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Abstract

Sequence-based specification is a constructive methogreekto convert ordinary functional
requirements (that are often imprecisely and informallgnposed) into precise specifications.
The method prompts a human requirements analyst to make dhg decisions necessary to
resolve the ambiguities, omissions, inconsistencies,earats inherent in the original require-
ments document, and construct a complete, consistentracebbly correct specification. We
find that string-rewriting theory can be applied to make a benof these decisions automati-
cally. In this paper we develop a theory of applying striegaiting to sequence enumeration.
We give prescriptions on how prefix rewrite rules and genstr@ihg rewrite rules can be de-
clared, and used later in the process to automatically mekesgjuivalences thereby prompting
the human for fewer decisions. Based on the results we grasegnhanced enumeration pro-
cess, in which one develops working enumerations and wgmdduction systems concurrently,
applying string-rewriting to deduce new reductions as eédedntil a complete enumeration is
obtained. We present data from four published applicatibasshows the feasibility and appli-
cability of applying string-rewriting. In addition taff@rt reduction we have observed the benefit
of eliminating rework achieved by consistent decisionsya#i as an additional opportunity
string-rewriting provides for validation of specificatidecisions to requirements.

Keywords:
String-rewriting, Prefix string-rewriting, Sequence-ddspecification, Software specification,
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1. Introduction

Software development often starts with some form of fumaleequirementsideas, verbal
descriptions, documents, tables, charts, equationsraiieg predecessor systems, competitor
systems, or combinations of these. Generally, they comtaibiguities, omissions, and errors,
hence are inconsistent, incomplete, and strictly speakitgrrect. Thesequence-based speci-
ficationmethod [1, 2, 3] provides a systematic way to convert imge¢and usually informal)
requirements into precise software specifications at dy stage in the development cycle. The
method treats discrete systems, and systems modeled estelisased on abstractions of events.
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These specifications are important for later phases inotubloth code development and testing
[2,4,5,6,7,8].

The method derives a rigorous specification from imperfetiag requirements through a
constructivesequence enumeratigmocess. The derivation exposes errors and omissions in the
original requirements, which must be resolved by domairegsfrom authoritative sources. In
this process, anfiort is made by the specification writer to consider all pdss#izenarios of
system use (all use cases). It proceeds by enumeratingn@thléexicographical order) finite
sequences of elemental inputs (at some level of abstractiesiding what the correct outputs
of the system should be for the enumerated sequences augtodhe requirements, and iden-
tifying equivalences to earlier enumerated sequencegdbasé¢he outputs to be generated on
future inputs. The process terminates when there are no ssgpgences to enumerate by the
enumeration rules. The primary product is a precise spatiific for the programmer and the
tester. One by-product is documentation of the interpiaiaif requirements with traces to the
authority for all the decisions made during specification.

Application of the method is facilitated and simplified wigthprototype enumeration tool
developed by the Software Quality Research Laboratory (§@Rthe University of Tennessee
[9]. A detailed description of the tool can be found in [10]o produce a sequence-based
specification in the tool, one only needs to give stimuli (it§) and responses (outputs) short
names at the beginning to facilitate enumeration; no otbéation or syntax is required. The
tool enforces enumeration rules explicitly by our recomdeshworkflow and prompts the user
for next steps. It maintains internal files (XML format) ceimt with every action.

Enumeration of usage scenarios discovers a state machihe @ftended system for im-
plementation (the process terminates when all distintestaf the system are discovered). It
prompts and relies on a human specifier (or requirementystha make the many decisions
(regarding response mappings, equivalence declarafiodsauthority) necessary to construct a
specification. In application, a significant number of suekisions are observed as occurring
in patterns. For example, some pairs of inputs commute \eitpect to sequencing; some are
idempotent. More complex patterns may involve three or nigpats. These were previously
recorded as a side issue and then checked against requissimsge if the patterns made sense,
and against the enumeration to see if each instance had fee¢ect consistently. These obser-
vations led to the systematic study of applying string-rgag to sequence-based specification
presented in this paper. The theory is implemented in oumenation tool. Now more equiva-
lence declarations can be handled automatically and densisleading to fewer human errors.
The result is an enhanced enumeration process.

In order to gain intuition for the process, we considereddfiewing published applications:

- Satellite Operations Software (SO8)e software component of a space vehicle that pro-
cesses commands from the ground control system and supglieduplex communica-
tions between an uplink ground site and a downlink groured[2if

- Mine Pump Controller Software (MPCShe control software of a mine pump that detects
the water level, monitors the carbon monoxide, methane afidvalevels, and operates
the pump with assistance from human operators [11]

- Weigh-In-Motion Data Acquisition Processor (WIMDAR)e software for data acquisi-
tion used in a weigh-in-motion distributed system that aepuand processes data from
individual load cells, performs real-time monitoring oétanalog weight signal, and com-
municates asynchronously with the host computer [12]
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Application SOS| MPCS | WIMDAP
Number of stimuli 23 10 14
Terminating enumeration length 9 5 4
Sequences extended 11 22 13
Sequences analyzed 254 265 219
Potential sequences 1,883,023,236,984 111,111 41,371

Table 1: Sequences analyzed in the three case studies.

We constructed enumerations for the three case studiefl&ekt, 15]) with the result shown in
Table 1. From the table thétectiveness of enumeration in controlling the combinatagriewth
of the number of sequences that need to be examined can bhe@dse

The crux of the matter is that an input set of siz®ill require consideration oEik:Oni =
(N“! - 1)/(n - 1) sequences, whekeis the sequence length at which the enumeration process
terminates (as it surely will). This need not bff-putting because there are mathematically
sound ways to mitigate the combinatorial growth.

The method still requires hard work from the human specifiarriderstanding, clarifying,
and eliciting requirements, but with a defined process antigopport the discovery of every
detail of the state machine is by construction (rather thaimtuition), and the traceability to the
requirements makes it possible to verify its correctnedth Wiittle tutoring software engineers,
domain experts, business analysts, and customers caelpgidrticipate in the requirements
analysis and specification process.

The paper is organized as follows. Section 2 introduceseyatihology and notation. Sec-
tion 3 introduces definitions and results for abstract rédnsystems, string-rewriting systems,
and prefix string-rewriting systems based on the classieahture. Section 4 gives an overview
of the sequence-based specification method and its prdofiegied by an axiomatic definition.
It also links a complete and finite enumeration to a conveangehuction system by prefix string-
rewriting. In Section 5 we develop a theory of applying grirewriting to sequence enumeration,
give prescriptions on how prefix rewrite rules and generatgtrewrite rules can be declared,
and present an enhanced enumeration process with apphicHtstring-rewriting. Section 6 is
the case study in which we illustrate our theory with an autbite mirror control unit example,
and discuss data obtained from applying the theory to the saglies of Table 1. Section 7
reports on related work, and Section 8 concludes this padpercomplete enumeration table for
the mirror control example is given in the appendix.

2. Terminology and notation

We useN to denote the positive integers.

Let X be a set ané> be a binary relation oiX, then-> is the reflexive and transitive closure
of —, and< the reflexive, symmetric, and transitive closure-of

The length of a stringv is denoted byw|. The empty string is denoted by If X is a
fixed (finite) alphabet, theB* andX* denote the Kleene closure and the positive closurg, of
respectively.

Unless stated explicitly as partial, a functibn X — Y is total (or complete). Wheff is
partial,dom f denotes the set of elements on whicls defined.
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Consider partial functions of the forin: X — Y x Z. If f(u) = (r,v), we writeu DT and
usv. The f will be dropped where it is clear from context. Defings r < Ar’ #r.ue- r’.

3. String-rewriting system

The following definitions and results for string-rewritisgstems are based on [16].

3.1. Abstract reduction system

Definition 3.1. An abstract reduction system(or areduction systen) is a structure X, —),
whereX is a set and- is a binary relation orX. The relation— is thereduction relation. If

x — y for somey, thenx is reducible; otherwise, it isrreducible. If x S y for irreducibley,
theny is anormal form for x.

Definition 3.2. A reduction systemX, —) is confluentif for all w, x,y € X, w S xandw - y
imply that there exists a€ X, X — zandy — z It is noetherianif there is no infinite sequence
(X1, X2, ---) such that for ali € N, x; — X1. Itis convergentif it is both noetherian and
confluent.

The words “noetherian” and “terminating” are both used iarhture to describe reduction
systems in which there exist no infinite reduction chains. al¢® use them interchangeably
throughout the paper.

Theorem 3.3. Let R= (X, —) be a reduction system. If R is convergent, then eaehXxhas a
unigue normal form.

Proof. See Page 13, Theorem 1.1.12 in [16]. O

3.2. String-rewriting system

Definition 3.4. Let X be an alphabet. Atring-rewriting system  onX is a subset oE* x X*.
Each elementl(r) of + is arewrite rule, also written ad + r. The single-step reduction
relation —, onX* that is induced by is defined as follows: for any,v € £*, u —, viff there
existsl + r such that for some, y € £*, u = xly andv = xry.

If +is a string-rewriting system ap, then £*, —,) is a reduction system.

Definition 3.5. LetX be an alphabet ari@be a binary relation oB*. ThenRis apartial order

if it is reflexive, antisymmetric, and transitive. It istaetal order if it is a partial order and fif,
for all x,y € X*, eitherxRy, or yRx It is astrict partial order if it is irreflexive, transitive, and
therefore asymmetric. The relati®is admissibleif for all u, v, x,y € £*, uRvimpliesxuyRxvy

Each partial ordek has an associated strict partial ordedefined by:x < yiff X < y and
X # Y. Conversely, each strict partial ordeihas an associated partial ordedefined by:x <y
iff x<yorx=y.

Each total ordek has an associated asymmetric (hence irreflexive) relaticalled astrict
total orderdefined by:x < y iff X < yandx # y. A strict total order is a strict partial order.

If X is a finite set equipped with a strict total orderthen we usanin(X) andmaxX) to
denote the smallest and the greatest elemenXsaafcording to<, respectively.
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Definition 3.6. Let < be a strict partial order oB*. It is well-founded if there is no infinite
sequencexy, Xp, - - ) such that for all € N, xi;1 < X;.

Theorem 3.7. Let+ be a string-rewriting system on. Then the reduction systefg*, —,) is
noetherianff there exists an admissible well-founded strict partialerg onX* such that r< |
holds for each | r.

