
Applying string-rewriting to sequence-based specification

Robert Eschbacha, Lan Linb,∗, Jesse H. Pooreb

aITK Engineering AG, Luitpoldstraße 59, 76863 Herxheim, Germany
bDepartment of Electrical Engineering and Computer Science, The University of Tennessee, Min H. Kao Building, 1520

Middle Drive, Knoxville, TN 37996-3450, USA

Abstract

Sequence-based specification is a constructive method designed to convert ordinary functional
requirements (that are often imprecisely and informally composed) into precise specifications.
The method prompts a human requirements analyst to make the many decisions necessary to
resolve the ambiguities, omissions, inconsistencies, anderrors inherent in the original require-
ments document, and construct a complete, consistent, and traceably correct specification. We
find that string-rewriting theory can be applied to make a number of these decisions automati-
cally. In this paper we develop a theory of applying string-rewriting to sequence enumeration.
We give prescriptions on how prefix rewrite rules and generalstring rewrite rules can be de-
clared, and used later in the process to automatically make new equivalences thereby prompting
the human for fewer decisions. Based on the results we present an enhanced enumeration pro-
cess, in which one develops working enumerations and working reduction systems concurrently,
applying string-rewriting to deduce new reductions as needed, until a complete enumeration is
obtained. We present data from four published applicationsthat shows the feasibility and appli-
cability of applying string-rewriting. In addition to effort reduction we have observed the benefit
of eliminating rework achieved by consistent decisions, aswell as an additional opportunity
string-rewriting provides for validation of specificationdecisions to requirements.

Keywords:
String-rewriting, Prefix string-rewriting, Sequence-based specification, Software specification,
Abstract reduction system, Requirements engineering, Requirements elicitation

1. Introduction

Software development often starts with some form of functional requirements: ideas, verbal
descriptions, documents, tables, charts, equations, diagrams, predecessor systems, competitor
systems, or combinations of these. Generally, they containambiguities, omissions, and errors,
hence are inconsistent, incomplete, and strictly speaking, incorrect. Thesequence-based speci-
ficationmethod [1, 2, 3] provides a systematic way to convert imprecise (and usually informal)
requirements into precise software specifications at an early stage in the development cycle. The
method treats discrete systems, and systems modeled as discrete based on abstractions of events.

∗Corresponding author
Email address:lin@eecs.utk.edu (Lan Lin)

January 17, 2012

These specifications are important for later phases including both code development and testing
[2, 4, 5, 6, 7, 8].

The method derives a rigorous specification from imperfect starting requirements through a
constructivesequence enumerationprocess. The derivation exposes errors and omissions in the
original requirements, which must be resolved by domain experts from authoritative sources. In
this process, an effort is made by the specification writer to consider all possible scenarios of
system use (all use cases). It proceeds by enumerating (in length-lexicographical order) finite
sequences of elemental inputs (at some level of abstraction), deciding what the correct outputs
of the system should be for the enumerated sequences according to the requirements, and iden-
tifying equivalences to earlier enumerated sequences based on the outputs to be generated on
future inputs. The process terminates when there are no moresequences to enumerate by the
enumeration rules. The primary product is a precise specification for the programmer and the
tester. One by-product is documentation of the interpretation of requirements with traces to the
authority for all the decisions made during specification.

Application of the method is facilitated and simplified witha prototype enumeration tool
developed by the Software Quality Research Laboratory (SQRL) at the University of Tennessee
[9]. A detailed description of the tool can be found in [10]. To produce a sequence-based
specification in the tool, one only needs to give stimuli (inputs) and responses (outputs) short
names at the beginning to facilitate enumeration; no other notation or syntax is required. The
tool enforces enumeration rules explicitly by our recommended workflow and prompts the user
for next steps. It maintains internal files (XML format) current with every action.

Enumeration of usage scenarios discovers a state machine ofthe intended system for im-
plementation (the process terminates when all distinct states of the system are discovered). It
prompts and relies on a human specifier (or requirements analyst) to make the many decisions
(regarding response mappings, equivalence declarations,and authority) necessary to construct a
specification. In application, a significant number of such decisions are observed as occurring
in patterns. For example, some pairs of inputs commute with respect to sequencing; some are
idempotent. More complex patterns may involve three or moreinputs. These were previously
recorded as a side issue and then checked against requirements to see if the patterns made sense,
and against the enumeration to see if each instance had been treated consistently. These obser-
vations led to the systematic study of applying string-rewriting to sequence-based specification
presented in this paper. The theory is implemented in our enumeration tool. Now more equiva-
lence declarations can be handled automatically and consistently leading to fewer human errors.
The result is an enhanced enumeration process.

In order to gain intuition for the process, we considered thefollowing published applications:

- Satellite Operations Software (SOS): the software component of a space vehicle that pro-
cesses commands from the ground control system and supplieshalf-duplex communica-
tions between an uplink ground site and a downlink ground site [2]

- Mine Pump Controller Software (MPCS): the control software of a mine pump that detects
the water level, monitors the carbon monoxide, methane and airflow levels, and operates
the pump with assistance from human operators [11]

- Weigh-In-Motion Data Acquisition Processor (WIMDAP): the software for data acquisi-
tion used in a weigh-in-motion distributed system that acquires and processes data from
individual load cells, performs real-time monitoring of the analog weight signal, and com-
municates asynchronously with the host computer [12]

2

Application SOS MPCS WIMDAP
Number of stimuli 23 10 14
Terminating enumeration length 9 5 4
Sequences extended 11 22 13
Sequences analyzed 254 265 219
Potential sequences 1,883,023,236,984 111,111 41,371

Table 1: Sequences analyzed in the three case studies.

We constructed enumerations for the three case studies (see[13, 14, 15]) with the result shown in
Table 1. From the table the effectiveness of enumeration in controlling the combinatorial growth
of the number of sequences that need to be examined can be observed.

The crux of the matter is that an input set of sizen will require consideration ofΣk
i=0ni =

(nk+1 − 1)/(n− 1) sequences, wherek is the sequence length at which the enumeration process
terminates (as it surely will). This need not be off-putting because there are mathematically
sound ways to mitigate the combinatorial growth.

The method still requires hard work from the human specifier in understanding, clarifying,
and eliciting requirements, but with a defined process and tool support the discovery of every
detail of the state machine is by construction (rather than by intuition), and the traceability to the
requirements makes it possible to verify its correctness. With a little tutoring software engineers,
domain experts, business analysts, and customers can actively participate in the requirements
analysis and specification process.

The paper is organized as follows. Section 2 introduces our terminology and notation. Sec-
tion 3 introduces definitions and results for abstract reduction systems, string-rewriting systems,
and prefix string-rewriting systems based on the classical literature. Section 4 gives an overview
of the sequence-based specification method and its process,followed by an axiomatic definition.
It also links a complete and finite enumeration to a convergent reduction system by prefix string-
rewriting. In Section 5 we develop a theory of applying string-rewriting to sequence enumeration,
give prescriptions on how prefix rewrite rules and general string rewrite rules can be declared,
and present an enhanced enumeration process with application of string-rewriting. Section 6 is
the case study in which we illustrate our theory with an automobile mirror control unit example,
and discuss data obtained from applying the theory to the case studies of Table 1. Section 7
reports on related work, and Section 8 concludes this paper.The complete enumeration table for
the mirror control example is given in the appendix.

2. Terminology and notation

We useN to denote the positive integers.

Let X be a set and→ be a binary relation onX, then
∗
→ is the reflexive and transitive closure

of→, and
∗
↔ the reflexive, symmetric, and transitive closure of→.

The length of a stringw is denoted by|w|. The empty string is denoted byλ. If Σ is a
fixed (finite) alphabet, thenΣ∗ andΣ+ denote the Kleene closure and the positive closure ofΣ,
respectively.

Unless stated explicitly as partial, a functionf : X → Y is total (or complete). Whenf is
partial,dom f denotes the set of elements on whichf is defined.

3

Consider partial functions of the formf : X → Y × Z. If f (u) = (r, v), we writeu 7→
f

r and

u ⊲
f
v. The f will be dropped where it is clear from context. Defineu 67→ r ↔ ∃r ′ , r. u 7→ r ′.

3. String-rewriting system

The following definitions and results for string-rewritingsystems are based on [16].

3.1. Abstract reduction system

Definition 3.1. An abstract reduction system(or a reduction system) is a structure (X, →),
whereX is a set and→ is a binary relation onX. The relation→ is thereduction relation. If

x → y for somey, thenx is reducible; otherwise, it isirreducible . If x
∗
↔ y for irreducibley,

theny is anormal form for x.

Definition 3.2. A reduction system (X, →) is confluent if for all w, x, y ∈ X, w
∗
→ x andw

∗
→ y

imply that there exists az ∈ X, x
∗
→ zandy

∗
→ z. It is noetherian if there is no infinite sequence

(x1, x2, · · ·) such that for alli ∈ N, xi → xi+1. It is convergent if it is both noetherian and
confluent.

The words “noetherian” and “terminating” are both used in literature to describe reduction
systems in which there exist no infinite reduction chains. Wealso use them interchangeably
throughout the paper.

Theorem 3.3. Let R= (X, →) be a reduction system. If R is convergent, then each x∈ X has a
unique normal form.

Proof. See Page 13, Theorem 1.1.12 in [16].

3.2. String-rewriting system

Definition 3.4. Let Σ be an alphabet. Astring-rewriting system ⊢ onΣ is a subset ofΣ∗ × Σ∗.
Each element (l, r) of ⊢ is a rewrite rule , also written asl ⊢ r. The single-step reduction
relation →⊢ onΣ∗ that is induced by⊢ is defined as follows: for anyu, v ∈ Σ∗, u→⊢ v iff there
existsl ⊢ r such that for somex, y ∈ Σ∗, u = xly andv = xry.

If ⊢ is a string-rewriting system onΣ, then (Σ∗, →⊢) is a reduction system.

Definition 3.5. LetΣ be an alphabet andRbe a binary relation onΣ∗. ThenR is apartial order
if it is reflexive, antisymmetric, and transitive. It is atotal order if it is a partial order and if,
for all x, y ∈ Σ∗, eitherxRy, or yRx. It is astrict partial order if it is irreflexive, transitive, and
therefore asymmetric. The relationR is admissibleif for all u, v, x, y ∈ Σ∗, uRvimpliesxuyRxvy.

Each partial order� has an associated strict partial order≺ defined by:x ≺ y iff x � y and
x , y. Conversely, each strict partial order≺ has an associated partial order� defined by:x � y
iff x ≺ y or x = y.

Each total order� has an associated asymmetric (hence irreflexive) relation≺, called astrict
total orderdefined by:x ≺ y iff x � y andx , y. A strict total order is a strict partial order.

If X is a finite set equipped with a strict total order≺, then we usemin(X) andmax(X) to
denote the smallest and the greatest elements ofX according to≺, respectively.

4

Definition 3.6. Let ≺ be a strict partial order onΣ∗. It is well-founded if there is no infinite
sequence (x1, x2, · · ·) such that for alli ∈ N, xi+1 ≺ xi .

Theorem 3.7. Let ⊢ be a string-rewriting system onΣ. Then the reduction system(Σ∗,→⊢) is
noetherian iff there exists an admissible well-founded strict partial order≺ onΣ∗ such that r≺ l
holds for each l⊢ r.

Proof. See Pages 42-43, Theorem 2.2.4 in [16].

3.3. Prefix string-rewriting system

Definition 3.8. Let Σ be an alphabet. Aprefix string-rewriting system |= on Σ is a subset of
Σ∗ × Σ∗. Each element (l, r) of |= is a prefix rewrite rule , also written asl |= r. Thesingle-
step reduction relation→|= onΣ∗ that is induced by|= is defined as follows: for anyu, v ∈ Σ∗,
u→|= v iff there existsl |= r such that for somey ∈ Σ∗, u = ly andv = ry.

If |= is a prefix string-rewriting system onΣ, then (Σ∗, →|=) is a reduction system.

