, page 381, Washington, DC, USA, 1995. IEEE CS.

[15] D. Kondo, A. Chien, and H. Casanova. Scheduling Task Parallel Applications for Rapid
Application Turnaround on Enterprise Desktop Grids. Journal of Grid Computing, 5(4):379–
405, 2007.

[16] E. Meneses. Clustering Parallel Applications to Enhance Message Logging Pro-
tocols. https://wiki.ncsa.illinois.edu/download/attachments/17630761/
INRIA-UIUC-WS4-emenese.pdf?version=1&modificationDate=1290466786000.

[17] V. Sarkar and others. Exascale software study: Software challenges in extreme scale
systems, 2009. White paper available at: http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/ECSS%20report%20101909.pdf.

[18] B. Schroeder and G. Gibson. Understanding failures in petascale computers. Journal of
Physics: Conference Series, 78(1), 2007.

[19] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-performance computing
systems. In Proc. of DSN, pages 249–258, 2006.

[20] K. Venkatesh. Analysis of Dependencies of Checkpoint Cost and Checkpoint Interval of Fault
Tolerant MPI Applications. Analysis, 2(08):2690–2697, 2010.

[21] L. Wang, P. Karthik, Z. Kalbarczyk, R. Iyer, L. Votta, C. Vick, and A. Wood. Modeling
Coordinated Checkpointing for Large-Scale Supercomputers. In Proc. of the International
Conference on Dependable Systems and Networks, pages 812–821, June 2005.

[22] S. Yi, D. Kondo, B. Kim, G. Park, and Y. Cho. Using Replication and Checkpointing for
Reliable Task Management in Computational Grids. In Proc. of the International Conference
on High Performance Computing & Simulation, 2010.

[23] J. W. Young. A first order approximation to the optimum checkpoint interval. Communications
of the ACM, 17(9):530–531, 1974.

[24] Z. Zheng and Z. Lan. Reliability-aware scalability models for high performance computing. In
Proc. of the IEEE Conference on Cluster Computing, 2009.

31