Proof. See Pages 42-43, Theorem 2.2.4in [16]. O

3.3. Prefix string-rewriting system

Definition 3.8. Let X be an alphabet. Arefix string-rewriting system £ on X is a subset of
¥* x ¥*. Each elementl(r) of [ is aprefix rewrite rule, also written ad | r. Thesingle-
step reduction relation — on X* that is induced by= is defined as follows: for any,v € X,
u — Vviff there exist$ |= r such that for somg € £*, u = ly andv = ry.

If E is a prefix string-rewriting system ai then £*, —) is a reduction system.

4. Sequence-based specification

A software program implements the mapping rule for a mathieadafunction called the
black box functiorf17]. Given the same inputs received in the same order (time $astory of
inputs) the program will yield the same output. Sequencethapecification converts functional
requirements into a preciddack box specificatiothat describes the black box function of a
system, namely, the system’s behavior solely in terms adrezl input histories and outputs.
The completed specification defines a mapping rule that ehjqletermines an output for any
finite sequence of inputs. The specification is construgtetmatically through a process called
sequence enumeration.

The purpose of this section is to introduce the sequencedssecification method and its
axiomatic foundation presented in [1, 3, 18], upon which widba theory for applying string-
rewriting to sequence enumeration. Section 4.3 is new syghper.

4.1. Process overview

The first step in applying sequence-based specificationidetdify asystem boundarthat
defines what is inside and what is outside the system. It stnsfinterfaces through which
information flows between the system and the external estitith which the system directly
communicates, the softwaregsvironment

Events (inputs, interrupts, invocations) in the environttbat can fiect system behavior
are callecstimuli. System behaviors observable in the environment are calgbnsesStimuli
and responses are collected for the identified system auesf We us& andR to denote the
stimulus set and the response set, respectively. One thenezates all stimulus sequences (that
represent all scenarios of use of the system) first in theasing order of length, and within the
same length by any arbitrary strict total order.

For each enumerated sequence one identifies a unique regpdnsh could be an ensemble
of responses) as the intended response generated by ttenseqio facilitate theory we intro-
duce two special responseull (denoted by the symbol 0) aridegal (denoted by the symbol
w). If the sequence generates no externally observable lwehavis mapped to O; if the se-
guence is not physically realizable, it is mappedtmtherwise, the sequence is mapped to an
observable response. A sequenddiégal when it maps tav; otherwise, it idegal.
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For each enumerated sequence, one also checkédaly equivalenceetween the current
sequence and all previously enumerated sequences. Twersagpiardlealy equivalenif and
only if they always generate the same response when extdnydiénd same (non-empty) input
sequence. Two Mealy equivalent sequences need not be miapiedsame response, but their
responses with respect to future extensions must alwayeagviealy equivalent sequences
represent the same state of the system when it is modeled aalg Machine (hence the name).
If a sequence is not Mealy equivalent to any previously emated sequence, it isnreduced
otherwise, it iseducedto the previously enumerated (Mealy equivalent) sequematis itself
unreduced.

One starts with the empty sequence (denoted)lmf length 0. To get all sequences of length
n+1 (n > 0is an integer) one extends all sequences of lengthevery stimulus, and considers
the extensions in the pre-defined strict total order (elge,léxicographical order). With the
finitely many stimuli for any real application, there is affifite number of stimulus sequences
(of finite length); enumerating all of them is never necegsar

This inherently combinatorial process can Ifieetively controlled by two observations:

- If sequencelis reduced to a prior sequengehere is no need to extemby any stimulus
for the next enumeration length, as the behaviors of thensidas are fully defined by the
same extensions of

- If sequencau is illegal, there is no need to extendby any stimulus for the next enumera-
tion length, as all of the extensions must be illegal (i.bygically unrealizable).

Therefore, only legal and unreduced (also ca#gtensiblg sequences of lengtinget extended

by every stimulus for consideration at lengtih 1. The process continues until all sequences of a
certain length are either illegal or reduced to prior segesnNow, the enumerationé®@mplete
andfinite; all extensible sequences have been extended. This tdimgength is discovered in
enumeration, and varies from application to application.

As the name suggests, sequence enumeration is the litewrakgation of stimulus sequences,
the assignment of correct responses to each enumeratezhsegand the recording of sequence
equivalences based on future behavior. The unreducedrseggirepresent essential states in the
implemented system, whose number must be finite (and smaliy real application.

Table 2 shows the major steps of the enumeration proces$seaith step classified as either
manual (work done by the human analyst) or automated (watkmeed automatically) or both.

The result is a fully documented, complete, and consistiexwkibox specification. From it
we can automatically generate a Mealy machine (in the forens#t of state box tables, or col-
lectively astate box specificatignWe can also generate the control flow code by implementing
the state box tables.

4.2. Enumeration

We now look at an enumeration solely as a mathematical gljedt characterize it with a
list of axioms regardless of whether the sequences weréneldtay the enumeration process or
in some other way.

Following [18], in the definitions belowd andR are for the stimulus set and the response set,
respectively.

Definition 4.1. Let S be a non-empty alphabet aRbe a set that properly contaif w}. Let
< be a strict total order o8* such that for alli, vin S*, |u| < |v| impliesu < v. A partial function
& :S* - Rx S* is anenumerationiff Axioms 1-6 hold for allu, vin S* andxin S:
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Step1:  Tag (Number) the requirements. manual

Step 2:  Define the interfaces that compose the system boundar manual
Step 3:  Define the stimuli associated with each interface. manual
Step4:  Define the responses associated with each interface. manual

Step 5:  Start sequence enumeration with lemgth0. A is mapped to 0 automated
and unreduced.
Step 6: Repeat Steps 7-11 below until the enumeration is ldenf.e., | both
until there are no extensible sequences of lemyth
Step 7:  Extend all the extensible sequences of lengthevery stimulus.| automated
List all the extensions in lexicographical order.
Step 8:  Repeat Steps 9-10 below until all the sequences olisth@f | both
lengthn + 1) have been considered (in lexicographical order),
Step 9:  Map the current sequence under consideration tgarrss (this| both
may lead to identification of a new response). Trace the resp
decision to the tagged requirements (this may lead to desgo
of derived requirements).
Step 10: If the current sequence is Mealy equivalent to a pinoeduced both
sequence, reduce the current sequence to the prior seqyence
Trace the equivalence decision to the tagged requiremtmiss|(
may lead to discovery of derived requirements).
Step 11: Incrementby 1. automated

< O

Table 2: Major steps of the enumeration process withouigstréwriting support.

Axiom1l. 21— 0

Axiom 2. ur>vimpliesv<uorv=u

Axiom 3. usvimpliesvsv

Axiom 4. ux e dom& impliesu»u

Axiom 5. uxe dom& impliesu » w

AXxiom 6. U>V, U+ w,V i w,vxe domE imply v — w.
An enumeratiol© : S* — Rx S* is completeiff Axiom 7 holds for alluin S* andxin S:
Axiom 7. ub w,usuimply uxe domé.

An enumeratior® : S* — Rx S* isfinite iff

Axiom 8. |R € N, |[dom&| € N.

Example 4.2. Let& : S* — Rx S* be a partial function, wher® = {a,b}, R= {0, w, r}, S* has
a strict total ordek defined by

Yu,ve S* . |u <V > u<v
Yue S*.ua<ub
Yu,ve S*.YXYyeE S U<V — UX<VY,

and



Sequence Response Equivalence
A 0 A
a r a
b w a
aa w a
ab w a

Table 3:& of Example 4.2 in tabular form.

&) = (0.4
&@ = (ra)
éb) = (wa)
@ = (w,a)
@b = (w,a).

It is easily checked thaft as defined satisfies Axioms 1-8 for a complete and finite enaimer
tion. The same enumeration can be obtained in tabular faesTable 3) following the process
described earlier (for this symbolic example we ignoreladl traces to the requirements). Here
domé& = {4, a, b, aa, ab} contains all and the only sequencesinthat are actually enumerated.

Definition 4.3. Let& : S* — Rx S* be an enumeration andbe the associated strict total order
onS*. Thenuisillegal iff u — w; uis legaliff u > w; uis unreducediff u> u; uis reducediff
u»Vvforv < u; uis extensibleiff uis both legal and unreduced.

Example 4.4. Referring to& in Example 4.2,4 anda are both legal and unreduced (hence
extensible)b, aa, andab are both illegal and reduced.

Lemma4.5. LetE : S* - Rx S* be an enumeration. Thenaudom& implies u= A or u = U’x,
where xe S and Uis an extensible sequence.

Proof. By Axioms 1, 4, and 5. O

Lemma 4.6. Let& : S* —» Rx S* be an enumeration. Thenaudomé&, u # A imply for every
proper prefix v of u, ¥ v.

Proof. By Axiom 4. O

Definition 4.7. Let S be a non-empty alphabet aiRtbe a set that properly contaif@ w}. A
black box function is a total functiorBB: S* — Rwith BB(1) = 0.

By Definition 4.7 a black box function maps every stimulusustee to a response, with
the empty sequence mapped to the null response. The reguitecocument always implies a
black box function for the system to be developed, refemestthentendedblack box function
of the system. Sequence enumeration is performed to disttugentended black box function.
With a completed enumeration this function can be computgatithmically [3, 10, 18].

Twelve atomic algorithms for managing changes in the enatioer have been derived. All
changes in requirements or an enumeration that come fravivieg errors, omissions, and in-
consistencies, as well as from outside the enumeratiorepso(e.g., feature changes) can be
made by a combination of the atomic change algorithms. 1h ease the tool makes all changes
that are mathematically certain, and highlights all segasrthat require reconsideration by an-
alysts [10].
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Definition 4.8. Let& : S* — Rx S* be an enumeration, aBB : S* — Rbe the intended black
box function according to the requirements. Tlieis minimal iff the following holds for all,
vin S*:

usu, VeV, u# vimply there exists avin S* such thaBB(uw) # BB(vw).

An enumeration is minimal if the Mealy equivalence relatdmes not hold for any two
different unreduced sequences.

Example 4.9. Referring to& in Example 4.21 anda are the only two unreduced sequences.
SinceBB(1a) = BB(a) = r, BB(aa) = w, & is minimal.

4.3. Reduction system

A complete and finite enumeratiéh: S* —» R x S* together with its associated strict total
order< on S* defines a prefix string-rewriting systemon S as follows:

- fusv,v<uthenuEv.

- fu w,uru,thenforallxe S, uxkE u.
(1c)

Since& is finite, = contains finitely many prefix rewrite rules. The rules will tederred to
as (1c) for “the first set of rules for complete and finite entatiens”.