4. Sequence-based specification

A software program implements the mapping rule for a mathematical function called the
black box function[17]. Given the same inputs received in the same order (the same history of
inputs) the program will yield the same output. Sequence-based specification converts functional
requirements into a preciseblack box specificationthat describes the black box function of a
system, namely, the system’s behavior solely in terms of external input histories and outputs.
The completed specification defines a mapping rule that uniquely determines an output for any
finite sequence of inputs. The specification is constructed systematically through a process called
sequence enumeration.

The purpose of this section is to introduce the sequence-based specification method and its
axiomatic foundation presented in [1, 3, 18], upon which we build a theory for applying string-
rewriting to sequence enumeration. Section 4.3 is new in this paper.

4.1. Process overview
The first step in applying sequence-based specification is toidentify asystem boundarythat

defines what is inside and what is outside the system. It consists of interfaces, through which
information flows between the system and the external entities with which the system directly
communicates, the software’senvironment.

Events (inputs, interrupts, invocations) in the environment that can affect system behavior
are calledstimuli. System behaviors observable in the environment are calledresponses. Stimuli
and responses are collected for the identified system interfaces. We useS andR to denote the
stimulus set and the response set, respectively. One then enumerates all stimulus sequences (that
represent all scenarios of use of the system) first in the increasing order of length, and within the
same length by any arbitrary strict total order.

For each enumerated sequence one identifies a unique response (which could be an ensemble
of responses) as the intended response generated by the sequence. To facilitate theory we intro-
duce two special responses:null (denoted by the symbol 0) andillegal (denoted by the symbol
ω). If the sequence generates no externally observable behavior, it is mapped to 0; if the se-
quence is not physically realizable, it is mapped toω; otherwise, the sequence is mapped to an
observable response. A sequence isillegal when it maps toω; otherwise, it islegal.

5

For each enumerated sequence, one also checks forMealy equivalencebetween the current
sequence and all previously enumerated sequences. Two sequences areMealy equivalentif and
only if they always generate the same response when extendedby the same (non-empty) input
sequence. Two Mealy equivalent sequences need not be mappedto the same response, but their
responses with respect to future extensions must always agree. Mealy equivalent sequences
represent the same state of the system when it is modeled as a Mealy machine (hence the name).
If a sequence is not Mealy equivalent to any previously enumerated sequence, it isunreduced;
otherwise, it isreducedto the previously enumerated (Mealy equivalent) sequence that is itself
unreduced.

One starts with the empty sequence (denoted byλ) of length 0. To get all sequences of length
n+ 1 (n ≥ 0 is an integer) one extends all sequences of lengthn by every stimulus, and considers
the extensions in the pre-defined strict total order (e.g., the lexicographical order). With the
finitely many stimuli for any real application, there is an infinite number of stimulus sequences
(of finite length); enumerating all of them is never necessary.

This inherently combinatorial process can be effectively controlled by two observations:

- If sequenceu is reduced to a prior sequencev, there is no need to extendu by any stimulus
for the next enumeration length, as the behaviors of the extensions are fully defined by the
same extensions ofv.

- If sequenceu is illegal, there is no need to extendu by any stimulus for the next enumera-
tion length, as all of the extensions must be illegal (i.e., physically unrealizable).

Therefore, only legal and unreduced (also calledextensible) sequences of lengthn get extended
by every stimulus for consideration at lengthn+1. The process continues until all sequences of a
certain length are either illegal or reduced to prior sequences. Now, the enumeration iscomplete
andfinite; all extensible sequences have been extended. This terminating length is discovered in
enumeration, and varies from application to application.

As the name suggests, sequence enumeration is the literal enumeration of stimulus sequences,
the assignment of correct responses to each enumerated sequence, and the recording of sequence
equivalences based on future behavior. The unreduced sequences represent essential states in the
implemented system, whose number must be finite (and small) for any real application.

Table 2 shows the major steps of the enumeration process, with each step classified as either
manual (work done by the human analyst) or automated (work performed automatically) or both.

The result is a fully documented, complete, and consistent black box specification. From it
we can automatically generate a Mealy machine (in the form ofa set of state box tables, or col-
lectively astate box specification). We can also generate the control flow code by implementing
the state box tables.

4.2. Enumeration
We now look at an enumeration solely as a mathematical object, and characterize it with a

list of axioms regardless of whether the sequences were obtained by the enumeration process or
in some other way.

Following [18], in the definitions belowS andRare for the stimulus set and the response set,
respectively.

Definition 4.1. Let S be a non-empty alphabet andR be a set that properly contains{0, ω}. Let
≺ be a strict total order onS∗ such that for allu, v in S∗, |u| < |v| impliesu ≺ v. A partial function
E : S∗ → R× S∗ is anenumeration iff Axioms 1-6 hold for allu, v in S∗ andx in S:

6

Step 1: Tag (Number) the requirements. manual
Step 2: Define the interfaces that compose the system boundary. manual
Step 3: Define the stimuli associated with each interface. manual
Step 4: Define the responses associated with each interface. manual
Step 5: Start sequence enumeration with lengthn = 0. λ is mapped to 0

and unreduced.
automated

Step 6: Repeat Steps 7-11 below until the enumeration is complete (i.e.,
until there are no extensible sequences of lengthn).

both

Step 7: Extend all the extensible sequences of lengthn by every stimulus.
List all the extensions in lexicographical order.

automated

Step 8: Repeat Steps 9-10 below until all the sequences on thelist (of
lengthn+ 1) have been considered (in lexicographical order).

both

Step 9: Map the current sequence under consideration to a response (this
may lead to identification of a new response). Trace the response
decision to the tagged requirements (this may lead to discovery
of derived requirements).

both

Step 10: If the current sequence is Mealy equivalent to a prior unreduced
sequence, reduce the current sequence to the prior sequence.
Trace the equivalence decision to the tagged requirements (this
may lead to discovery of derived requirements).

both

Step 11: Incrementn by 1. automated

Table 2: Major steps of the enumeration process without string-rewriting support.

Axiom 1. λ 7→ 0

Axiom 2. u ⊲ v impliesv ≺ u or v = u

Axiom 3. u ⊲ v impliesv ⊲ v

Axiom 4. ux ∈ domE impliesu ⊲ u

Axiom 5. ux ∈ domE impliesu 67→ ω

Axiom 6. u ⊲ v, u 7→ ω, v 67→ ω, vx ∈ domE imply vx 7→ ω.

An enumerationE : S∗ → R× S∗ is completeiff Axiom 7 holds for allu in S∗ andx in S:

Axiom 7. u 67→ ω, u ⊲ u imply ux ∈ domE.

An enumerationE : S∗ → R× S∗ is finite iff

Axiom 8. |R| ∈ N, |domE| ∈ N.

Example 4.2. Let E : S∗ → R× S∗ be a partial function, whereS = {a, b}, R= {0, ω, r}, S∗ has
a strict total order≺ defined by

∀u, v ∈ S∗. |u| < |v| → u ≺ v
∀u ∈ S∗. ua≺ ub
∀u, v ∈ S∗.∀x, y ∈ S. u ≺ v→ ux≺ vy,

and

7

Sequence Response Equivalence
λ 0 λ

a r a
b ω a
aa ω a
ab ω a

Table 3:E of Example 4.2 in tabular form.

E(λ) = (0, λ)
E(a) = (r, a)
E(b) = (ω, a)
E(aa) = (ω, a)
E(ab) = (ω, a).

It is easily checked thatE as defined satisfies Axioms 1-8 for a complete and finite enumera-
tion. The same enumeration can be obtained in tabular form (see Table 3) following the process
described earlier (for this symbolic example we ignore all the traces to the requirements). Here
domE = {λ, a, b, aa, ab} contains all and the only sequences inS∗ that are actually enumerated.

Definition 4.3. LetE : S∗ → R×S∗ be an enumeration and≺ be the associated strict total order
onS∗. Thenu is illegal iff u 7→ ω; u is legal iff u 67→ ω; u is unreduced iff u ⊲ u; u is reduced iff
u ⊲ v for v ≺ u; u is extensibleiff u is both legal and unreduced.

Example 4.4. Referring toE in Example 4.2,λ and a are both legal and unreduced (hence
extensible);b, aa, andabare both illegal and reduced.

Lemma 4.5. LetE : S∗ → R×S∗ be an enumeration. Then u∈ domE implies u= λ or u = u′x,
where x∈ S and u′ is an extensible sequence.

Proof. By Axioms 1, 4, and 5.

Lemma 4.6. LetE : S∗ → R× S∗ be an enumeration. Then u∈ domE, u , λ imply for every
proper prefix v of u, v⊲ v.

Proof. By Axiom 4.

Definition 4.7. Let S be a non-empty alphabet andR be a set that properly contains{0, ω}. A
black box function is a total functionBB : S∗ → R with BB(λ) = 0.

By Definition 4.7 a black box function maps every stimulus sequence to a response, with
the empty sequence mapped to the null response. The requirements document always implies a
black box function for the system to be developed, referred to as theintendedblack box function
of the system. Sequence enumeration is performed to discover this intended black box function.
With a completed enumeration this function can be computed algorithmically [3, 10, 18].

Twelve atomic algorithms for managing changes in the enumeration have been derived. All
changes in requirements or an enumeration that come from resolving errors, omissions, and in-
consistencies, as well as from outside the enumeration process (e.g., feature changes) can be
made by a combination of the atomic change algorithms. In each case the tool makes all changes
that are mathematically certain, and highlights all sequences that require reconsideration by an-
alysts [10].

8

Definition 4.8. LetE : S∗ → R×S∗ be an enumeration, andBB : S∗ → Rbe the intended black
box function according to the requirements. ThenE is minimal iff the following holds for allu,
v in S∗:

u ⊲ u, v ⊲ v, u , v imply there exists aw in S+ such thatBB(uw) , BB(vw).

An enumeration is minimal if the Mealy equivalence relationdoes not hold for any two
different unreduced sequences.

Example 4.9. Referring toE in Example 4.2,λ anda are the only two unreduced sequences.
SinceBB(λa) = BB(a) = r, BB(aa) = ω, E is minimal.

4.3. Reduction system

A complete and finite enumerationE : S∗ → R× S∗ together with its associated strict total
order≺ onS∗ defines a prefix string-rewriting system|= onS as follows:

- If u ⊲ v, v ≺ u, thenu |= v.

- If u 7→ ω, u ⊲ u, then for allx ∈ S, ux |= u.
(1c)

SinceE is finite, |= contains finitely many prefix rewrite rules. The rules will bereferred to
as (1c) for “the first set of rules for complete and finite enumerations”.

Example 4.10.Referring toE in Example 4.2, it defines a prefix string-rewriting system|= =
{(b, a), (aa, a), (ab,a)}. Here all the prefix rewrite rules happen to follow from the first rule in
(1c).

Theorem 4.11.Let |= be the prefix string-rewriting system on S defined by (1c), then the induced
reduction system(S∗,→|=) is convergent.

Proof. The set of unreduced sequences inE is prefix-closed, that is, each prefix of an unreduced
sequence must also be an unreduced sequence. The result follows from Theorem 14 and Theorem
22 of [19].

Corollary 4.12. Let |= be the prefix string-rewriting system on S defined by (1c). Then each u
in S∗ has a unique normal form in the induced reduction system(S∗,→|=). The normal forms
compose{u : u ⊲ u}.

Proof. Eachu in S∗ has a unique normal form by Theorems 3.3 and 4.11. Furthermore,u derives
an unreduced sequence inE in finitely many steps, to which no prefix rewrite rules apply.Hence
each normal form must be an unreduced sequence, and vice versa.

The infinite setS∗ is partitioned into finitely many blocks by the equivalence relation
∗
↔|=,

with unreduced sequences ofE being representatives of these blocks. Each block corresponds
to a system state. Transitions between states are determined by the reduction function⊲ of E, or
equivalently, the rules of (1c).

9

5. Applying string-rewriting to sequence enumeration

In this section we develop a theory of applying string-rewriting to sequence enumeration.
We define a working enumeration as the mathematical representation of a partially completed
(enumeration) work product, and pay special attention to a subset of working enumerations in
which sequences are enumerated length-lexicographically. We give prescriptions on how one
should declare prefix rewrite rules and string rewrite rules, and define working reduction systems
for this subset of working enumerations. We prove that a working reduction system must be
noetherian. Although it may not be confluent, the next sequence to be enumerated has a unique
normal form. Based on the results we present a process to develop working enumerations and
working reduction systems concurrently, applying string-rewriting to deduce new reductions as
needed, until a complete enumeration is obtained. The theory presented in this section is new in
this paper.

5.1. Working enumeration

Definition 5.1. Let E : S∗ → R× S∗ be a finite, minimal enumeration. Let≺ be the associated
strict total order onS∗. ThenE is aworking enumeration iff the following holds for allu in S∗

andx in S:

u 67→ ω, u ⊲ u, ux < domE imply max(domE) ≺ ux.

In a working enumeration, unless the extension is greater than the greatest enumerated se-
quence so far, an extensible sequence is extended. By this definition, a complete, finite, and
minimal enumeration is also a working enumeration, with allextensible sequences being ex-
tended. We define below for a working but not complete enumeration the next sequence to be
enumerated.

Definition 5.2. Let E : S∗ → R× S∗ be a working enumeration that is not complete and≺ be
the associated strict total order onS∗. Thennext(E) is the smallest element of the set{ux : u 67→
ω, u ⊲ u, x ∈ S, ux < domE} according to≺.

Example 5.3. Let E : S∗ → R× S∗ be a finite and minimal enumeration, whereS = {a, b},
R= {0, ω, r}, S∗ has a strict total order≺ defined by

∀u, v ∈ S∗. |u| < |v| → u ≺ v
∀u ∈ S∗. ua≺ ub
∀u, v ∈ S∗.∀x, y ∈ S. u ≺ v→ ux≺ vy,

and

E(λ) = (0, λ)
E(a) = (r, a)
E(b) = (ω, a)
E(aa) = (ω, a).

It is easily checked thatE is a working enumeration, becauseu = a and x = b are the only
values ofu andx such that the premise of the implication is true, and the conclusion is also true
(max(domE) = aa≺ ab= ux), hence the implication is true foru = a andx = b. For all the other
values ofu andx the premise is false, hence the implication is true. Therefore, the implication
holds for allu in S∗ and for allx in S. Observe thatnext(E) = ab.

10

A set of prefix rewrite rules and a prefix string-rewriting system follow similarly for a work-
ing enumeration as for a complete and finite enumeration (Section 4.3). LetE : S∗ → R× S∗ be
a working enumeration. The following (prefix rewrite) rulesare defined:

- If u ⊲ v, v ≺ u, thenu |= v.

- If u 7→ ω, u ⊲ u, then for allx ∈ S, ux |= u.
(1w)

The rules will be referred to as (1w) for “the first set of rulesfor working enumerations”.

Example 5.4. Referring toE in Example 5.3, it defines a prefix string-rewriting system|= =
{(b, a), (aa, a)}. Here all the prefix rewrite rules happen to follow from the first rule in (1w).

Theorem 5.5. Let |= be the prefix string-rewriting system on S defined by (1w), then the induced
reduction system(S∗,→|=) is convergent.

Proof. The left-hand-side (LHS) of any prefix rewrite rule is a one-symbol extension of an unre-
duced sequence inE. Among the LHSs of all prefix rewrite rules, no string is a prefix of any
other string, hence at most one rule applies for each step of prefix string-rewriting. The induced
reduction system is confluent.

Given anyu in S∗, in finite steps it either rewrites to some unreduced sequence in E, or it
rewrites tou′xw, whereu′ is an extensible sequence inE, x ∈ S, w ∈ S∗, u′x < domE. The
induced reduction system is noetherian.

Therefore, the induced reduction system is convergent.

By Theorem 5.5, anyu in S∗ still has a unique normal form after prefix string-rewriting, with
a working enumerationE : S∗ → R×S∗. However, whenE is not complete, the state machine of
the system is only partially discovered. As a result, the number of blocks in the partition ofS∗,
hence the number of normal forms, is infinite. In Example 5.4 the induced reduction system by
prefix string-rewriting contains an infinite number of normal forms, as any string beginning with
ab is a normal form.

Definition 5.6. Let E : S∗ → R× S∗ be a working enumeration, and≺ be the associated strict
total order onS∗. If ≺ is the (pre-determined and fixed) length-lexicographical order, thenE is
anordered working enumeration.

Example 5.7. E in Example 5.3 is an ordered working enumeration, since≺ as defined is the
length-lexicographical order.

5.2. Declaring string rewrite rules

A working enumeration is the mathematical abstraction of a partially completed work product
during the enumeration process. It defines a partially discovered state machine. In discovering
the known states and transitions, some string rewrite rulescould be identified that reflect general
structures of the entire state machine, which can be exploited later to discover the unknown parts,
i.e., infer reductions to prior sequences for newly enumerated sequences.

The string rewrite rules must be generalized from already identified sequence reductions
under the⊲ mapping. We consider two situations:

11

- A single reduction suggests a string rewrite rule.

Supposeu⊲ v, u = w1lw2, v = w1rw2 for w1,w2 ∈ S∗, thenl ⊢ r is a potential string rewrite
rule.

- Two reductions suggest a string rewrite rule.

Supposeu ⊲ w, v ⊲ w, u = w1lw2, v = w1rw2 for w1,w2 ∈ S∗, thenl ⊢ r is a potential string
rewrite rule.

The string rewrite rules are defined as follows for a working enumerationE : S∗ → R× S∗

with intended black box functionBB : S∗ → Rand referred to as (2w):

If the following hold

- eitheru ⊲ v or u ⊲ w, v ⊲ w for u = w1lw2, v = w1rw2, w1,w2 ∈ S∗

- r being length-lexicographically smaller thanl

- ∀u ∈ S∗.∀v ∈ S+. BB(ulv) = BB(urv),

thenl ⊢ r.
(2w)

Example 5.8. Let E : S∗ → R× S∗ be a working enumeration forS = {a, b, c}, R = {0, ω, r}
intended to discover the state machine diagrammed in Figure1. Let the associated strict total
order≺ onS∗ be the length-lexicographical order induced by the alphabetical order onS, and

E(λ) = (0, λ)
E(a) = (0, a)
E(b) = (r, a)
E(c) = (0, c)
E(aa) = (r, c)
E(ab) = (0, c).

The reduction fromb to a leads to the discovery of a string rewrite ruleb ⊢ a after checking for
all the conditions required by (2w). The reductions fromaa to c and fromab to c lead to the
discovery of two new string rewrite rulesaa ⊢ c, ab ⊢ c, and an already discovered string rewrite
ruleb ⊢ a.

Theorem 5.9. Let⊢ be the string-rewriting system on S defined by (2w), then the induced reduc-
tion system(S∗,→⊢) is noetherian.

Proof. Since the length-lexicographical order onS∗ is an admissible well-founded strict partial
order, the result follows from Theorem 3.7.

Although the induced reduction system (S∗,→⊢) is noetherian, it may not be confluent.

12

λ a

a / 0

b / r

c
c / 0

a / r b / 0

c / r

a, b / 0

c / r

Figure 1: The state machine diagram to be discovered throughthe enumeration in Example 5.8.

5.3. Working reduction system

A working enumeration may have prefix rewrite rules defined by(1w) and string rewrite rules
defined by (2w). If we combine these rules in a mixed reductionsystem, neither the noetherian
nor the confluency property is guaranteed. However, if we restrict ourselves to ordered working
enumerations, the noetherian property is guaranteed for the mixed reduction system, as proven
in Theorem 5.11.

Definition 5.10. Let E : S∗ → R × S∗ be an ordered working enumeration. Let|= be the
prefix string-rewriting system onS defined by (1w), and (S∗,→|=) be the induced reduction
system by prefix string-rewriting. Let⊢ be the string-rewriting system onS defined by (2w), and
(S∗,→⊢) be the induced reduction system by string-rewriting. Thenthe reduction system defined
by (S∗,→|= ∪ →⊢) is aworking reduction system.

Theorem 5.11. A working reduction system is noetherian.

Proof. Consider a working reduction system as defined by Definition 5.10. Note thatr ≺ l for
eachl |= r defined by (1w) and eachl ⊢ r defined by (2w), where≺ is the associated length-
lexicographical order onS∗. Since≺ is admissible,r ≺ l for eachl →|= r, andr ≺ l for each
l →⊢ r. The theorem follows as≺ is well-founded.

Although confluency is not guaranteed, we can prove the next sequence to be enumerated
must have a unique normal form. Hence a working reduction system can be used to predict what
the next sequence to be enumerated should be reduced to, based on what is known about the
system through the available prefix rewrite rules and stringrewrite rules. If the unique normal
form is different than the sequence itself, it suggests a sequence reduction. If the sequence itself
and the derived unique normal form are identical, the human specifier takes over and considers
any possible reduction based on Mealy equivalence.

Theorem 5.12. LetR = (S∗,→|= ∪ →⊢) be a working reduction system defined for an ordered
working enumerationE : S∗ → R×S∗, where|= and⊢ are the prefix string-rewriting system and
the string-rewriting system on S , respectively. Then next(E) has a unique normal form.

Proof. Supposenext(E) has two normal formsu andv such thatu , v.

13

Let ρMe denote the Mealy equivalence relation onS∗. By (1w) if l |= r thenl ρMe r, hence
lw ρMe rw for anyw in S∗. We havel ρMe r for eachl →|= r. By (2w) if l ⊢ r thenw1l ρMe w1r
for anyw1 in S∗, hencew1lw2 ρMe w1rw2 for anyw1,w2 in S∗. We havel ρMe r for eachl →⊢ r.
As a result,next(E) ρMe uρMe v.

Since reductions inR are only to prior sequences in length-lexicographical order, both u
andv are prior tonext(E). Furthermore,u andv must be unreduced sequences ofE, as every
sequence prior tonext(E) must reduce by prefix string-rewriting to an unreduced sequence ofE,
from which no prefix or string rewrite rule could apply. SinceE is minimal, we haveu = v, a
contradiction.

Theorem 5.12 suggests that we can develop ordered working enumerations and working re-
duction systems concurrently through the process that follows, until a complete enumeration is
constructed.

Concurrent Enumeration Process

Step 1: Let E0 = {(λ, (0, λ))},R0 = (S∗,→0) = (S∗, ∅), i = 0.

Step 2: Repeat the steps below untilEi is complete.

Step 3: Derive the (unique) normal formv of next(Ei) in Ri .

Step 4: The human specifier defines the responser of next(Ei).

Step 5: If v = next(Ei), then the human specifier redefinesv such thatnext(Ei) is re-
duced tov by Mealy equivalence and the enumeration rules. Ifnext(Ei) cannot
be reduced to any prior sequence, letv = next(Ei).

Step 6: Let Ei+1 = Ei ∪ {(next(Ei), (r, v))}.

Step 7: LetRi+1 = (S∗,→i+1), where→i+1 =→i .

Step 8: If next(Ei) 7→ r, next(Ei) ⊲ v define any prefix rewrite rulel |= r by (1w), then
→i+1=→i+1 ∪ {(ly, ry) : y ∈ S∗}.

Step 9: If the human specifier identifies any string rewrite rulel ⊢ r by (2w) given
next(Ei) ⊲ v, then→i+1=→i+1 ∪ {(xly, xry) : x, y ∈ S∗}.

Step 10: Let i = i + 1.

Theorem 5.13.The end product of the concurrent enumeration process (a setof sequences with
responses and reductions) satisfies Axioms 1-8 for a complete and finite enumeration.

Proof. By construction.

Example 5.14.Let E : S∗ → R× S∗ be an ordered working enumeration forS = {a, b}, R =
{0, ω, r} intended to discover the state machine diagrammed in Figure2. Let the associated
length-lexicographical order onS∗ be based on the alphabetical order onS, and

E(λ) = (0, λ)
E(a) = (0, a)
E(b) = (r, a) b ⊢ a
E(aa) = (r, aa)
E(ab) = (0, aa) using b ⊢ a
E(aaa) = (r, a) aaa ⊢ a
E(aab) = (0, a) aab ⊢ a using b ⊢ a, aaa⊢ a.