Example 4.10. Referring to€ in Example 4.2, it defines a prefix string-rewriting systen:
{(b,a), (aa a), (ab,a)}. Here all the prefix rewrite rules happen to follow from theffirule in
(1c).

Theorem 4.11.Let[ be the prefix string-rewriting system on S defined by (1ci, the induced
reduction syster(S*, —.) is convergent.

Proof. The set of unreduced sequence§iis prefix-closed, that is, each prefix of an unreduced
sequence must also be an unreduced sequence. The reswsfishm Theorem 14 and Theorem
22 of [19]. O

Corollary 4.12. Let [ be the prefix string-rewriting system on S defined by (1c)nBash u
in S* has a unique normal form in the induced reduction sys8m—.). The normal forms
composeu : u» uj.

Proof. Eachuin S* has a unique normal form by Theorems 3.3 and 4.11. Furthexuderives
an unreduced sequencedin finitely many steps, to which no prefix rewrite rules appignce
each normal form must be an unreduced sequence, and viee vers O

The infinite setS* is partitioned into finitely many blocks by the equivalenetation <1>,=,
with unreduced sequences ®fbeing representatives of these blocks. Each block cornelspo
to a system state. Transitions between states are deteriyrtee reduction function of &, or
equivalently, the rules of (1c).



5. Applying string-rewriting to sequence enumeration

In this section we develop a theory of applying string-réwg to sequence enumeration.
We define a working enumeration as the mathematical repiagsmof a partially completed
(enumeration) work product, and pay special attention talset of working enumerations in
which sequences are enumerated length-lexicographicéley give prescriptions on how one
should declare prefix rewrite rules and string rewrite rugesl define working reduction systems
for this subset of working enumerations. We prove that a wgrkeduction system must be
noetherian. Although it may not be confluent, the next seqei¢m be enumerated has a unique
normal form. Based on the results we present a process téogewerking enumerations and
working reduction systems concurrently, applying striegxiting to deduce new reductions as
needed, until a complete enumeration is obtained. The ytresented in this section is new in
this paper.

5.1. Working enumeration

Definition 5.1. Let& : S* — Rx S* be a finite, minimal enumeration. Letbe the associated
strict total order or&*. Then& is aworking enumeration iff the following holds for alu in S*
andxin S:

U w, us U, uxg¢ dom&imply maxdomsg) < ux.

In a working enumeration, unless the extension is greater the greatest enumerated se-
guence so far, an extensible sequence is extended. By thinstida, a complete, finite, and
minimal enumeration is also a working enumeration, withealiensible sequences being ex-
tended. We define below for a working but not complete enutiverghe next sequence to be
enumerated.

Definition 5.2. Let & : S* - Rx S* be a working enumeration that is not complete anie
the associated strict total order 8h. Thennex{&) is the smallest element of the daix : u >
w,U> U, X € S,ux¢ dom&} according to<.

Example 5.3.Let & : S* - R x S* be a finite and minimal enumeration, whe3e= {a, b},
R ={0,w,r}, S* has a strict total ordex defined by

Yuve S* . |u <V > u<v
Yue S*.ua<ub
Yu,ve S*.YXYye S U<V — UX< VY,

and
&) = (0.4
@ = (ra)
&b) = (wa)
@ = (w,a).

It is easily checked that is a working enumeration, because= a andx = b are the only
values ofu andx such that the premise of the implication is true, and the lusian is also true
(maxdomé&) = aa < ab = ux), hence the implication is true for= aandx = b. For all the other
values ofu andx the premise is false, hence the implication is true. Theegfilie implication
holds for alluin S* and for allxin S. Observe thahex{(&) = ab.
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A set of prefix rewrite rules and a prefix string-rewriting & follow similarly for a work-
ing enumeration as for a complete and finite enumeratiorti(®e4.3). LetS : S* - Rx S* be
a working enumeration. The following (prefix rewrite) rul® defined:

- fusv,v<uthenufEv.

- fu w,uru,thenforallxe S, uxkE u.
(1w)

The rules will be referred to as (1w) for “the first set of rulesworking enumerations”.

Example 5.4. Referring to& in Example 5.3, it defines a prefix string-rewriting system=
{(b, @), (aa, a)}. Here all the prefix rewrite rules happen to follow from thstfiule in (1w).

Theorem 5.5. Letk= be the prefix string-rewriting system on S defined by (1wip the induced
reduction syster{S*, —) is convergent.

Proof. The left-hand-side (LHS) of any prefix rewrite rule is a orygabol extension of an unre-
duced sequence i&. Among the LHSs of all prefix rewrite rules, no string is a ptedf any
other string, hence at most one rule applies for each stepetikstring-rewriting. The induced
reduction system is confluent.

Given anyu in S*, in finite steps it either rewrites to some unreduced seqién€, or it
rewrites tou’xw, whereu’ is an extensible sequencedh) x € S, w € S*, Ux ¢ dom&. The
induced reduction system is noetherian.

Therefore, the induced reduction system is convergent. O

By Theorem 5.5, anyin S* still has a unique normal form after prefix string-rewritjimgth
a working enumeratio8 : S* — Rx S*. However, wher€ is not complete, the state machine of
the system is only partially discovered. As a result, the lnenof blocks in the partition o&*,
hence the number of normal forms, is infinite. In Example Betlihduced reduction system by
prefix string-rewriting contains an infinite number of notrftams, as any string beginning with
abis a normal form.

Definition 5.6. Let& : S* - Rx S* be a working enumeration, ardbe the associated strict
total order onS*. If < is the (pre-determined and fixed) length-lexicographicdég thenS is
anordered working enumeration.

Example 5.7. & in Example 5.3 is an ordered working enumeration, siras defined is the
length-lexicographical order.

5.2. Declaring string rewrite rules

A working enumeration is the mathematical abstraction @réially completed work product
during the enumeration process. It defines a partially dis@d state machine. In discovering
the known states and transitions, some string rewrite eded be identified that reflect general
structures of the entire state machine, which can be expltater to discover the unknown parts,
i.e., infer reductions to prior sequences for newly enuteeraequences.

The string rewrite rules must be generalized from alrea@ytified sequence reductions
under the- mapping. We consider two situations:

11



- A single reduction suggests a string rewrite rule.
Supposel> Vv, u = wylws,, v = wirw, for wy, wo € S*, thenl + r is a potential string rewrite
rule.

- Two reductions suggest a string rewrite rule.
Supposel>w, V=W, U= Wilws, v = wirw, for wi, w, € S*, thenl + r is a potential string
rewrite rule.

The string rewrite rules are defined as follows for a workingreeratior€ : S* —» Rx S*
with intended black box functioBB : S* — Rand referred to as (2w):

If the following hold

- eitherusvorusw, v>wforu=wlw,, v =wirw,, wy, w, € S*
- r being length-lexicographically smaller thiin
- Yue S*.Vve S*. BB(ulv) = BB(urv),

thenl rr.
(2w)

Example 5.8. Let & : S* - Rx S* be a working enumeration f@ = {a,b,c}, R = {0, w, r}
intended to discover the state machine diagrammed in Figuiest the associated strict total
order< on S* be the length-lexicographical order induced by the alptiedleorder onS, and

e = (0.4
@ = (0,a)
Eb)y = (r,a)
&) = (0,0
E@a = (r,0
E@b) = (0,0).

The reduction fronb to a leads to the discovery of a string rewrite rillle a after checking for
all the conditions required by (2w). The reductions framto ¢ and fromab to c lead to the
discovery of two new string rewrite rules + c, ab+ ¢, and an already discovered string rewrite
rulebr a.

Theorem 5.9. Let+ be the string-rewriting system on S defined by (2w), themitheded reduc-
tion systen{S*, —,) is noetherian.

Proof. Since the length-lexicographical order 8his an admissible well-founded strict partial
order, the result follows from Theorem 3.7. O

Although the induced reduction systei'(—,) is noetherian, it may not be confluent.

12
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Figure 1: The state machine diagram to be discovered thrthegenumeration in Example 5.8.

5.3. Working reduction system

A working enumeration may have prefix rewrite rules definegly) and string rewrite rules
defined by (2w). If we combine these rules in a mixed reducdigsiem, neither the noetherian
nor the confluency property is guaranteed. However, if weiot®urselves to ordered working
enumerations, the noetherian property is guaranteed éomiked reduction system, as proven
in Theorem 5.11.

Definition 5.10. Let & : S* — R x S* be an ordered working enumeration. Letbe the
prefix string-rewriting system o8 defined by (1w), andS*, —) be the induced reduction
system by prefix string-rewriting. Letbe the string-rewriting system @defined by (2w), and
(S*, —) be the induced reduction system by string-rewriting. Ttereduction system defined
by (S*, = U —,) is aworking reduction system

Theorem 5.11. A working reduction system is noetherian.

Proof. Consider a working reduction system as defined by Definitid® 5Note that < | for
eachl E r defined by (1w) and eadhr r defined by (2w), where: is the associated length-
lexicographical order o%*. Since< is admissibley < | for eachl —, r, andr < | for each
| -, r. The theorem follows as is well-founded. O

Although confluency is not guaranteed, we can prove the remdence to be enumerated
must have a unique normal form. Hence a working reductiotesysan be used to predict what
the next sequence to be enumerated should be reduced td, drasehat is known about the
system through the available prefix rewrite rules and stravgrite rules. If the unique normal
form is different than the sequence itself, it suggests a sequencedicedutthe sequence itself
and the derived unique normal form are identical, the hunpacifier takes over and considers
any possible reduction based on Mealy equivalence.

Theorem 5.12. LetR = (S*, »- U —,) be a working reduction system defined for an ordered
working enumeratio® : S* - Rx S*, where andr are the prefix string-rewriting system and
the string-rewriting system on S, respectively. Then(@@xtas a unique normal form.

Proof. Supposaex{&) has two normal forma andv such thau # v.
13



Let pme denote the Mealy equivalence relation ®h By (1w) if | = r thenl pue 1, hence
Iw pme rw for anyw in S*. We havd ppe r for eachl —. r. By (2w) if |  r thenwil pye Wir
for anyw; in S*, hencew;lw; pme Wirwy for anyws, wp in S*. We havd pye 1 for eachl —, r.
As a resulthex{(&) pme Upme V.

Since reductions irR are only to prior sequences in length-lexicographical grdeth u
andv are prior tonex{&). Furthermorey andv must be unreduced sequencesSofas every
sequence prior taex{&) must reduce by prefix string-rewriting to an unreduced sega of&,
from which no prefix or string rewrite rule could apply. Sin€és minimal, we haveu = v, a
contradiction. O

Theorem 5.12 suggests that we can develop ordered workingenations and working re-
duction systems concurrently through the process thaivisl| until a complete enumeration is
constructed.

Concurrent Enumeration Process

Step 1: Let & = {(4, (0, 1))}, Ro = (S§*, —0) = (5%,0),i = 0.

Step 2: Repeat the steps below urdil is complete.

Step 3: Derive the (unique) normal formof nex{(&;) in R;.

Step 4: The human specifier defines the respansénex(&;).

Step 5: If v = nex(&;), then the human specifier redefinesuch thanex{(&;) is re-
duced tov by Mealy equivalence and the enumeration rulesei{&;) cannot
be reduced to any prior sequenceMet nex{(&).

Step 6: Let &1 = & U {(nex(&), (r, V))}.

Step 7: LetRi;1 = (S*, —=i41), where—i 1 = —j.

Step 8: If nex{(&;) — r, nex{(&;) » v define any prefix rewrite rule r by (1w), then
=i =—2ir1 U{(ly,1y) 1y € S7}.

Step 9: If the human specifier identifies any string rewrite rule r by (2w) given
nex{(&) v v, then—i,1 = —i.1 U{(Xly, xry) : X,y € S*}.

Step 10: Leti =i+ 1.

Theorem 5.13. The end product of the concurrent enumeration process (ef sgiquences with
responses and reductions) satisfies Axioms 1-8 for a coenpiet finite enumeration.

Proof. By construction. O

Example 5.14.Let & : S* — R x S* be an ordered working enumeration ®r= {a,b}, R =
{0, w,r} intended to discover the state machine diagrammed in Figureet the associated
length-lexicographical order d&* be based on the alphabetical orderSrand

&) = (0,2

&(@) = (0,a)

&(b) = (r,a) b Foa

@@ = (r,aq)

E@b) = (0,aa) using b r a

El@aa = (r,a) aaa + a

El@ab = (0,a) aab + a using b + a, aaara

14



b/0

Figure 2: The state machine diagram to be discovered thrtheganumeration in Example 5.14.

Here we list the discovered prefix or string rewrite rulesdeshe corresponding reductions. If
a reduction is automatically derived by prefix string-reing angor string-rewriting, we also
list the specific rules that have been used in the derivaoninstance, the reduction frobto

a leads to the discovery of a string rewrite ride- a, which is used later to derive the reduced
value ofab (ab —, aa). The reduction fronab to aa leads to a prefix rewrite rulab £ aa
and a string rewrite rulab + aa, but both are subsumed by the available string rewrite rule
b + a, hence omitted. The reduction fromaato a leads to the discovery of a string rewrite rule
aaar a, together with the earlier rule + a, it automatically derives the reduced valueaaib
(aab—, aaa—, a). The reduction fronaabto a leads to a new string rewrite ruéab+ ato be
added to the set of discovered rules.

5.4. The impact of errors and changes

With the basic enumeration process, human errors and cla@eggons have similar impacts.
The two basic changes are to a response decision or an enoealecision. We urge that each
decision in the enumeration process be associated witla@ocitto authority for that decision,
and that the citation be changed when the decision is changed

Likewise the introduction of string-rewriting introductiee following opportunities for hu-
man errors or changes:

The human declares an equivalence between a pair of sespitrat is later considered
wrong (hence a wrong prefix rewrite rule).

The human misses declaring an equivalence between a paagnces (hence a missed
prefix rewrite rule).

The human declares a string rewrite rule that is later ctmmsd wrong.

The human misses an opportunity to declare a string revige

Some are errors that must be corrected, while others arendatianply result in more work
than might have been necessary. All changes result in rework

The concurrent enumeration process can be adapted for eatimns that might contain such
problems and the reduction systems they define. In Step 2girthcess more than one normal
form could be found for the next sequence to be enumeratednaydnsert a step afterwards to
repeatedly revise (or fix) the enumeration and the redustystem until a unique normal form
is derived for the next-to-be-enumerated sequence.
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Figure 3: Functions of the driver side car mirror ECU in thetiteg environment.

This new step requires interactions with the atomic chatggeithms [10], because changing
a specific entry in the enumeration may necessitate chao@disdr entries. These changes may
cascade to still more changes. While it is beyond humartiatuio identify all possible changes,
all the instances that must be reconsidered are flaggedtalgarally. Details of the interactions
are beyond the scope of this paper.

6. Example: Driver side car mirror electronic control unit

In this section we demonstrate how to apply string-rewgitmsequence enumeration through
the example of an automobile mirror control unit. The examphs taken from a case study that
demonstrated a complete tool chain from requirements toesesp-based specification to auto-
mated statistical testing to quality certification [7]. lasvmodified slightly with a reduced set of
requirements to make it fit the paper limit but still illudeeall features of the theory. Figure 3
shows the functions of the driver side car mirror electramintrol unit (ECU) in the testing en-
vironment. The example was produced using our enumeraimnwhich prompts the human
at each step, enforces all theory, maintains complete deotation, checkpoints each step, and
supports the change algorithms and string-rewriting. B4 tables are presented in a format
similar to the way information is maintained by the tool.

6.1. Requirements, system boundary, stimuli and responses

The original requirements for the driver side car mirror E@nd restated in Table 4, where
each sentence from the original statements of requirenienismbered (tagged) for easy ref-
erence. When we enumerate, we trace our decisions regaafipgnses and reductions to the
tagged requirements.

We identify a system boundary that cuts the interfaces baiwiee system, the driver side
car mirror ECU, and the external power, the CAN bus, sensmtgjators, and human users.
The system boundary is diagrammed in Figure 4. The intesface listed in Table 5. From
the interfaces we collect all possible stimuli (Table 6) aesbonses (Table 7) across the system
boundary.

In identifying the interfaces and their associated stinanid responses, as well as in con-
structing a complete enumeration of the mirror controliee, found that supplemental infor-
mation was needed to give explicit authority for enumeratiecisions regarding responses and
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Trace Tag

Requirement

1

2

There is a switch that toggles for adjustment of either tlieediside or the
passenger side mirror.

The driver side electronic control unit (ECU) initialize@n the car key is
in start position.

The driver side ECU processes inputs coming from positiors@es and
users.

The driver side ECU produces outputs to actuators and serdsages to
other ECUs.

The control area network (CAN) bus is used for communicatiaomong

ECUs.

Signals for the passenger side mirror are put on the CAN bdisant to the
passenger side ECU.

Each mirror can be adjusted in the vertical and has extremandpdown

positions.

Each mirror can be adjusted in the horizontal and has extieward and

outward positions.

If requested movement cannot be made because the mirroeadglin an

extreme position, an error message is generated and se¢hev@AN bus.

Table 4: Requirements for the driver side car mirror ECU.

Power
Sensor Act uat or
> >
ECU
Human CAN
> —>

Figure 4: A system boundary for the driver side car mirror ECU

Interface | Description Trace
Actuator | The actuators 4
CAN The CAN bus 4,5

Human | The humanusers | 3
Power The power 2
Sensor | The position sensors 3

Table 5: Interfaces for the driver side car mirror ECU.

17



Stimulus | Long Name Description Interface| Trace
MHI Mirror horizontal | The horizontal inward move- | Human | 8
inward ment of selected mirror
MHO Mirror horizontal | The horizontal outward move- | Human | 8
outward ment of selected mirror
MVD Mirror vertical The vertical down movement of Human | 7
down selected mirror
MVU Mirror vertical up | The vertical up movementof | Human | 7
selected mirror
PHEI Position hori- The horizontal position report | Sensor | 8
zontal extreme of the driver side mirror indicat-
inward ing the extreme inward position
is reached
PHEO Position hori- The horizontal position report | Sensor | 8
zontal extreme of the driver side mirror in-
outward dicating the extreme outward
position is reached
PHNE Position horizon- | The horizontal position report | Sensor | 8
tal no extreme of the driver side mirror indi-
cating no extreme position is
reached
PVED Position vertical | The vertical position reportof | Sensor | 7
extreme down the driver side mirror indicating
the extreme down position is
reached
PVEU Position vertical | The vertical position report of | Sensor | 7
extreme up the driver side mirror indicat-
ing the extreme up position is
reached
PVNE Position vertical | The vertical position report of | Sensor | 7
no extreme the driver side mirror indicating
no extreme position is reached
SM Switch mirror The switch toggled for selection Human | 1
of the driver side or the passent
ger side mirror
START | Start Car key in start position Power 2

Table 6: Stimuli for the driver side car mirror ECU.
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Responsg Long Name Description Interface| Trace
CERR CAN mirror move- An error message is gen- | CAN 9
ment failure erated and put on the CAN
bus when the mirror is al-
ready in an extreme posi-
tion and cannot make the
requested movement.
CMHI CAN mirror horizon- | A message is generated angd CAN 6,8
tal inward put on the CAN bus for the
passenger side ECU for the
horizontal inward movement
of the passenger side mirrof.
CMHO CAN mirror horizon- | A message is generated and CAN 6,8
tal outward put on the CAN bus for the
passenger side ECU for the
horizontal outward move-
ment of the passenger side
mirror.
CMVD CAN mirror vertical | A message is generated angd CAN 6,7
down put on the CAN bus for the
passenger side ECU for the
vertical down movement of
the passenger side mirror.
CMVU CAN mirror vertical | A message is generated angd CAN 6,7
up put on the CAN bus for the
passenger side ECU for the
vertical up movement of the
passenger side mirror.
HI Horizontal inward The horizontal inward Actuator | 8
movement movement of the driver side
mirror
HO Horizontal outward | The horizontal outward Actuator | 8
movement movement of the driver side
mirror
VD Vertical down move- | The vertical down move- Actuator | 7
ment ment of the driver side mir-
ror
VU Vertical up move- The vertical up movement | Actuator | 7

ment

of the driver side mirror

Table 7: Responses for the driver side car mirror ECU.
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Trace Tag| Derived Requirement

D1 Itis physically impossible for the ECU to experience an inpithout power.

D2 There is no externally observable response across therspstendary when
ignition is turned on.

D3 Mirror adjustment commands are ignored unless the positgmal has been
received.

D4 There is no externally observable response when mirrotipassignal is
received.

D5 There is no externally observable response when the mietection switch
toggles.

D6 Re-powering on makes previous history irrelevant.

D7 When ignition is turned on, the default mirror selectionstbe driver side.