14

λ a

a / 0

b / r

a / r

b / 0

aa

a / r

b / 0

Figure 2: The state machine diagram to be discovered throughthe enumeration in Example 5.14.

Here we list the discovered prefix or string rewrite rules beside the corresponding reductions. If
a reduction is automatically derived by prefix string-rewriting and/or string-rewriting, we also
list the specific rules that have been used in the derivation.For instance, the reduction fromb to
a leads to the discovery of a string rewrite ruleb ⊢ a, which is used later to derive the reduced
value ofab (ab →⊢ aa). The reduction fromab to aa leads to a prefix rewrite ruleab |= aa
and a string rewrite ruleab ⊢ aa, but both are subsumed by the available string rewrite rule
b ⊢ a, hence omitted. The reduction fromaaa to a leads to the discovery of a string rewrite rule
aaa ⊢ a, together with the earlier ruleb ⊢ a, it automatically derives the reduced value ofaab
(aab→⊢ aaa→⊢ a). The reduction fromaabto a leads to a new string rewrite ruleaab⊢ a to be
added to the set of discovered rules.

5.4. The impact of errors and changes

With the basic enumeration process, human errors and changedecisions have similar impacts.
The two basic changes are to a response decision or an equivalence decision. We urge that each
decision in the enumeration process be associated with a citation to authority for that decision,
and that the citation be changed when the decision is changed.

Likewise the introduction of string-rewriting introducesthe following opportunities for hu-
man errors or changes:

- The human declares an equivalence between a pair of sequences that is later considered
wrong (hence a wrong prefix rewrite rule).

- The human misses declaring an equivalence between a pair ofsequences (hence a missed
prefix rewrite rule).

- The human declares a string rewrite rule that is later considered wrong.

- The human misses an opportunity to declare a string rewriterule.

Some are errors that must be corrected, while others are not and simply result in more work
than might have been necessary. All changes result in rework.

The concurrent enumeration process can be adapted for enumerations that might contain such
problems and the reduction systems they define. In Step 3 of the process more than one normal
form could be found for the next sequence to be enumerated. Wemay insert a step afterwards to
repeatedly revise (or fix) the enumeration and the reductionsystem until a unique normal form
is derived for the next-to-be-enumerated sequence.

15

Figure 3: Functions of the driver side car mirror ECU in the testing environment.

This new step requires interactions with the atomic change algorithms [10], because changing
a specific entry in the enumeration may necessitate changes to other entries. These changes may
cascade to still more changes. While it is beyond human intuition to identify all possible changes,
all the instances that must be reconsidered are flagged algorithmically. Details of the interactions
are beyond the scope of this paper.

6. Example: Driver side car mirror electronic control unit

In this section we demonstrate how to apply string-rewriting to sequence enumeration through
the example of an automobile mirror control unit. The example was taken from a case study that
demonstrated a complete tool chain from requirements to sequence-based specification to auto-
mated statistical testing to quality certification [7]. It was modified slightly with a reduced set of
requirements to make it fit the paper limit but still illustrate all features of the theory. Figure 3
shows the functions of the driver side car mirror electroniccontrol unit (ECU) in the testing en-
vironment. The example was produced using our enumeration tool, which prompts the human
at each step, enforces all theory, maintains complete documentation, checkpoints each step, and
supports the change algorithms and string-rewriting. All the tables are presented in a format
similar to the way information is maintained by the tool.

6.1. Requirements, system boundary, stimuli and responses

The original requirements for the driver side car mirror ECUare restated in Table 4, where
each sentence from the original statements of requirementsis numbered (tagged) for easy ref-
erence. When we enumerate, we trace our decisions regardingresponses and reductions to the
tagged requirements.

We identify a system boundary that cuts the interfaces between the system, the driver side
car mirror ECU, and the external power, the CAN bus, sensors,actuators, and human users.
The system boundary is diagrammed in Figure 4. The interfaces are listed in Table 5. From
the interfaces we collect all possible stimuli (Table 6) andresponses (Table 7) across the system
boundary.

In identifying the interfaces and their associated stimuliand responses, as well as in con-
structing a complete enumeration of the mirror controller,we found that supplemental infor-
mation was needed to give explicit authority for enumeration decisions regarding responses and

16

Trace Tag Requirement
1 There is a switch that toggles for adjustment of either the driver side or the

passenger side mirror.
2 The driver side electronic control unit (ECU) initializes when the car key is

in start position.
3 The driver side ECU processes inputs coming from position sensors and

users.
4 The driver side ECU produces outputs to actuators and sends messages to

other ECUs.
5 The control area network (CAN) bus is used for communicationamong

ECUs.
6 Signals for the passenger side mirror are put on the CAN bus and sent to the

passenger side ECU.
7 Each mirror can be adjusted in the vertical and has extreme upand down

positions.
8 Each mirror can be adjusted in the horizontal and has extremeinward and

outward positions.
9 If requested movement cannot be made because the mirror is already in an

extreme position, an error message is generated and sent viathe CAN bus.

Table 4: Requirements for the driver side car mirror ECU.

Sensor

Human

Power

Actuator

CAN

ECU

Figure 4: A system boundary for the driver side car mirror ECU.

Interface Description Trace
Actuator The actuators 4
CAN The CAN bus 4, 5
Human The human users 3
Power The power 2
Sensor The position sensors 3

Table 5: Interfaces for the driver side car mirror ECU.

17

Stimulus Long Name Description Interface Trace
MHI Mirror horizontal

inward
The horizontal inward move-
ment of selected mirror

Human 8

MHO Mirror horizontal
outward

The horizontal outward move-
ment of selected mirror

Human 8

MVD Mirror vertical
down

The vertical down movement of
selected mirror

Human 7

MVU Mirror vertical up The vertical up movement of
selected mirror

Human 7

PHEI Position hori-
zontal extreme
inward

The horizontal position report
of the driver side mirror indicat-
ing the extreme inward position
is reached

Sensor 8

PHEO Position hori-
zontal extreme
outward

The horizontal position report
of the driver side mirror in-
dicating the extreme outward
position is reached

Sensor 8

PHNE Position horizon-
tal no extreme

The horizontal position report
of the driver side mirror indi-
cating no extreme position is
reached

Sensor 8

PVED Position vertical
extreme down

The vertical position report of
the driver side mirror indicating
the extreme down position is
reached

Sensor 7

PVEU Position vertical
extreme up

The vertical position report of
the driver side mirror indicat-
ing the extreme up position is
reached

Sensor 7

PVNE Position vertical
no extreme

The vertical position report of
the driver side mirror indicating
no extreme position is reached

Sensor 7

SM Switch mirror The switch toggled for selection
of the driver side or the passen-
ger side mirror

Human 1

START Start Car key in start position Power 2

Table 6: Stimuli for the driver side car mirror ECU.

18

Response Long Name Description Interface Trace
CERR CAN mirror move-

ment failure
An error message is gen-
erated and put on the CAN
bus when the mirror is al-
ready in an extreme posi-
tion and cannot make the
requested movement.

CAN 9

CMHI CAN mirror horizon-
tal inward

A message is generated and
put on the CAN bus for the
passenger side ECU for the
horizontal inward movement
of the passenger side mirror.

CAN 6, 8

CMHO CAN mirror horizon-
tal outward

A message is generated and
put on the CAN bus for the
passenger side ECU for the
horizontal outward move-
ment of the passenger side
mirror.

CAN 6, 8

CMVD CAN mirror vertical
down

A message is generated and
put on the CAN bus for the
passenger side ECU for the
vertical down movement of
the passenger side mirror.

CAN 6, 7

CMVU CAN mirror vertical
up

A message is generated and
put on the CAN bus for the
passenger side ECU for the
vertical up movement of the
passenger side mirror.

CAN 6, 7

HI Horizontal inward
movement

The horizontal inward
movement of the driver side
mirror

Actuator 8

HO Horizontal outward
movement

The horizontal outward
movement of the driver side
mirror

Actuator 8

VD Vertical down move-
ment

The vertical down move-
ment of the driver side mir-
ror

Actuator 7

VU Vertical up move-
ment

The vertical up movement
of the driver side mirror

Actuator 7

Table 7: Responses for the driver side car mirror ECU.

19

Trace Tag Derived Requirement
D1 It is physically impossible for the ECU to experience an input without power.
D2 There is no externally observable response across the system boundary when

ignition is turned on.
D3 Mirror adjustment commands are ignored unless the positionsignal has been

received.
D4 There is no externally observable response when mirror position signal is

received.
D5 There is no externally observable response when the mirror selection switch

toggles.
D6 Re-powering on makes previous history irrelevant.
D7 When ignition is turned on, the default mirror selection is on the driver side.
D8 When the mirror selection switch goes to the passenger side,any received

or to-be-received driver side mirror position report will be ignored. Updated
position signals are expected once the switch goes back to the driver side.

Table 8: Derived requirements for the driver side car mirrorECU.

equivalences. We improvised such information as “derived requirements” in Table 8, whose trace
tags begin with a “D”. They are subject to validation by application domain experts. During the
enumeration we trace our decisions to both the original and the derived requirements.

6.2. Sequence enumeration

We apply the process presented in Section 5.3 to develop a complete enumeration of the
mirror controller. The stimuli are alphabetically orderedin Table 6, based on which we enumer-
ate stimulus sequences length-alphabetically. Stimuli are concatenated to string prefixes with
periods.

The enumeration is performed in tabular form (see Table 12 inthe appendix). We enumerate
stimulus sequences under the “Sequence” column. Their mapped responses (by7→) and reduc-
tions (by⊲) are defined under the “Response” and the “Equivalence” columns, respectively. Un-
der the “Trace” column we trace the decisions regarding responses and reductions to the tagged
requirements and derived requirements. We also note the discovered prefix or string rewrite rules
under the “Rule” column. Let the rows of the table be indexed by i (i runs from 0 to 216; there
are 217 rows in the complete enumeration). If we extract a subtable that includes all the rows
from Row 0 up to and including Rowi, then the subtable defines the working enumerationEi as
well as the working reduction systemRi described by the process (Section 5.3).

We label prefix rewrite rulesP1, P2, . . . , and string rewrite rulesS1, S2, To avoid clutter,
if a reductionu ⊲ v itself expresses a prefix rewrite ruleu |= v, or a string rewrite ruleu ⊢ v,
we only put the label in the “Rule” column but leave the rule out. Whenever string-rewriting is
applied to find a new reduction, we put a note below the reduction listing the rewrite rules used,
and shade the corresponding row in the enumeration table.

To begin with,E0 corresponds to Row 0 of Table 12. The empty sequence, as the first
enumerated sequence, maps to 0 because no stimuli have been received, and repeats itself in the
“Equivalence” column because there is no prior sequence to reduce it to. The corresponding
working reduction systemR0 has no rules defined.

20

Sincenext(E0) =MHI, its unique normal form inR0 is derived (it is MHI itself). The human
specifier defines the response of MHI based on the requirements (the response isω because of the
derived requirement D1 in Table 8). Since MHI itself is a normal form, the human specifier takes
over and checks if it can be reduced to a prior sequence based on Mealy equivalence (it turns out
MHI cannot be reduced). NowE1 contains in addition the defined response and reduction for
MHI and corresponds to Rows 0-1 of Table 12. From Row 1 we have aset of prefix rewrite rules
by (1w). RulesP1 − P12 are thus defined in the “Rule” column.

Now next(E1) =MHO, whose unique normal form inR1 is derived (it is MHO itself). Simi-
larly the human specifier defines its response asω by D1, and reduces it to MHI based on Mealy
equivalence. Rows 0-2 defineE2. Row 2 also leads to a new prefix rewrite ruleP13 by (1w).
RulesP1 − P13 are all the rules that define the working reduction systemR2.

Continuing in this fashion, at Row 13 the first string rewriterule S1 is discovered and added
to the set of rules to define the working reduction systemR13. Here the string rewrite rule
START.MHI ⊢ START subsumes the prefix rewrite rule START.MHI|= START.

As illustrated by Table 12, we continue discovering new rewrite rules as we enumerate, ex-
tending a reduction system while we extend an enumeration. The rules accumulate until they are
able to make a prediction of a future reduction, then string-rewriting is applied automatically to
deduce the new reduction.

The first automatic sequence reduction is derived at Row 111.Using the rules that define the
working reduction systemR110, we have START.PHEI.PVED.MVD→⊢ START.PHEI.PVED
(here the string rewrite ruleS35: PVED.MVD ⊢ PVED is the only rule used to derive the normal
form). In this mirror example, over half of the reductions for the length-four sequences (69 out
of 108) are obtained through automatic string-rewriting. This accounts for almost a third of the
total reductions (69/217) that need to be considered for the complete enumeration.

Once the rewrite rules are discovered, they can be checked against the requirements to see if
correct decisions have been made, and against each other to see if such decisions have been made
consistently throughout the specification. In Table 9 we organize some of the identified rules into
groups, with similarly structured string rewrite rules putinto the same group, and consider the
semantics associated with each. Whenever a pattern can be extracted from a group of rules, we
put it below the rules within the group.

For example, Group II shows a decision regarding receiving consecutive position reports
in the same axis (either horizontal or vertical). Only the latest report is important (this can
be validated with application domain experts). Since thereare three reports for each axis, the
number of such rules is 3×3×2 = 18. The fact that Group II contains all the 18 rules demonstrates
that this decision has been made consistently throughout the enumeration.

Note that the completed enumeration in Table 12 is not the endproduct of applying sequence-
based specification. Our enumeration tool automatically generates from it black box tables and
state box tables which collectively define a state machine with 19 states and 228 transitions be-
tween states. From the state box tables the control flow code can be (and is typically) generated
by selecting a high-level software architecture, an implementation for stimulus gathering, an
implementation for response generation, an implementation for state collection, and an imple-
mentation for each entry in the state box tables ([4] reported about a third of 20000 lines of code
in a case study developing the control software embedded in acomplex manufacturing machine).
In addition, the graph of a Markov chain usage model can be derived from the state machine de-
veloped in the enumeration process with the arcs being annotated with execution probabilities to
model the system usage. The usage model can then be enhanced by commands to drive auto-
mated test execution and evaluation.

21

I
S6: PHEI.MHI ⊢ PHEI S16: PHEO.MHO⊢ PHEO
S35: PVED.MVD ⊢ PVED S48: PVEU.MVU ⊢ PVEU

II

S10: PHEI.PHEI⊢ PHEI S11: PHEI.PHEO⊢ PHEO
S12: PHEI.PHNE⊢ PHNE S19: PHEO.PHEI⊢ PHEI
S20: PHEO.PHEO⊢ PHEO S21: PHEO.PHNE⊢ PHNE
S28: PHNE.PHEI⊢ PHEI S29: PHNE.PHEO⊢ PHEO
S30: PHNE.PHNE⊢ PHNE S40: PVED.PVED⊢ PVED
S41: PVED.PVEU⊢ PVEU S42: PVED.PVNE⊢ PVNE
S52: PVEU.PVED⊢ PVED S53: PVEU.PVEU⊢ PVEU
S54: PVEU.PVNE⊢ PVNE S64: PVNE.PVED⊢ PVED
S65: PVNE.PVEU⊢ PVEU S66: PVNE.PVNE⊢ PVNE
x.y ⊢ y, wherex, y ∈ {PHEI, PHEO, PHNE}
x.y ⊢ y, wherex, y ∈ {PVED, PVEU, PVNE}

III

S13: PHEI.SM⊢ SM S22: PHEO.SM⊢ SM
S31: PHNE.SM⊢ SM S43: PVED.SM⊢ SM
S55: PVEU.SM⊢ SM S67: PVNE.SM⊢ SM
x.SM ⊢ SM, wherex ∈ {PHEI, PHEO, PHNE, PVED, PVEU, PVNE}

IV

S37: PVED.PHEI⊢ PHEI.PVED S38: PVED.PHEO⊢ PHEO.PVED
S39: PVED.PHNE⊢ PHNE.PVED S49: PVEU.PHEI⊢ PHEI.PVEU
S50: PVEU.PHEO⊢ PHEO.PVEU S51: PVEU.PHNE⊢ PHNE.PVEU
S61: PVNE.PHEI⊢ PHEI.PVNE S62: PVNE.PHEO⊢ PHEO.PVNE
S63: PVNE.PHNE⊢ PHNE.PVNE
x.y ⊢ y.x, wherex ∈ {PVED, PVEU, PVNE}, y ∈ {PHEI, PHEO, PHNE}

V
S69: SM.MHI ⊢ SM S70: SM.MHO ⊢ SM
S71: SM.MVD ⊢ SM S72: SM.MVU ⊢ SM
SM.x ⊢ SM, wherex ∈ {MHI, MHO, MVD, MVU }

Table 9: Grouping rewrite rules based on structures and semantics.

22

6.3. Discussion

We can augment our theory and discover more string rewrite rules by taking into considera-
tion sequences that do not show up in the enumeration table, or sequences with specific patterns.
Here are two observations.

First, supposeu ⊲ w in an ordered working enumerationE : S∗ → R × S∗ with length-
lexicographical order≺, v ≺ max(domE) but v < domE, andv derivesw in the corresponding
working reduction system. For the intended black box function, if the following hold:

- u = w1lw2, v = w1rw2 for w1,w2 ∈ S∗

- r ≺ l

- ∀u ∈ S∗.∀v ∈ S+. BB(ulv) = BB(urv),

thenl ⊢ r is a string rewrite rule.
In the mirror example instead of declaring

S33 : START.PVED.MHI⊢ START.PVED

we could have noticed that

START.PVED.MHI⊲ START.PVED

and
START.MHI.PVED→⊢ START.PVED,

and after checking that all the other conditions are satisfied, we could have declared a new string
rewrite rule

S′33 : PVED.MHI ⊢ MHI.PVED,

which can be used in deriving the reductions for three length-four sequences as follows:

START.PHEI.PVED.MHI
→⊢ START.PHEI.MHI.PVED (byS′33 : PVED.MHI ⊢ MHI.PVED)
→⊢ START.PHEI.PVED (byS6 : PHEI.MHI ⊢ PHEI)

START.PHEO.PVED.MHI
→⊢ START.PHEO.MHI.PVED (byS′33 : PVED.MHI ⊢ MHI.PVED)
→⊢ START.PVED (byS15 : START.PHEO.MHI⊢ START)

START.PHNE.PVED.MHI
→⊢ START.PHNE.MHI.PVED (byS′33 : PVED.MHI ⊢ MHI.PVED)
→⊢ START.PVED (byS24 : START.PHNE.MHI⊢ START).

The string rewrite ruleS′33 is discovered from an enumerated sequence START. PVED.MHI
and a sequence that does not get enumerated START.MHI.PVED.Rules that could have been
discovered by the same observation includeS′34: PVED. MHO⊢MHO.PVED,S′45: PVEU.MHI
⊢ MHI.PVEU, S′46: PVEU.MHO ⊢ MHO. PVEU, S′57: PVNE.MHI ⊢ MHI.PVNE, andS′58:
PVNE.MHO ⊢ MHO.PVNE, each of which would lead to automatic reduction derivations for
three length-four sequences.

Second, after declaring START.START⊲ START in Table 12, we could have noticed that this
can be generalized to a rule scheme:

23

With presented theory With presented theory
and observations

For length-four se-
quences only

69/108≈ 63.9% 96/108≈ 88.9%

For all the sequences
in the enumeration

69/217≈ 31.8% 103/217≈ 47.5%

Table 10: Percentages of automatic sequence reductions by applying rewriting techniques.

Length Sequences
Extended

Sequences
Analyzed

Reductions
by String-
Rewriting

Reductions
by

Humans

Potential
Sequences

0 0 1 0 1 1
1 1 12 0 12 12
2 1 12 0 12 144
3 7 84 7 77 1,728
4 9 108 96 12 20,736

total 18 217 103 114 22,621

Table 11: Sequences analyzed in the car mirror ECU enumeration.

START.x1.x2. · · · .xn.START ⊢ START,

wherexi is any possible stimulus, i, n ∈ N, i ≤ n.

It basically says that power-on resets the system and makes previous history irrelevant. Ap-
plying this rule scheme, the reductions could have been automatically derived for 16 sequences
that are of length greater than two and end with the START stimulus.

With these observations almost 90% of the length-four sequences ((69+18+9)/108≈ 88.9%)
and half of the total reductions ((69+ 18+ 16)/217≈ 47.5%) would be derived automatically by
string-rewriting. Table 10 shows the data collected from this example.

6.4. Effectiveness of enumeration with string-rewriting

The most difficult part of doing an enumeration is identifying or recognizing reductions of
sequences based on Mealy equivalence. With string-rewriting some reductions can be handled
automatically. In Table 11 we list for the car mirror ECU example and for each enumeration
length the number of sequences extended from the previous enumeration length, the actual num-
ber of sequences analyzed, as well as the potential number ofsequences to be considered. For
sequences that are actually analyzed, we record how many reductions are handled by string-
rewriting and how many are handled by humans.

We also applied the concurrent enumeration process to the three case studies outlined in
Table 1, and found that 17 out of 254 reductions for the satellite operations software, 47 out
of 265 reductions for the mine pump control software, and 58 out of 219 reductions for the
weigh-in-motion data acquisition processor were automatically derived by string-rewriting (for
details see [13, 14, 15]). The benefit of applying string-rewriting depends on the application
and the skill of the analyst. For instance, the small number of automatic reduction derivations
for the satellite operations software is because the state machine is essentially a chain with little

24

branching. In any case the discovered rewrite rules help articulate unstated patterns or facts
that are implicit in the requirements and provide additional criteria for validating specification
decisions to requirements.

7. Related work

Sequence-based specification emerged from the functional treatment of software as described
by Mills [17, 20, 21]. The development was most directly influenced by thetrace assertion
methodof Parnas [22, 23] and the algebraic treatment of regular expressions by Brzozowski
[24].

In [22, 23] specifications are used as a reference document, and tabular forms are introduced
to ease specification reading, writing, and checking. The trace assertion method was used to
write module interface specifications following the “information hiding” principle, defining only
the expected external properties of a module with no reference to design decisions regarding data
representations or algorithms that are likely to change. A trace is a sequence of access procedure
or function calls. A module’s behavior is described in termsof traces and assertions about trace
legality, equivalence of traces, and the return values of legal traces that end in function calls.

McLean [25] presented a formal foundation for trace specification by providing a syntax,
semantics, and formal derivation system (a set of inferencerules) by which assertions can be
derived from trace specifications in a way that can be verifiedmechanically. The foundational
framework is based on first-order logic with equivalence andlegality defined as predicates. It is
assumed that the empty trace is legal, the prefix of a legal trace is legal, and that only legal traces
can return values. The author gave both syntactic and semantic definitions of consistency and
totalness (completeness), and methods for proving specifications consistent and total, with the
establishment of the soundness and completeness theorems.

A comparison between trace assertions and enumerations leads to the following observations:

- Legal traces are the event sequences that will not result ina non-normal use of the module.
Legal stimulus sequences are those that are physically realizable.

- Trace equivalence is based on both current and future legality, and the return value for
future program behavior. Equivalences among stimulus sequences are based on future
behavior only.

- Assertions about traces can be written in an arbitrary order. Sequences of stimuli are
considered in length-lexicographical order to enforce completeness and consistency.

- Non-determinism is allowed for trace specifications, and used for don’t-care situations
(i.e., situations in which the module user does not need to specify the behavior completely
as several behaviors are equally acceptable, and one wants to give the implementor a
choice), but the implementation would still be deterministic. Non-determinism in enumer-
ation is treated mathematically as under-specified blocks of a partition in sequence-based
specifications. This is the natural treatment since the method successively partitions the
domain until all the states are identified as a block of the partition induced by the equiva-
lence relation.