D8 When the mirror selection switch goes to the passenger aidereceived
or to-be-received driver side mirror position report widl lynored. Updated
position signals are expected once the switch goes baclk triver side.

Table 8: Derived requirements for the driver side car miE@U.

equivalences. We improvised such information as “derieeglirements” in Table 8, whose trace
tags begin with a “D”. They are subject to validation by apation domain experts. During the
enumeration we trace our decisions to both the original hadlerived requirements.

6.2. Sequence enumeration

We apply the process presented in Section 5.3 to develop @letanrenumeration of the
mirror controller. The stimuli are alphabetically ordeiadable 6, based on which we enumer-
ate stimulus sequences length-alphabetically. Stimelicancatenated to string prefixes with
periods.

The enumeration is performed in tabular form (see Table 1Rarappendix). We enumerate
stimulus sequences under the “Sequence” column. Their ethmgsponses (by) and reduc-
tions (by») are defined under the “Response” and the “Equivalence’neod) respectively. Un-
der the “Trace” column we trace the decisions regardingaesgs and reductions to the tagged
requirements and derived requirements. We also note thewdised prefix or string rewrite rules
under the “Rule” column. Let the rows of the table be indexgd ¢ runs from 0 to 216; there
are 217 rows in the complete enumeration). If we extract dakld that includes all the rows
from Row O up to and including Rowy then the subtable defines the working enumeraticas
well as the working reduction systef described by the process (Section 5.3).

We label prefix rewrite ruleBy, Py, ..., and string rewrite ruleS;, Sy, . ... To avoid clutter,
if a reductionu > v itself expresses a prefix rewrite rulel= v, or a string rewrite rulai + v,
we only put the label in the “Rule” column but leave the rulé.0tWhenever string-rewriting is
applied to find a new reduction, we put a note below the redadisting the rewrite rules used,
and shade the corresponding row in the enumeration table.

To begin with, & corresponds to Row 0 of Table 12. The empty sequence, as e fir
enumerated sequence, maps to 0 because no stimuli havedoeared, and repeats itself in the
“Equivalence” column because there is no prior sequencedace it to. The corresponding
working reduction systerRy has no rules defined.
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Sincenex{&p) = MHI, its unique normal form irRy is derived (it is MHI itself). The human
specifier defines the response of MHI based on the requirarfteetresponse is because of the
derived requirement D1 in Table 8). Since MHI itself is a natfiorm, the human specifier takes
over and checks if it can be reduced to a prior sequence baddealy equivalence (it turns out
MHI cannot be reduced). Now; contains in addition the defined response and reduction for
MHI and corresponds to Rows 0-1 of Table 12. From Row 1 we hae af prefix rewrite rules
by (1w). RulesP; — Py, are thus defined in the “Rule” column.

Now nex{&;) = MHO, whose unique normal form iR; is derived (it is MHO itself). Simi-
larly the human specifier defines its response &y D1, and reduces it to MHI based on Mealy
equivalence. Rows 0-2 defif®. Row 2 also leads to a new prefix rewrite ritgs by (1w).
RulesP; — P13 are all the rules that define the working reduction sysm

Continuing in this fashion, at Row 13 the first string rewritiée S; is discovered and added
to the set of rules to define the working reduction sysi®m Here the string rewrite rule
START.MHI + START subsumes the prefix rewrite rule START.MHISTART.

As illustrated by Table 12, we continue discovering new f@aules as we enumerate, ex-
tending a reduction system while we extend an enumeratioa riiles accumulate until they are
able to make a prediction of a future reduction, then strigriting is applied automatically to
deduce the new reduction.

The first automatic sequence reduction is derived at Row Wsihg the rules that define the
working reduction systerR;1o, we have START.PHEI.PVED.MVDB-, START.PHEI.PVED
(here the string rewrite rul®ss: PVED.MVD + PVED is the only rule used to derive the normal
form). In this mirror example, over half of the reductions foe length-four sequences (69 out
of 108) are obtained through automatic string-rewritingistaccounts for almost a third of the
total reductions (6217) that need to be considered for the complete enumeration

Once the rewrite rules are discovered, they can be checladsaghe requirements to see if
correct decisions have been made, and against each otleerifeach decisions have been made
consistently throughout the specification. In Table 9 weaaige some of the identified rules into
groups, with similarly structured string rewrite rules jntb the same group, and consider the
semantics associated with each. Whenever a pattern carirbeter from a group of rules, we
put it below the rules within the group.

For example, Group Il shows a decision regarding receivimgsecutive position reports
in the same axis (either horizontal or vertical). Only thee$a report is important (this can
be validated with application domain experts). Since ttegeethree reports for each axis, the
number of such rules is&@x2 = 18. The fact that Group Il contains all the 18 rules demotesra
that this decision has been made consistently throughewrthmeration.

Note that the completed enumeration in Table 12 is not theoesdilict of applying sequence-
based specification. Our enumeration tool automaticalheggtes from it black box tables and
state box tables which collectively define a state machirtle #9 states and 228 transitions be-
tween states. From the state box tables the control flow cadée (and is typically) generated
by selecting a high-level software architecture, an imm@etation for stimulus gathering, an
implementation for response generation, an implememtditio state collection, and an imple-
mentation for each entry in the state box tables ([4] repat®out a third of 20000 lines of code
in a case study developing the control software embeddedamglex manufacturing machine).
In addition, the graph of a Markov chain usage model can bgatefrom the state machine de-
veloped in the enumeration process with the arcs being atetbtvith execution probabilities to
model the system usage. The usage model can then be enhancechimands to drive auto-
mated test execution and evaluation.
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| Se: PHEI.MHI + PHEI S16: PHEO.MHO+ PHEO
Sss: PVED.MVD + PVED Sasg: PVEU.MVU + PVEU
Si10: PHEIL.PHEI- PHEI Si11: PHELLPHEO- PHEO
Si2: PHEIL.PHNE- PHNE S19: PHEO.PHEI PHEI
Soo: PHEO.PHEQO- PHEO Sz1: PHEO.PHNE- PHNE
Sog: PHNE.PHEIF PHEI Szg9: PHNE.PHEG- PHEO
Szo: PHNE.PHNE- PHNE Sa0: PVED.PVED- PVED

Il S41: PVED.PVEUF PVEU Sa2: PVED.PVNEF PVNE
Ss2: PVEU.PVEDF PVED Ss3: PVEU.PVEUF PVEU
Ss4: PVEU.PVNEF PVNE Se4: PVNE.PVEDF PVED
Ses: PVNE.PVEUF PVEU Ses: PVNE.PVNEF PVNE

X.y +Y, wherex,y € {PHEI, PHEO, PHNE
X.y +Y, wherex,y € {PVED, PVEU, PVNE

Si3: PHELSM+ SM Sy, PHEO.SM- SM
I S31: PHNE.SMr SM S43: PVED.SM+ SM
Sss: PVEU.SMF SM Se7: PVNE.SM+ SM
Xx.SM+ SM, wherex € {PHEI, PHEO, PHNE, PVED, PVEU, PVNE
S37: PVED.PHEI+ PHEI.PVED Sig: PVED.PHEG- PHEO.PVED
S3g: PVED.PHNE- PHNE.PVED Sy49: PVEU.PHEI+ PHEIL.PVEU
v Sso: PVEU.PHEO- PHEO.PVEU Ss;: PVEU.PHNEF PHNE.PVEU
Se1: PVNE.PHEI- PHEI.LPVNE  Sgz: PVNE.PHEO- PHEO.PVNE
Sz PVNE.PHNE- PHNE.PVNE
XY+ y.X, Wwherex € {PVED, PVEU, PVNBE, y € {PHEI, PHEO, PHNE
Seo: SM.MHI + SM S70: SM.MHO + SM
V || S71: SM.MVD + SM S72: SM.MVU + SM

SM.x+ SM, wherex € {MHI, MHO, MVD, MVU }

Table 9: Grouping rewrite rules based on structures and rst&zaa
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6.3. Discussion

We can augment our theory and discover more string rewrigss ty taking into considera-
tion sequences that do not show up in the enumeration tatdegouiences with specific patterns.
Here are two observations.

First, supposel > w in an ordered working enumerati@ : S* — R x S* with length-
lexicographical ordek, v < maxdomé&) butv ¢ dom&, andv derivesw in the corresponding
working reduction system. For the intended black box fumgtif the following hold:

- u=wlwy, v =wirw; for wy, w, € S*
-r<|
- Yue S*.Vve S*. BB(ulv) = BB(urv),

thenl + r is a string rewrite rule.
In the mirror example instead of declaring

S33: START.PVED.MHI+ START.PVED
we could have noticed that
START.PVED.MHI> START.PVED

and
START.MHI.PVED —, START.PVEDQ

and after checking that all the other conditions are sadisfi@ could have declared a new string
rewrite rule
S5; 1 PVED.MHI + MHI.PVED,

which can be used in deriving the reductions for three leffigtin sequences as follows:

START.PHEI.PVED.MHI
—, START.PHEI.MHLPVED (b}, : PVED.MHI + MHI.PVED)
—+ START.PHEI.PVED (bss : PHEI.MHI + PHEI)

START.PHEO.PVED.MHI
—, START.PHEO.MHI.PVED (b$3, : PVED.MHI + MHI.PVED)
—+ START.PVED (byB15 : START.PHEO.MHI+ START)

START.PHNE.PVED.MHI
—,  START.PHNE.MHI.PVED (b3, : PVED.MHI + MHI.PVED)
—. START.PVED (byB24 : START.PHNE.MHI+ START).

The string rewrite rulés;, is discovered from an enumerated sequence START. PVED.MHI
and a sequence that does not get enumerated START.MHI.PREIEs that could have been
discovered by the same observation incl&g PVED. MHO+ MHO.PVED, S);.: PVEU.MHI
+ MHLPVEU, S),. PVEU.MHO + MHO. PVEU, S_.: PVNE.MHI + MHI.PVNE, andSgg:
PVNE.MHO - MHO.PVNE, each of which would lead to automatic reduction\a@gions for
three length-four sequences.

Second, after declaring START.STARTTART in Table 12, we could have noticed that this
can be generalized to a rule scheme:
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With presented theory With presented theory
and observations

For length-four se-{ 69/108~ 63.9% 96/108~ 88.9%
guences only
For all the sequencels69/217~ 31.8% 103/217~ 47.5%

in the enumeration

Table 10: Percentages of automatic sequence reductiorgpbyirey rewriting techniques.

Length | Sequences Sequences Reduction§ Reductiong Potential
Extended| Analyzed| by String- by | Sequences
Rewriting Humans

0 0 1 0 1 1

1 1 12 0 12 12

2 1 12 0 12 144

3 7 84 7 77 1,728

4 9 108 96 12 20,736
total 18 217 103 114 22,621

Table 11: Sequences analyzed in the car mirror ECU enuroerati

START.X1.%p. - - - . X1.START + START,
wherex; is any possible stimulygn e N,i < n.

It basically says that power-on resets the system and make®ps history irrelevant. Ap-
plying this rule scheme, the reductions could have beemaatioally derived for 16 sequences
that are of length greater than two and end with the STARTtim

With these observations almost 90% of the length-four secee((69-18+9)/108~ 88.9%)
and half of the total reductions ((6918+ 16)/217~ 47.5%) would be derived automatically by
string-rewriting. Table 10 shows the data collected frois #xample.

6.4. Hjectiveness of enumeration with string-rewriting

The most dificult part of doing an enumeration is identifying or recogmizreductions of
sequences based on Mealy equivalence. With string-regré&ome reductions can be handled
automatically. In Table 11 we list for the car mirror ECU exalenand for each enumeration
length the number of sequences extended from the previausenation length, the actual num-
ber of sequences analyzed, as well as the potential numisegoiences to be considered. For
sequences that are actually analyzed, we record how manygtieds are handled by string-
rewriting and how many are handled by humans.

We also applied the concurrent enumeration process to tee ttase studies outlined in
Table 1, and found that 17 out of 254 reductions for the setedperations software, 47 out
of 265 reductions for the mine pump control software, and 68af 219 reductions for the
weigh-in-motion data acquisition processor were autoradyi derived by string-rewriting (for
details see [13, 14, 15]). The benefit of applying stringsiémg depends on the application
and the skill of the analyst. For instance, the small numibeutomatic reduction derivations
for the satellite operations software is because the statdhime is essentially a chain with little
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branching. In any case the discovered rewrite rules helpudate unstated patterns or facts
that are implicit in the requirements and provide additlamaeria for validating specification
decisions to requirements.

7. Related work

Sequence-based specification emerged from the functieaaihient of software as described
by Mills [17, 20, 21]. The development was most directly ieficed by tharace assertion
methodof Parnas [22, 23] and the algebraic treatment of regularemsgions by Brzozowski
[24].

In [22, 23] specifications are used as a reference docummhtahular forms are introduced
to ease specification reading, writing, and checking. Theetrassertion method was used to
write module interface specifications following the “infieation hiding” principle, defining only
the expected external properties of a module with no reterémdesign decisions regarding data
representations or algorithms that are likely to changeaéetis a sequence of access procedure
or function calls. A module’s behavior is described in tewhraces and assertions about trace
legality, equivalence of traces, and the return valuesg#llgraces that end in function calls.

McLean [25] presented a formal foundation for trace speatifim by providing a syntax,
semantics, and formal derivation system (a set of inferenlss) by which assertions can be
derived from trace specifications in a way that can be verifiedhanically. The foundational
framework is based on first-order logic with equivalence lagality defined as predicates. Itis
assumed that the empty trace is legal, the prefix of a legad isdegal, and that only legal traces
can return values. The author gave both syntactic and sengefinitions of consistency and
totalness (completeness), and methods for proving spatiiiits consistent and total, with the
establishment of the soundness and completeness theorems.

A comparison between trace assertions and enumeratiaisstiethe following observations:

- Legal traces are the event sequences that will not resalbhom-normal use of the module.
Legal stimulus sequences are those that are physicalizabtd.

- Trace equivalence is based on both current and futureitggahd the return value for
future program behavior. Equivalences among stimulus exezps are based on future
behavior only.

- Assertions about traces can be written in an arbitrary or@&equences of stimuli are
considered in length-lexicographical order to enforce pleteness and consistency.

- Non-determinism is allowed for trace specifications, asddufor don’t-care situations
(i.e., situations in which the module user does not needdoi§pthe behavior completely
as several behaviors are equally acceptable, and one wagiset the implementor a
choice), but the implementation would still be determigistion-determinism in enumer-
ation is treated mathematically as under-specified blo€kspartition in sequence-based
specifications. This is the natural treatment since the oteluccessively partitions the
domain until all the states are identified as a block of théitgar induced by the equiva-
lence relation.

The trace assertion method was used on time-dependeninsylite communication proto-
cols [26]. As pointed out by Hman and Snodgrass [27], when used for complex modules it
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quickly becomes diicult to ensure specification consistency (whether the seomssertions are
mutually contradictory) and completeness (whether theypletely characterize a module’s be-
havior). To make reading and writing trace specificatiomgfmmplex modules manageable, they
proposed five heuristics including basing the specificatioa normal form, and structuring the
semantics (trace assertions) according to normal formxa®fiNormal form traces are represen-
tative traces for each equivalence class as determineddxy ¢éiquivalence. The authors proposed
a heuristic for choosing normal forms, and based the asgsrtin one-call extensions of normal
form traces. This structure is similar to the one-symbo¢rsions of extensible sequences in the
enumeration process for sequence-based specificationdiffaeence is that the choice of nor-
mal form traces is free and heuristic, while the enumeraiimeess forces unreduced sequences
to be the smallest sequences in length-lexicographicardod each equivalence class. Canon-
ical traces were introduced in [28, 29] as representatifesjoivalence classes. The choice of
canonical traces remains arbitrary, except that the ematy tis canonical.

Later work on the trace assertion method includes [30, 31329 One primary distinction of
sequence-based specification is the constructive praocgstries to discover a state machine of
the system. In trace specifications, theriori automaton is normally conceived by the specifi-
cation writer through experience and insight, and desdriibéirectly using traces and assertions
about traces. Rewriting systems were studieddieterministicversions of the trace assertion
method [28, 29, 31, 19]. The free choice of canonical trangl8, 29], and a prefix-closed
set of unreduced sequences by construction for any seciaseel specification (i.e., each pre-
fix of an unreduced sequence must also be an unreduced sefjuaanifest in the respective
applications of rewriting.

The general trace rewriting used in [28, 29] is in essencixs®&ing-rewriting. The authors
found it similar to conditional term rewriting. To addresssgibly non-terminating rewriting
sequences, the general rewriting relation was modifiea (&ls the purpose of simulating a
trace specification). “Smart trace rewriting” was introdddo avoid unfruitful rewriting steps,
resulting in a constrained prefix string-rewriting systdmattis both terminating and confluent.
Another trace rewriting strategy, called stepwise rewgtiwas introduced to support online
simulation. Stepwise rewriting locally employs smart rigivg.

Trace rewriting systems in [31, 19] transform any input wof@ connected semiautomaton
(an automaton with possibly infinite states and inputs andimad states, in which every state
is reachable from the initial state) to its canonical forrgagithmically. Directly from a set
of generators for state equivalence, the authors constiwctconfluent prefix string-rewriting
system. In general the rewriting system may allow infiniteidgions with an arbitrary set of
canonical words (traces) chosen for every state. It is taokat if one imposes the condition
of prefix-continuity on the set of canonical words, the prefising-rewriting system becomes
terminating. Since the semiautomaton may contain an iefimitmber of states, there might be
infinitely many prefix rewrite rules. The authors further nented such prefix string-rewriting
systems to ground term rewriting systems, viewing the forasea special case of the latter.

The use of prefix-continuous canonical languages is crtathe well-behaved rewriting sys-
tem. A set of words is prefix-continuous if, whenever a warand a prefixu of w are in the set,
then all the prefixes ofv longer tharu are also in the set. Prefix-continuous sets include prefix-
closed sets as a special case. Since the set of unreducezhsegin a sequence-based spec-
ification is prefix-closed by construction, it follows théietconstructed prefix string-rewriting
system is both terminating and confluent. In addition, weééabat how general string rewrite
rules could be incorporated to expedite the automaton dsggrocess from requirements.

Our work diters from the previous work in that rewriting techniques gogli@d to assist in
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the discovery of a state machine from informal requiremeantsl to augment the enumeration
process with increasing degree of automation. We used waittmmal forms of both string-
rewriting and prefix string-rewriting, and combined thertoia mixed reduction system.

8. Conclusion

The various patterns observed in field applications [2, #] ®f the sequence-based speci-
fication method have led to the systematic study of applyiriggrewriting to sequence-based
specification as presented in this paper. We find that the eration process can be enhanced,
with string rewrite rules being discovered along the way asel to expedite the process as well
as to support requirements validation. Application of thearetical framework presented here
keeps the enhanced enumeration process sound.

There is more interplay between the human specifier and theeration tool. As the user
reduces a sequence to a previously enumerated sequenceglcéon expresses a prefix rewrite
rule. An additional automation step becomes possible. dfuber sees a more general string
rewrite rule, hgshe may declare the rule. Later on in the process for any nemlynerated
sequence, the tool identifies the sequence it should be eddaog by applying all the available
prefix and string rewrite rules discovered so far.

The degree to which application of these rewrite rules wiledite the enumeration process
will vary with the application. The tool enforces the mattegits but hides the details. The
greatest benefit results from the savings in both time anat labhieved by consistent decisions
throughout. Another benefit results from the opportunitingtrewriting provides for validation
of specification decisions to requirements. This is vale@bbifering a new insight or articulat-
ing an important fact about the requirements that was wthtat

Currentresearch is focused on other practical mattergael¢o the application and develop-
ment of sequence-based specification. For instance, weexjpleorough treatment of abstrac-
tions and abstraction management to produce benefits incapph. As application is usually
facilitated by separation of inputs that do not interactréiduce the size of the input alphabet
in an enumeration), composition of sequence-based spwifis is also of interest. We are ex-
tending the discrete sequence-based specification methdidectly handle timing, additional
forms of non-determinism, and continuity for hybrid and sling systems. The preliminary
results are promising [33, 34].

Appendix
Table 12: An enumeration for the driver side car mirror ECU.