The trace assertion method was used on time-dependent systems like communication proto-
cols [26]. As pointed out by Hoffman and Snodgrass [27], when used for complex modules it

25

quickly becomes difficult to ensure specification consistency (whether the semantic assertions are
mutually contradictory) and completeness (whether they completely characterize a module’s be-
havior). To make reading and writing trace specifications for complex modules manageable, they
proposed five heuristics including basing the specificationon a normal form, and structuring the
semantics (trace assertions) according to normal form prefixes. Normal form traces are represen-
tative traces for each equivalence class as determined by trace equivalence. The authors proposed
a heuristic for choosing normal forms, and based the assertions on one-call extensions of normal
form traces. This structure is similar to the one-symbol extensions of extensible sequences in the
enumeration process for sequence-based specification. Thedifference is that the choice of nor-
mal form traces is free and heuristic, while the enumerationprocess forces unreduced sequences
to be the smallest sequences in length-lexicographical order for each equivalence class. Canon-
ical traces were introduced in [28, 29] as representatives of equivalence classes. The choice of
canonical traces remains arbitrary, except that the empty trace is canonical.

Later work on the trace assertion method includes [30, 31, 19, 32]. One primary distinction of
sequence-based specification is the constructive process it defines to discover a state machine of
the system. In trace specifications, thea priori automaton is normally conceived by the specifi-
cation writer through experience and insight, and described indirectly using traces and assertions
about traces. Rewriting systems were studied fordeterministicversions of the trace assertion
method [28, 29, 31, 19]. The free choice of canonical traces in [28, 29], and a prefix-closed
set of unreduced sequences by construction for any sequence-based specification (i.e., each pre-
fix of an unreduced sequence must also be an unreduced sequence), manifest in the respective
applications of rewriting.

The general trace rewriting used in [28, 29] is in essence prefix string-rewriting. The authors
found it similar to conditional term rewriting. To address possibly non-terminating rewriting
sequences, the general rewriting relation was modified (also for the purpose of simulating a
trace specification). “Smart trace rewriting” was introduced to avoid unfruitful rewriting steps,
resulting in a constrained prefix string-rewriting system that is both terminating and confluent.
Another trace rewriting strategy, called stepwise rewriting, was introduced to support online
simulation. Stepwise rewriting locally employs smart rewriting.

Trace rewriting systems in [31, 19] transform any input wordof a connected semiautomaton
(an automaton with possibly infinite states and inputs and nofinal states, in which every state
is reachable from the initial state) to its canonical form algorithmically. Directly from a set
of generators for state equivalence, the authors constructed a confluent prefix string-rewriting
system. In general the rewriting system may allow infinite derivations with an arbitrary set of
canonical words (traces) chosen for every state. It is proved that if one imposes the condition
of prefix-continuity on the set of canonical words, the prefixstring-rewriting system becomes
terminating. Since the semiautomaton may contain an infinite number of states, there might be
infinitely many prefix rewrite rules. The authors further connected such prefix string-rewriting
systems to ground term rewriting systems, viewing the former as a special case of the latter.

The use of prefix-continuouscanonical languages is crucialto the well-behaved rewriting sys-
tem. A set of words is prefix-continuous if, whenever a wordw and a prefixu of w are in the set,
then all the prefixes ofw longer thanu are also in the set. Prefix-continuous sets include prefix-
closed sets as a special case. Since the set of unreduced sequences in a sequence-based spec-
ification is prefix-closed by construction, it follows that the constructed prefix string-rewriting
system is both terminating and confluent. In addition, we looked at how general string rewrite
rules could be incorporated to expedite the automaton discovery process from requirements.

Our work differs from the previous work in that rewriting techniques are applied to assist in
26

the discovery of a state machine from informal requirements, and to augment the enumeration
process with increasing degree of automation. We used unconditional forms of both string-
rewriting and prefix string-rewriting, and combined them into a mixed reduction system.

8. Conclusion

The various patterns observed in field applications [2, 4, 6,7] of the sequence-based speci-
fication method have led to the systematic study of applying string-rewriting to sequence-based
specification as presented in this paper. We find that the enumeration process can be enhanced,
with string rewrite rules being discovered along the way andused to expedite the process as well
as to support requirements validation. Application of the theoretical framework presented here
keeps the enhanced enumeration process sound.

There is more interplay between the human specifier and the enumeration tool. As the user
reduces a sequence to a previously enumerated sequence, thereduction expresses a prefix rewrite
rule. An additional automation step becomes possible. If the user sees a more general string
rewrite rule, he/she may declare the rule. Later on in the process for any newlyenumerated
sequence, the tool identifies the sequence it should be reduced to, by applying all the available
prefix and string rewrite rules discovered so far.

The degree to which application of these rewrite rules will expedite the enumeration process
will vary with the application. The tool enforces the mathematics but hides the details. The
greatest benefit results from the savings in both time and labor achieved by consistent decisions
throughout. Another benefit results from the opportunity string-rewriting provides for validation
of specification decisions to requirements. This is valuable in offering a new insight or articulat-
ing an important fact about the requirements that was unstated.

Current research is focused on other practical matters relevant to the application and develop-
ment of sequence-based specification. For instance, we expect a thorough treatment of abstrac-
tions and abstraction management to produce benefits in application. As application is usually
facilitated by separation of inputs that do not interact (toreduce the size of the input alphabet
in an enumeration), composition of sequence-based specifications is also of interest. We are ex-
tending the discrete sequence-based specification method to directly handle timing, additional
forms of non-determinism, and continuity for hybrid and switching systems. The preliminary
results are promising [33, 34].

Appendix

Table 12: An enumeration for the driver side car mirror ECU.

Row Sequence Response Equivalence Trace Rule
0 λ 0 λ Method
1 MHI ω MHI D1 P1 − P12: MHI.x |=

MHI (x is any possible
stimulus)

2 MHO ω MHI D1 P13

3 MVD ω MHI D1 P14

4 MVU ω MHI D1 P15

5 PHEI ω MHI D1 P16

6 PHEO ω MHI D1 P17

7 PHNE ω MHI D1 P18

27

8 PVED ω MHI D1 P19

9 PVEU ω MHI D1 P20

10 PVNE ω MHI D1 P21

11 SM ω MHI D1 P22

12 START 0 START 2, D2
13 START.MHI 0 START D3 S1

14 START.MHO 0 START D3 S2

15 START.MVD 0 START D3 S3

16 START.MVU 0 START D3 S4

17 START.PHEI 0 START.PHEI D4
18 START.PHEO 0 START.PHEO D4
19 START.PHNE 0 START.PHNE D4
20 START.PVED 0 START.PVED D4
21 START.PVEU 0 START.PVEU D4
22 START.PVNE 0 START.PVNE D4
23 START.SM 0 START.SM D5
24 START.START 0 START 2, D2, D6 S5

25 START.PHEI.
MHI

CERR START.PHEI 8, 9 S6: PHEI.MHI ⊢
PHEI

26 START.PHEI.
MHO

HO START 8 S7

27 START.PHEI.
MVD

0 START.PHEI D3 S8

28 START.PHEI.
MVU

0 START.PHEI D3 S9

29 START.PHEI.
PHEI

0 START.PHEI D4 S10: PHEI.PHEI ⊢
PHEI

30 START.PHEI.
PHEO

0 START.PHEO D4 S11: PHEI.PHEO ⊢
PHEO

31 START.PHEI.
PHNE

0 START.PHNE D4 S12: PHEI.PHNE ⊢
PHNE

32 START.PHEI.
PVED

0 START.PHEI.
PVED

D4

33 START.PHEI.
PVEU

0 START.PHEI.
PVEU

D4

34 START.PHEI.
PVNE

0 START.PHEI.
PVNE

D4

35 START.PHEI.
SM

0 START.SM D5, D7, D8 S13: PHEI.SM⊢ SM

36 START.PHEI.
START

0 START 2, D2, D6 S14

37 START.PHEO.
MHI

HI START 8 S15

38 START.PHEO.
MHO

CERR START.PHEO 8, 9 S16: PHEO.MHO ⊢
PHEO

39 START.PHEO.
MVD

0 START.PHEO D3 S17

40 START.PHEO.
MVU

0 START.PHEO D3 S18

41 START.PHEO.
PHEI

0 START.PHEI D4 S19: PHEO.PHEI ⊢
PHEI

42 START.PHEO.
PHEO

0 START.PHEO D4 S20: PHEO.PHEO⊢
PHEO

43 START.PHEO.
PHNE

0 START.PHNE D4 S21: PHEO.PHNE⊢
PHNE

28

44 START.PHEO.
PVED

0 START.PHEO.
PVED

D4

45 START.PHEO.
PVEU

0 START.PHEO.
PVEU

D4

46 START.PHEO.
PVNE

0 START.PHEO.
PVNE

D4

47 START.PHEO.
SM

0 START.SM D5, D7, D8 S22: PHEO.SM⊢ SM

48 START.PHEO.
START

0 START 2, D2, D6 S23

49 START.PHNE.
MHI

HI START 8 S24

50 START.PHNE.
MHO

HO START 8 S25

51 START.PHNE.
MVD

0 START.PHNE D3 S26

52 START.PHNE.
MVU

0 START.PHNE D3 S27

53 START.PHNE.
PHEI

0 START.PHEI D4 S28: PHNE.PHEI ⊢
PHEI

54 START.PHNE.
PHEO

0 START.PHEO D4 S29: PHNE.PHEO⊢
PHEO

55 START.PHNE.
PHNE

0 START.PHNE D4 S30: PHNE.PHNE ⊢
PHNE

56 START.PHNE.
PVED

0 START.PHNE.
PVED

D4

57 START.PHNE.
PVEU

0 START.PHNE.
PVEU

D4

58 START.PHNE.
PVNE

0 START.PHNE.
PVNE

D4

59 START.PHNE.
SM

0 START.SM D5, D7, D8 S31: PHNE.SM⊢ SM

60 START.PHNE.
START

0 START 2, D2, D6 S32

61 START.PVED.
MHI

0 START.PVED D3 S33

62 START.PVED.
MHO

0 START.PVED D3 S34

63 START.PVED.
MVD

CERR START.PVED 7, 9 S35: PVED.MVD ⊢
PVED

64 START.PVED.
MVU

VU START 7 S36

65 START.PVED.
PHEI

0 START.PHEI.
PVED

D4 S37: PVED.PHEI ⊢
PHEI.PVED

66 START.PVED.
PHEO

0 START.PHEO.
PVED

D4 S38: PVED.PHEO⊢
PHEO.PVED

67 START.PVED.
PHNE

0 START.PHNE.
PVED

D4 S39: PVED.PHNE ⊢
PHNE.PVED

68 START.PVED.
PVED

0 START.PVED D4 S40: PVED.PVED ⊢
PVED

69 START.PVED.
PVEU

0 START.PVEU D4 S41: PVED.PVEU ⊢
PVEU

70 START.PVED.
PVNE

0 START.PVNE D4 S42: PVED.PVNE ⊢
PVNE

71 START.PVED.
SM

0 START.SM D5, D7, D8 S43: PVED.SM⊢ SM

29

72 START.PVED.
START

0 START 2, D2, D6 S44

73 START.PVEU.
MHI

0 START.PVEU D3 S45

74 START.PVEU.
MHO

0 START.PVEU D3 S46

75 START.PVEU.
MVD

VD START 7 S47

76 START.PVEU.
MVU

CERR START.PVEU 7, 9 S48: PVEU.MVU ⊢
PVEU

77 START.PVEU.
PHEI

0 START.PHEI.
PVEU

D4 S49: PVEU.PHEI ⊢
PHEI.PVEU

78 START.PVEU.
PHEO

0 START.PHEO.
PVEU

D4 S50: PVEU.PHEO⊢
PHEO.PVEU

79 START.PVEU.
PHNE

0 START.PHNE.
PVEU

D4 S51: PVEU.PHNE ⊢
PHNE.PVEU

80 START.PVEU.
PVED

0 START.PVED D4 S52: PVEU.PVED ⊢
PVED

81 START.PVEU.
PVEU

0 START.PVEU D4 S53: PVEU.PVEU ⊢
PVEU

82 START.PVEU.
PVNE

0 START.PVNE D4 S54: PVEU.PVNE ⊢
PVNE

83 START.PVEU.
SM

0 START.SM D5, D7, D8 S55: PVEU.SM⊢ SM

84 START.PVEU.
START

0 START 2, D2, D6 S56

85 START.PVNE.
MHI

0 START.PVNE D3 S57

86 START.PVNE.
MHO

0 START.PVNE D3 S58

87 START.PVNE.
MVD

VD START 7 S59

88 START.PVNE.
MVU

VU START 7 S60

89 START.PVNE.
PHEI

0 START.PHEI.
PVNE

D4 S61: PVNE.PHEI ⊢
PHEI.PVNE

90 START.PVNE.
PHEO

0 START.PHEO.
PVNE

D4 S62: PVNE.PHEO⊢
PHEO.PVNE

91 START.PVNE.
PHNE

0 START.PHNE.
PVNE

D4 S63: PVNE.PHNE ⊢
PHNE.PVNE

92 START.PVNE.
PVED

0 START.PVED D4 S64: PVNE.PVED ⊢
PVED

93 START.PVNE.
PVEU

0 START.PVEU D4 S65: PVNE.PVEU ⊢
PVEU

94 START.PVNE.
PVNE

0 START.PVNE D4 S66: PVNE.PVNE ⊢
PVNE

95 START.PVNE.
SM

0 START.SM D5, D7, D8 S67: PVNE.SM⊢ SM

96 START.PVNE.
START

0 START 2, D2, D6 S68

97 START.SM. MHI CMHI START.SM 6, D7 S69: SM.MHI ⊢ SM
98 START.SM.

MHO
CMHO START.SM 6, D7 S70: SM.MHO ⊢ SM

99 START.SM.
MVD

CMVD START.SM 6, D7 S71: SM.MVD ⊢ SM

30

100 START.SM.
MVU

CMVU START.SM 6, D7 S72: SM.MVU ⊢ SM

101 START.SM.
PHEI

0 START.SM D4, D7, D8 S73

102 START.SM.
PHEO

0 START.SM D4, D7, D8 S74

103 START.SM.
PHNE

0 START.SM D4, D7, D8 S75

104 START.SM.
PVED

0 START.SM D4, D7, D8 S76

105 START.SM.
PVEU

0 START.SM D4, D7, D8 S77

106 START.SM.
PVNE

0 START.SM D4, D7, D8 S78

107 START.SM.SM 0 START 1, D5 S79

108 START.SM.
START

0 START 2, D2, D6 S80

109 START.PHEI.
PVED.MHI

CERR START.PHEI.
PVED

8, 9 S81:
PHEI.PVED.MHI
⊢ PHEI.PVED

110 START.PHEI.
PVED.MHO

HO START.PVED 8 S82:
PHEI.PVED.MHO ⊢

PVED
111 START.PHEI.

PVED.MVD
CERR START.PHEI.

PVED
7, 9

UsingS35

112 START.PHEI.
PVED.MVU

VU START.PHEI 7 S83:
PHEI.PVED.MVU ⊢

PHEI
113 START.PHEI.

PVED.PHEI
0 START.PHEI.

PVED
D4 S84:

PHEI.PVED.PHEI
UsingS37, S10 ⊢ PHEI.PVED

114 START.PHEI.
PVED.PHEO

0 START.PHEO.
PVED

D4 S85:
PHEI.PVED.PHEO

UsingS38, S11 ⊢ PHEO.PVED
115 START.PHEI.

PVED.PHNE
0 START.PHNE.

PVED
D4 S86:

PHEI.PVED.PHNE
UsingS39, S12 ⊢ PHNE.PVED

116 START.PHEI.
PVED.PVED

0 START.PHEI.
PVED

D4

UsingS40

117 START.PHEI.
PVED.PVEU

0 START.PHEI.
PVEU

D4

UsingS41

118 START.PHEI.
PVED.PVNE

0 START.PHEI.
PVNE

D4

UsingS42

119 START.PHEI.
PVED.SM

0 START.SM Us-
ing S43, S13

D5, D7, D8

120 START.PHEI.
PVED.START

0 START 2, D2, D6 S87

121 START.PHEI.
PVEU.MHI

CERR START.PHEI.
PVEU

8, 9 S88:
PHEI.PVEU.MHI
⊢ PHEI.PVEU

122 START.PHEI.
PVEU.MHO

HO START.PVEU 8 S89:
PHEI.PVEU.MHO ⊢

PVEU

31

123 START.PHEI.
PVEU.MVD

VD START.PHEI 7 S90:
PHEI.PVEU.MVD ⊢

PHEI
124 START.PHEI.

PVEU.MVU
CERR START.PHEI.

PVEU
7, 9

UsingS48

125 START.PHEI.
PVEU.PHEI

0 START.PHEI.
PVEU

D4 S91:
PHEI.PVEU.PHEI

UsingS49, S10 ⊢ PHEI.PVEU
126 START.PHEI.

PVEU.PHEO
0 START.PHEO.

PVEU
D4 S92:

PHEI.PVEU.PHEO
UsingS50, S11 ⊢ PHEO.PVEU

127 START.PHEI.
PVEU.PHNE

0 START.PHNE.
PVEU

D4 S93:
PHEI.PVEU.PHNE

UsingS51, S12 ⊢ PHNE.PVEU
128 START.PHEI.

PVEU.PVED
0 START.PHEI.

PVED
D4

UsingS52

129 START.PHEI.
PVEU.PVEU

0 START.PHEI.
PVEU

D4

UsingS53

130 START.PHEI.
PVEU.PVNE

0 START.PHEI.
PVNE

D4

UsingS54

131 START.PHEI.
PVEU.SM

0 START.SM Us-
ing S55, S13

D5, D7, D8

132 START.PHEI.
PVEU.START

0 START 2, D2, D6 S94

133 START.PHEI.
PVNE.MHI

CERR START.PHEI.
PVNE

8, 9 S95:
PHEI.PVNE.MHI
⊢ PHEI.PVNE

134 START.PHEI.
PVNE.MHO

HO START.PVNE 8 S96:
PHEI.PVNE.MHO ⊢

PVNE
135 START.PHEI.

PVNE.MVD
VD START.PHEI 7 S97:

PHEI.PVNE.MVD ⊢

PHEI
136 START.PHEI.

PVNE.MVU
VU START.PHEI 7 S98:

PHEI.PVNE.MVU ⊢

PHEI
137 START.PHEI.

PVNE.PHEI
0 START.PHEI.

PVNE
D4 S99:

PHEI.PVNE.PHEI
UsingS61, S10 ⊢ PHEI.PVNE

138 START.PHEI.
PVNE.PHEO

0 START.PHEO.
PVNE

D4 S100:
PHEI.PVNE.PHEO

UsingS62, S11 ⊢ PHEO.PVNE
139 START.PHEI.

PVNE.PHNE
0 START.PHNE.

PVNE
D4 S101:

PHEI.PVNE.PHNE
UsingS63, S12 ⊢ PHNE.PVNE

140 START.PHEI.
PVNE.PVED

0 START.PHEI.
PVED

D4

UsingS64

141 START.PHEI.
PVNE.PVEU

0 START.PHEI.
PVEU

D4

UsingS65

142 START.PHEI.
PVNE.PVNE

0 START.PHEI.
PVNE

D4

32

UsingS66

143 START.PHEI.
PVNE.SM

0 START.SM Us-
ing S67, S13

D5, D7, D8

144 START.PHEI.
PVNE.START

0 START 2, D2, D6 S102

145 START.PHEO.
PVED.MHI

HI START.PVED 8 S103:
PHEO.PVED.MHI ⊢
PVED

146 START.PHEO.
PVED.MHO

CERR START.PHEO.
PVED

8, 9 S104:
PHEO.PVED.MHO⊢
PHEO.PVED

147 START.PHEO.
PVED.MVD

CERR START.PHEO.
PVED

7, 9

UsingS35

148 START.PHEO.
PVED.MVU

VU START.PHEO 7 S105:
PHEO.PVED.MVU ⊢
PHEO

149 START.PHEO.
PVED.PHEI

0 START.PHEI.
PVED

D4 S106:
PHEO.PVED.PHEI

UsingS37, S19 ⊢ PHEI.PVED
150 START.PHEO.

PVED.PHEO
0 START.PHEO.

PVED
D4 S107:

PHEO.PVED.PHEO
UsingS38, S20 ⊢ PHEO.PVED

151 START.PHEO.
PVED.PHNE

0 START.PHNE.
PVED

D4 S108:
PHEO.PVED.PHNE

UsingS39, S21 ⊢ PHNE.PVED
152 START.PHEO.

PVED.PVED
0 START.PHEO.

PVED
D4

UsingS40

153 START.PHEO.
PVED.PVEU

0 START.PHEO.
PVEU

D4

UsingS41

154 START.PHEO.
PVED.PVNE

0 START.PHEO.
PVNE

D4

UsingS42

155 START.PHEO.
PVED.SM

0 START.SM Us-
ing S43, S22

D5, D7, D8

156 START.PHEO.
PVED.START

0 START 2, D2, D6 S109

157 START.PHEO.
PVEU.MHI

HI START.PVEU 8 S110:
PHEO.PVEU.MHI ⊢
PVEU

158 START.PHEO.
PVEU.MHO

CERR START.PHEO.
PVEU

8, 9 S111:
PHEO.PVEU.MHO⊢
PHEO.PVEU

159 START.PHEO.
PVEU.MVD

VD START.PHEO 7 S112:
PHEO.PVEU.MVD ⊢
PHEO

160 START.PHEO.
PVEU.MVU

CERR START.PHEO.
PVEU

7, 9

UsingS48

161 START.PHEO.
PVEU.PHEI

0 START.PHEI.
PVEU

D4 S113:
PHEO.PVEU.PHEI

UsingS49, S19 ⊢ PHEI.PVEU
162 START.PHEO.

PVEU.PHEO
0 START.PHEO.

PVEU
D4 S114:

PHEO.PVEU.PHEO
UsingS50, S20 ⊢ PHEO.PVEU

33

163 START.PHEO.
PVEU.PHNE

0 START.PHNE.
PVEU

D4 S115:
PHEO.PVEU.PHNE

UsingS51, S21 ⊢ PHNE.PVEU
164 START.PHEO.

PVEU.PVED
0 START.PHEO.

PVED
D4

UsingS52

165 START.PHEO.
PVEU.PVEU

0 START.PHEO.
PVEU

D4

UsingS53

166 START.PHEO.
PVEU.PVNE

0 START.PHEO.
PVNE

D4

UsingS54

167 START.PHEO.
PVEU.SM

0 START.SM Us-
ing S55, S22

D5, D7, D8

168 START.PHEO.
PVEU.START

0 START 2, D2, D6 S116

169 START.PHEO.
PVNE.MHI

HI START.PVNE 8 S117:
PHEO.PVNE.MHI ⊢
PVNE

170 START.PHEO.
PVNE.MHO

CERR START.PHEO.
PVNE

8, 9 S118:
PHEO.PVNE.MHO⊢
PHEO.PVNE

171 START.PHEO.
PVNE.MVD

VD START.PHEO 7 S119:
PHEO.PVNE.MVD ⊢
PHEO

172 START.PHEO.
PVNE.MVU

VU START.PHEO 7 S120:
PHEO.PVNE.MVU ⊢
PHEO

173 START.PHEO.
PVNE.PHEI

0 START.PHEI.
PVNE

D4 S121:
PHEO.PVNE.PHEI

UsingS61, S19 ⊢ PHEI.PVNE
174 START.PHEO.

PVNE.PHEO
0 START.PHEO.