Row | Sequence Response| Equivalence Trace Rule

0 A 0 A Method

1 MHI w MHI D1 P1 — P12 MHLX E
MHI (xis any possible
stimulus)

2 MHO w MHI D1 P13

3 MVD w MHI D1 P14

4 MVU w MHI D1 P15

5 PHEI w MHI D1 P16

6 PHEO w MHI D1 P17

7 PHNE w MHI D1 P1g
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8 PVED w MHI D1 P19

9 PVEU w MHI D1 P20

10 PVNE w MHI D1 P21

11 SM w MHI D1 P22

12 START 0 START 2,D2

13 START.MHI 0 START D3 S1

14 START.MHO 0 START D3 Sy

15 START.MVD 0 START D3 S3

16 START.MVU 0 START D3 Sy

17 START.PHEI 0 START.PHEI D4

18 START.PHEO 0 START.PHEO D4

19 START.PHNE 0 START.PHNE D4

20 START.PVED 0 START.PVED D4

21 START.PVEU 0 START.PVEU D4

22 START.PVNE 0 START.PVNE D4

23 START.SM 0 START.SM D5

24 START.START 0 START 2,D2, D6 Ss

25 START.PHEL CERR START.PHEI 8,9 Se: PHELMHI +
MHI PHEI

26 START.PHEL HO START 8 S7
MHO

27 START.PHEL 0 START.PHEI D3 Sg
MVD

28 START.PHEL 0 START.PHEI D3 Sg
MVU

29 START.PHEL 0 START.PHEI D4 Si0:  PHELPHEI +
PHEI PHEI

30 START.PHEL 0 START.PHEO D4 S11: PHELPHEO
PHEO PHEO

31 START.PHEL 0 START.PHNE D4 S12: PHEL.PHNE ~
PHNE PHNE

32 START.PHEL 0 START.PHEL D4
PVED PVED

33 START.PHEL 0 START.PHEL D4
PVEU PVEU

34 START.PHEL 0 START.PHEL D4
PVNE PVNE

35 START.PHEL 0 START.SM D5, D7, D8 | Si3: PHEL.SMF SM
SM

36 START.PHEL 0 START 2,D2, D6 S14
START

37 START.PHEO. HI START 8 Sis
MHI

38 START.PHEO. CERR START.PHEO 8,9 Si6: PHEO.MHO +
MHO PHEO

39 START.PHEO. 0 START.PHEO D3 S17
MVD

40 START.PHEO. 0 START.PHEO D3 S1s
MVU

41 START.PHEO. 0 START.PHEI D4 Si9: PHEO.PHEI -
PHEI PHEI

42 START.PHEO. 0 START.PHEO D4 Syo: PHEO.PHEO-
PHEO PHEO

43 START.PHEO. 0 START.PHNE D4 Sp1: PHEO.PHNEF
PHNE PHNE
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44 START.PHEO. 0 START.PHEO. D4
PVED PVED

45 START.PHEO. 0 START.PHEO. D4
PVEU PVEU

46 START.PHEO. 0 START.PHEO. D4
PVNE PVNE

a7 START.PHEO. 0 START.SM D5,D7,D8 | Sy;: PHEO.SM- SM
SM

48 START.PHEO. 0 START 2,D2,D6 So3
START

49 START.PHNE. HI START 8 Soa
MHI

50 START.PHNE. HO START 8 Sos
MHO

51 START.PHNE. 0 START.PHNE D3 Soe
MVD

52 START.PHNE. 0 START.PHNE D3 So7
MVU

53 START.PHNE. 0 START.PHEI D4 Sog: PHNE.PHEI
PHEI PHEI

54 START.PHNE. 0 START.PHEO D4 Soo:  PHNE.PHEOF
PHEO PHEO

55 START.PHNE. 0 START.PHNE D4 Szo: PHNE.PHNER
PHNE PHNE

56 START.PHNE. 0 START.PHNE. D4
PVED PVED

57 START.PHNE. 0 START.PHNE. D4
PVEU PVEU

58 START.PHNE. 0 START.PHNE. D4
PVNE PVNE

59 START.PHNE. 0 START.SM D5, D7, D8 | S31: PHNE.SMr SM
SM

60 START.PHNE. 0 START 2,D2, D6 Sa2
START

61 START.PVED. 0 START.PVED D3 Sa3
MHI

62 START.PVED. 0 START.PVED D3 Saa
MHO

63 START.PVED. CERR START.PVED 7,9 Szs: PVED.MVD +
MVD PVED

64 START.PVED. VU START 7 S36
MVU

65 START.PVED. 0 START.PHEL D4 S372 PVED.PHEI +
PHEI PVED PHEI.PVED

66 START.PVED. 0 START.PHEO. D4 Szg: PVED.PHEOH
PHEO PVED PHEO.PVED

67 START.PVED. 0 START.PHNE. D4 Szo: PVED.PHNEF
PHNE PVED PHNE.PVED

68 START.PVED. 0 START.PVED D4 S40: PVED.PVED +
PVED PVED

69 START.PVED. 0 START.PVEU D4 Ss1: PVED.PVEU +
PVEU PVEU

70 START.PVED. 0 START.PVNE D4 S42: PVED.PVNE
PVNE PVNE

71 START.PVED. 0 START.SM D5,D7,D8 | Ss3: PVED.SMr SM
SM
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72 START.PVED. 0 START 2,D2,D6 Sas
START

73 START.PVEU. 0 START.PVEU D3 Sus
MHI

74 START.PVEU. 0 START.PVEU D3 Sue
MHO

75 START.PVEU. VD START 7 Sa7
MVD

76 START.PVEU. CERR START.PVEU 7,9 Ssg: PVEU.MVU +
MVU PVEU

e START.PVEU. 0 START.PHEL D4 Sso: PVEU.PHEI +
PHEI PVEU PHEI.PVEU

78 START.PVEU. 0 START.PHEO. D4 Sso: PVEU.PHEOF
PHEO PVEU PHEO.PVEU

79 START.PVEU. 0 START.PHNE. D4 Ss1: PVEU.PHNE -
PHNE PVEU PHNE.PVEU

80 START.PVEU. 0 START.PVED D4 Ssp: PVEU.PVED +
PVED PVED

81 START.PVEU. 0 START.PVEU D4 Ss3: PVEU.PVEU +
PVEU PVEU

82 START.PVEU. 0 START.PVNE D4 Ss4: PVEU.PVNE -
PVNE PVNE

83 START.PVEU. 0 START.SM D5, D7, D8 | Sss: PVEU.SMF SM
SM

84 START.PVEU. 0 START 2,D2, D6 Sse
START

85 START.PVNE. 0 START.PVNE D3 Ss7
MHI

86 START.PVNE. 0 START.PVNE D3 Ssg
MHO

87 START.PVNE. VD START 7 Ssg
MVD

88 START.PVNE. VU START 7 Seo
MVU

89 START.PVNE. 0 START.PHEL D4 Se1: PVNE.PHEI +
PHEI PVNE PHEI.PVNE

90 START.PVNE. 0 START.PHEO. D4 Se2: PVNE.PHEOF
PHEO PVNE PHEO.PVNE

91 START.PVNE. 0 START.PHNE. D4 Sez: PVNE.PHNE
PHNE PVNE PHNE.PVNE

92 START.PVNE. 0 START.PVED D4 Ses: PVNE.PVED r
PVED PVED

93 START.PVNE. 0 START.PVEU D4 Ses: PVNE.PVEU +
PVEU PVEU

94 START.PVNE. 0 START.PVNE D4 Ses: PVNE.PVNE
PVNE PVNE

95 START.PVNE. 0 START.SM D5,D7,D8 | Sg7: PVNE.SMr SM
SM

96 START.PVNE. 0 START 2,D2, D6 Ses
START

97 START.SM. MHI | CMHI START.SM 6, D7 Seo: SM.MHI + SM

98 START.SM. CMHO START.SM 6, D7 S70: SM.MHO+ SM
MHO

99 START.SM. CMVD START.SM 6, D7 S71: SM.MVD + SM
MVD

30




100 START.SM. CMVU START.SM 6, D7 S72: SM.MVU + SM
MVU
101 START.SM. 0 START.SM D4,D7,D8 | S73
PHEI
102 START.SM. 0 START.SM D4,D7,D8 | S7a
PHEO
103 START.SM. 0 START.SM D4,D7,D8 | Sys
PHNE
104 START.SM. 0 START.SM D4,D7,D8 | S7s
PVED
105 START.SM. 0 START.SM D4,D7,D8 | S77
PVEU
106 START.SM. 0 START.SM D4,D7,D8 | S7s
PVNE
107 START.SM.SM 0 START 1,D5 S79
108 START.SM. 0 START 2,D2,D6 Sso
START
109 START.PHEI. CERR START.PHEI. 8,9 Sg1:
PVED.MHI PVED PHEI.PVED.MHI
+ PHEIL.PVED
110 START.PHEI. HO START.PVED 8 Sg2:
PVED.MHO PHEI.PVED.MHO +
PVED
111 START.PHEI. CERR START.PHEI. 7,9
PVED.MVD PVED
Using Szs
112 START.PHEI. VU START.PHEI 7 Sg3:
PVED.MVU PHEI.PVED.MVU +
PHEI
113 START.PHEI. 0 START.PHEI. D4 Ssa:
PVED.PHEI PVED PHEI.PVED.PHEI
Using Sz7, S10 + PHEIL.PVED
114 START.PHEI. 0 START.PHEO. D4 Sgs:
PVED.PHEO PVED PHEI.PVED.PHEO
Using Sgzs, S11 + PHEO.PVED
115 START.PHEI. 0 START.PHNE. D4 Sge:
PVED.PHNE PVED PHEI.PVED.PHNE
Using Sgg, S12 + PHNE.PVED
116 START.PHEI. 0 START.PHEI. D4
PVED.PVED PVED
UsingSso
117 START.PHEI. 0 START.PHEI. D4
PVED.PVEU PVEU
UsingSa1
118 START.PHEI. 0 START.PHEI. D4
PVED.PVNE PVNE
UsingSs2
119 START.PHEI. 0 START.SM Us- | D5, D7, D8
PVED.SM ing S43, S13
120 START.PHEI. 0 START 2, D2, D6 Sg7
PVED.START
121 START.PHEI. CERR START.PHEI. 8,9 Sgs:
PVEU.MHI PVEU PHEI.PVEU.MHI
+ PHEI.PVEU
122 START.PHEI. HO START.PVEU 8 Sso:
PVEU.MHO PHEI.PVEU.MHO +