PVNE
D4 S122:

PHEO.PVNE.PHEO
UsingS62, S20 ⊢ PHEO.PVNE

175 START.PHEO.
PVNE.PHNE

0 START.PHNE.
PVNE

D4 S123:
PHEO.PVNE.PHNE

UsingS63, S21 ⊢ PHNE.PVNE
176 START.PHEO.

PVNE.PVED
0 START.PHEO.

PVED
D4

UsingS64

177 START.PHEO.
PVNE.PVEU

0 START.PHEO.
PVEU

D4

UsingS65

178 START.PHEO.
PVNE.PVNE

0 START.PHEO.
PVNE

D4

UsingS66

179 START.PHEO.
PVNE.SM

0 START.SM Us-
ing S67, S22

D5, D7, D8

180 START.PHEO.
PVNE.START

0 START 2, D2, D6 S124

181 START.PHNE.
PVED.MHI

HI START.PVED 8 S125:
PHNE.PVED.MHI ⊢
PVED

182 START.PHNE.
PVED.MHO

HO START.PVED 8 S126:
PHNE.PVED.MHO ⊢
PVED

34

183 START.PHNE.
PVED.MVD

CERR START.PHNE.
PVED

7, 9

UsingS35

184 START.PHNE.
PVED.MVU

VU START.PHNE 7 S127:
PHNE.PVED.MVU ⊢
PHNE

185 START.PHNE.
PVED.PHEI

0 START.PHEI.
PVED

D4 S128:
PHNE.PVED.PHEI

UsingS37, S28 ⊢ PHEI.PVED
186 START.PHNE.

PVED.PHEO
0 START.PHEO.

PVED
D4 S129:

PHNE.PVED.PHEO
UsingS38, S29 ⊢ PHEO.PVED

187 START.PHNE.
PVED.PHNE

0 START.PHNE.
PVED

D4 S130:
PHNE.PVED.PHNE

UsingS39, S30 ⊢ PHNE.PVED
188 START.PHNE.

PVED.PVED
0 START.PHNE.

PVED
D4

UsingS40

189 START.PHNE.
PVED.PVEU

0 START.PHNE.
PVEU

D4

UsingS41

190 START.PHNE.
PVED.PVNE

0 START.PHNE.
PVNE

D4

UsingS42

191 START.PHNE.
PVED.SM

0 START.SM Us-
ing S43, S31

D5, D7, D8

192 START.PHNE.
PVED.START

0 START 2, D2, D6 S131

193 START.PHNE.
PVEU.MHI

HI START.PVEU 8 S132:
PHNE.PVEU.MHI ⊢
PVEU

194 START.PHNE.
PVEU.MHO

HO START.PVEU 8 S133:
PHNE.PVEU.MHO ⊢
PVEU

195 START.PHNE.
PVEU.MVD

VD START.PHNE 7 S134:
PHNE.PVEU.MVD ⊢
PHNE

196 START.PHNE.
PVEU.MVU

CERR START.PHNE.
PVEU

7, 9

UsingS48

197 START.PHNE.
PVEU.PHEI

0 START.PHEI.
PVEU

D4 S135:
PHNE.PVEU.PHEI

UsingS49, S28 ⊢ PHEI.PVEU
198 START.PHNE.

PVEU.PHEO
0 START.PHEO.

PVEU
D4 S136:

PHNE.PVEU.PHEO
UsingS50, S29 ⊢ PHEO.PVEU

199 START.PHNE.
PVEU.PHNE

0 START.PHNE.
PVEU

D4 S137:
PHNE.PVEU.PHNE

UsingS51, S30 ⊢ PHNE.PVEU
200 START.PHNE.

PVEU.PVED
0 START.PHNE.

PVED
D4

UsingS52

201 START.PHNE.
PVEU.PVEU

0 START.PHNE.
PVEU

D4

UsingS53

202 START.PHNE.
PVEU.PVNE

0 START.PHNE.
PVNE

D4

35

UsingS54

203 START.PHNE.
PVEU.SM

0 START.SM Us-
ing S55, S31

D5, D7, D8

204 START.PHNE.
PVEU.START

0 START 2, D2, D6 S138

205 START.PHNE.
PVNE.MHI

HI START.PVNE 8 S139:
PHNE.PVNE.MHI ⊢
PVNE

206 START.PHNE.
PVNE.MHO

HO START.PVNE 8 S140:
PHNE.PVNE.MHO ⊢
PVNE

207 START.PHNE.
PVNE.MVD

VD START.PHNE 7 S141:
PHNE.PVNE.MVD ⊢
PHNE

208 START.PHNE.
PVNE.MVU

VU START.PHNE 7 S142:
PHNE.PVNE.MVU ⊢
PHNE

209 START.PHNE.
PVNE.PHEI

0 START.PHEI.
PVNE

D4 S143:
PHNE.PVNE.PHEI

UsingS61, S28 ⊢ PHEI.PVNE
210 START.PHNE.

PVNE.PHEO
0 START.PHEO.

PVNE
D4 S144:

PHNE.PVNE.PHEO
UsingS62, S29 ⊢ PHEO.PVNE

211 START.PHNE.
PVNE.PHNE

0 START.PHNE.
PVNE

D4 S145:
PHNE.PVNE.PHNE

UsingS63, S30 ⊢ PHNE.PVNE
212 START.PHNE.

PVNE.PVED
0 START.PHNE.

PVED
D4

UsingS64

213 START.PHNE.
PVNE.PVEU

0 START.PHNE.
PVEU

D4

UsingS65

214 START.PHNE.
PVNE.PVNE

0 START.PHNE.
PVNE

D4

UsingS66

215 START.PHNE.
PVNE.SM

0 START.SM Us-
ing S67, S31

D5, D7, D8

216 START.PHNE.
PVNE.START

0 START 2, D2, D6 S146

Acknowledgement

The authors would like to thank Klaus Madlener for several fruitful discussions and important
comments on string-rewriting, as well as the use of the COSY tool developed by the Technical
University of Kaiserslautern, Germany.

The authors also acknowledge with thanks our communicationwith David Parnas regarding
this research. We benefited greatly from his knowledge of research literature on string-rewriting
that was relevant to our work, and for helpful comments on an early draft of the paper.

References

[1] S. J. Prowell, J. H. Poore, Sequence-based software specification of deterministic systems, Software: Practice and
Experience 28 (1998) 329–344.

36

[2] S. J. Prowell, C. J. Trammell, R. C. Linger, J. H. Poore, Cleanroom Software Engineering: Technology and Process,
Addison-Wesley, Reading, MA, 1999.

[3] S. J. Prowell, J. H. Poore, Foundations of sequence-based software specification, IEEE Transactions on Software
Engineering 29 (2003) 417–429.

[4] G. H. Broadfoot, P. J. Broadfoot, Academia and industry meet: Some experiences of formal methods in practice, in:
Proceedings of the 10th Asia-Pacific Software Engineering Conference, Chiang Mai, Thailand, pp. 49–59, 2003.

[5] S. J. Prowell, W. T. Swain, Sequence-based specificationof critical software systems, in: Proceedings of the 4th
American Nuclear Society International Topical Meeting onNuclear Plant Instrumentation, Controls and Human-
Machine Interface Technology, Columbus, OH, 2004.

[6] P. J. Hopcroft, G. H. Broadfoot, Combining the box structure development method and CSP for software develop-
ment, Electronic Notes in Theoretical Computer Science 128(2005) 127–144.

[7] T. Bauer, T. Beletski, F. Boehr, R. Eschbach, D. Landmann, J. Poore, From requirements to statistical testing of
embedded systems, in: Proceedings of the 4th InternationalWorkshop on Software Engineering for Automotive
Systems, Minneapolis, MN, pp. 3–9, 2007.

[8] J. M. Carter, L. Lin, J. H. Poore, Automated functional testing of Simulink control models, in: Proceedings of the
1st Workshop on Model-Based Testing in Practice, Berlin, Germany, pp. 41–50, 2008.

[9] Proto Seq, 2011. ESP Project. http://sqrl.eecs.utk.edu/esp/index.html.
[10] L. Lin, S. J. Prowell, J. H. Poore, The impact of requirements changes on specifications and state machines,

Software: Practice and Experience 39 (2009) 573–610.
[11] M. Joseph (Ed.), Real-Time Systems: Specification, Verification and Analysis, Prentice Hall International, London,

United Kingdom, 1996.
[12] Weigh-In-Motion, 2006. Weigh-In-Motion, Cube Management, and Marking User Manual, Oak Ridge National

Laboratory, Oak Ridge, TN, Version 0.8.2.
[13] SOS, 2011. Satellite Operations Software Enumeration. http://sqrl.eecs.utk.edu/btw/files/SOS_sr.

html.
[14] MPCS, 2011. Mine Pump Controller Software Enumeration. http://sqrl.eecs.utk.edu/btw/files/MPCS_

sr.html.
[15] WIMDAP, 2011. Weigh-In-Motion Data Acquisition Processor Enumeration.http://sqrl.eecs.utk.edu/

btw/files/WIMDAP_sr.html.
[16] R. V. Book, F. Otto, String-Rewriting Systems, Springer-Verlag, Berlin, Germany, 1993.
[17] H. D. Mills, The new math of computer programming, Comminications of the ACM 18 (1975) 43–48.
[18] L. Lin, S. J. Prowell, J. H. Poore, An axiom system for sequence-based specification, Theoretical Computer

Science 411 (2010) 360–376.
[19] J. Brzozowski, H. Jürgensen, Representation of semiautomata by canonical words and equivalences, International

Journal of Foundations of Computer Science 16 (2005) 831–850.
[20] R. C. Linger, H. D. Mills, B. I. Witt, Structured Programming: Theory and Practice, Addison-Wesley, Boston, MA,

1979.
[21] H. D. Mills, Stepwise refinement and verification in box-structured systems, IEEE Computer 21 (1988) 23–36.
[22] W. Bartussek, D. L. Parnas, Using assertions about traces to write abstract specifications for software modules, in:

Proceedings of the 2nd Conference of the European Cooperation on Informatics, Venice, Italy, pp. 211–236, 1978.
[23] D. L. Parnas, Y. Wang, The trace assertion method of module interface specification, Technical Report 89-261,

Queens University, 1989.
[24] J. Brzozowski, Derivatives of regular expressions, Journal of the ACM 11 (1964) 481–494.
[25] J. McLean, A formal method for the abstract specification of software, Journal of the ACM 31 (1984) 600–627.
[26] D. Hoffman, The trace specification of communications protocols, IEEE Transactions on Computers C34 (1985)

1102–1113.
[27] D. Hoffman, R. T. Snodgrass, Trace specifications: Methodology andmodels, IEEE Transactions on Software

Engineering 14 (1988) 1243–1252.
[28] Y. Wang, D. L. Parnas, Simulating the behavior of software modules by trace rewriting, in: Proceedings of the

15th International Conference on Software Engineering, Baltimore, MD, pp. 14–23, 1993.
[29] Y. Wang, D. L. Parnas, Simulating the behavior of software modules by trace rewriting, IEEE Transactions on

Software Engineering 20 (1994) 750–759.
[30] R. Janicki, E. Sekerinski, Foundations of the trace assertion method of module interface specification, IEEE

Transactions on Software Engineering 27 (2001) 577–598.
[31] J. Brzozowski, H. Jürgensen, Theory of deterministictrace-assertion specifications, Technical Report CS-2004-30,

University of Waterloo, 2004.
[32] J. Brzozowski, H. Jürgensen, Representation of semiautomata by canonical words and equivalences, part II: Spec-

ification of software modules, International Journal of Foundations of Computer Science 18 (2007) 1065–1087.
[33] J. M. Carter, Sequence-Based Specification of EmbeddedSystems, Ph.D. thesis, University of Tennessee,

37

Knoxville, 2009.
[34] W. T. Swain, Application of hybrid sequence-based specification to a data acquisition processor, Technical Re-

port UT-CS-11-669, University of Tennessee, Knoxville, 2011. http://sqrl.eecs.utk.edu/btw/files/
WIM-HSBS-TR.pdf.

38