PVEU
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123 START.PHEI. VD START.PHEI 7 Soo:
PVEU.MVD PHEIL.PVEU.MVD +
PHEI
124 START.PHEI. CERR START.PHEI. 7,9
PVEU.MVU PVEU
UsingSsg
1255 START.PHEI. 0 START.PHEI. D4 So1:
PVEU.PHEI PVEU PHEI.PVEU.PHEI
UsingSag, S10 + PHEI.PVEU
126 START.PHEI. 0 START.PHEO. D4 So2:
PVEU.PHEO PVEU PHEI.PVEU.PHEO
Using Sso, S11 + PHEO.PVEU
127 START.PHEI. 0 START.PHNE. D4 Sos:
PVEU.PHNE PVEU PHEI.PVEU.PHNE
UsingSs;, S12 + PHNE.PVEU
128 START.PHEI. 0 START.PHEI. D4
PVEU.PVED PVED
Using Ss»
129 START.PHEI. 0 START.PHEI. D4
PVEU.PVEU PVEU
Using Ss3
130 START.PHEI. 0 START.PHEI. D4
PVEU.PVNE PVNE
Using Ssy
131 START.PHEI. 0 START.SM Us- | D5, D7, D8
PVEU.SM ing Sss, S13
132 START.PHEI. 0 START 2, D2, D6 Sos4
PVEU.START
133 START.PHEI. CERR START.PHEI. 8,9 Sos:
PVNE.MHI PVNE PHEI.PVNE.MHI
+ PHEIL.PVNE
134 START.PHEI. HO START.PVNE 8 Soe:
PVNE.MHO PHEIL.PVNE.MHO +
PVNE
135 START.PHEI. VD START.PHEI 7 So7:
PVNE.MVD PHEIL.PVNE.MVD +
PHEI
136 START.PHEI. VU START.PHEI 7 Sos:
PVNE.MVU PHEI.PVNE.MVU +
PHEI
137 START.PHEI. 0 START.PHEI. D4 Soo:
PVNE.PHEI PVNE PHEI.PVNE.PHEI
Using Se1, S10 + PHEI.PVNE
138 START.PHEI. 0 START.PHEO. D4 S100:
PVNE.PHEO PVNE PHEI.PVNE.PHEO
Using Se2, S11 + PHEO.PVNE
139 START.PHEI. 0 START.PHNE. D4 Sio01:
PVNE.PHNE PVNE PHEI.PVNE.PHNE
Using Sez, S12 + PHNE.PVNE
140 START.PHEI. 0 START.PHEI. D4
PVNE.PVED PVED
Using Se4
141 START.PHEI. 0 START.PHEI. D4
PVNE.PVEU PVEU
Using Ses
142 START.PHEI. 0 START.PHEI. D4
PVNE.PVNE PVNE
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Using Ses

143 START.PHEI. 0 START.SM Us- | D5, D7, D8
PVNE.SM ing Se7, S13
144 | START.PHEL 0 START 2,D2, D6 S102
PVNE.START
145 START.PHEO. HI START.PVED 8 S103:
PVED.MHI PHEO.PVED.MHI +
PVED
146 START.PHEO. CERR START.PHEO. 8,9 S104.
PVED.MHO PVED PHEO.PVED.MHOH
PHEO.PVED
147 START.PHEO. CERR START.PHEO. 7,9
PVED.MVD PVED
Using Szs
148 START.PHEO. VU START.PHEO 7 S10s:
PVED.MVU PHEO.PVED.MVU ~
PHEO
149 START.PHEO. 0 START.PHEI. D4 S106:
PVED.PHEI PVED PHEO.PVED.PHEI
UsingSz7, S19 + PHEI.PVED
150 START.PHEO. 0 START.PHEO. D4 S107:
PVED.PHEO PVED PHEO.PVED.PHEO
Using Szg, S20 + PHEO.PVED
151 START.PHEO. 0 START.PHNE. D4 S108:
PVED.PHNE PVED PHEO.PVED.PHNE
Using Sgg, So1 + PHNE.PVED
152 START.PHEO. 0 START.PHEO. D4
PVED.PVED PVED
Using Sao
153 START.PHEO. 0 START.PHEO. D4
PVED.PVEU PVEU
Using Sa1
154 | START.PHEO. 0 START.PHEO. D4
PVED.PVNE PVNE
UsingSs2
155 START.PHEO. 0 START.SM Us- | D5, D7, D8
PVED.SM ing Sa3, So2
156 START.PHEO. 0 START 2,D2, D6 S109
PVED.START
157 START.PHEO. HI START.PVEU 8 S110:
PVEU.MHI PHEO.PVEU.MHI +
PVEU
158 START.PHEO. CERR START.PHEO. 8,9 S111:
PVEU.MHO PVEU PHEO.PVEU.MHOH
PHEO.PVEU
159 START.PHEO. VD START.PHEO 7 S112:
PVEU.MVD PHEO.PVEU.MVD +
PHEO
160 START.PHEO. CERR START.PHEO. 7,9
PVEU.MVU PVEU
UsingSsg
161 START.PHEO. 0 START.PHEI. D4 S113:
PVEU.PHEI PVEU PHEO.PVEU.PHEI
UsingSag, S19 + PHEI.PVEU
162 START.PHEO. 0 START.PHEO. D4 S114:
PVEU.PHEO PVEU PHEO.PVEU.PHEO
Using Sso, S20 + PHEO.PVEU
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163 START.PHEO. 0 START.PHNE. D4 S115
PVEU.PHNE PVEU PHEO.PVEU.PHNE
UsingSs1, So1 + PHNE.PVEU
164 START.PHEO. 0 START.PHEO. D4
PVEU.PVED PVED
Using Ss»
165 START.PHEO. 0 START.PHEO. D4
PVEU.PVEU PVEU
Using Ss3
166 START.PHEO. 0 START.PHEO. D4
PVEU.PVNE PVNE
Using Ss4
167 START.PHEO. 0 START.SM Us- | D5, D7, D8
PVEU.SM ing Sss, S22
168 START.PHEO. 0 START 2, D2, D6 Si116
PVEU.START
169 START.PHEO. HI START.PVNE 8 S117
PVNE.MHI PHEO.PVNE.MHI +
PVNE
170 START.PHEO. CERR START.PHEO. 8,9 S118
PVNE.MHO PVNE PHEO.PVNE.MHO+
PHEO.PVNE
171 START.PHEO. VD START.PHEO 7 S119:
PVNE.MVD PHEO.PVNE.MVD +
PHEO
172 START.PHEO. VU START.PHEO 7 S120:
PVNE.MVU PHEO.PVNE.MVU +
PHEO
173 START.PHEO. 0 START.PHEI. D4 S121:
PVNE.PHEI PVNE PHEO.PVNE.PHEI
Using Se1, S19 + PHEI.PVNE
174 START.PHEO. 0 START.PHEO. D4 S122:
PVNE.PHEO PVNE PHEO.PVNE.PHEO
Using Se2, S20 + PHEO.PVNE
175 START.PHEO. 0 START.PHNE. D4 S123
PVNE.PHNE PVNE PHEO.PVNE.PHNE
Using Sgs, So1 + PHNE.PVNE
176 START.PHEO. 0 START.PHEO. D4
PVNE.PVED PVED
Using Se4
177 START.PHEO. 0 START.PHEO. D4
PVNE.PVEU PVEU
Using Ses
178 START.PHEO. 0 START.PHEO. D4
PVNE.PVNE PVNE
Using Ses
179 START.PHEO. 0 START.SM Us-| D5, D7, D8
PVNE.SM ing Se7, S22
180 START.PHEO. 0 START 2,D2,D6 S124
PVNE.START
181 START.PHNE. HI START.PVED 8 S125:
PVED.MHI PHNE.PVED.MHI +
PVED
182 START.PHNE. HO START.PVED 8 S126:
PVED.MHO PHNE.PVED.MHO +

PVED
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183 START.PHNE. CERR START.PHNE. 7,9
PVED.MVD PVED
Using Szs
184 | START.PHNE. VU START.PHNE 7 S127:
PVED.MVU PHNE.PVED.MVU ~
PHNE
185 START.PHNE. 0 START.PHEI. D4 S128:
PVED.PHEI PVED PHNE.PVED.PHEI
Using Sz7, Sos + PHEIL.PVED
186 START.PHNE. 0 START.PHEO. D4 S120:
PVED.PHEO PVED PHNE.PVED.PHEO
Using Szs, S2g + PHEO.PVED
187 START.PHNE. 0 START.PHNE. D4 S130:
PVED.PHNE PVED PHNE.PVED.PHNE
Using Szg, S3o + PHNE.PVED
188 START.PHNE. 0 START.PHNE. D4
PVED.PVED PVED
UsingSso
189 START.PHNE. 0 START.PHNE. D4
PVED.PVEU PVEU
UsingSa;
190 START.PHNE. 0 START.PHNE. D4
PVED.PVNE PVNE
Using Sa2
191 START.PHNE. 0 START.SM Us- | D5, D7, D8
PVED.SM ing S43, S31
192 START.PHNE. 0 START 2,D2, D6 S131
PVED.START
193 START.PHNE. HI START.PVEU 8 S132:
PVEU.MHI PHNE.PVEU.MHI +
PVEU
194 | START.PHNE. HO START.PVEU 8 S133
PVEU.MHO PHNE.PVEU.MHO +
PVEU
195 START.PHNE. VD START.PHNE 7 S134:
PVEU.MVD PHNE.PVEU.MVD ~
PHNE
196 START.PHNE. CERR START.PHNE. 7,9
PVEU.MVU PVEU
Using Sas
197 START.PHNE. 0 START.PHEI. D4 S13s:
PVEU.PHEI PVEU PHNE.PVEU.PHEI
UsingSag, Sos + PHEI.PVEU
198 START.PHNE. 0 START.PHEO. D4 S136:
PVEU.PHEO PVEU PHNE.PVEU.PHEO
Using Sso, S2g9 + PHEO.PVEU
199 START.PHNE. 0 START.PHNE. D4 S137:
PVEU.PHNE PVEU PHNE.PVEU.PHNE
UsingSs;, S3o + PHNE.PVEU
200 START.PHNE. 0 START.PHNE. D4
PVEU.PVED PVED
Using Ssy
201 START.PHNE. 0 START.PHNE. D4
PVEU.PVEU PVEU
Using Ss3
202 START.PHNE. 0 START.PHNE. D4
PVEU.PVNE PVNE
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Using Ssy
203 START.PHNE. 0 START.SM Us-| D5, D7, D8
PVEU.SM ing Sss, S31
204 START.PHNE. 0 START 2,D2,D6 S138
PVEU.START
205 START.PHNE. HI START.PVNE 8 S130:
PVNE.MHI PHNE.PVNE.MHI +
PVNE
206 START.PHNE. HO START.PVNE 8 S140:
PVNE.MHO PHNE.PVNE.MHO +
PVNE
207 START.PHNE. VD START.PHNE 7 S141:
PVNE.MVD PHNE.PVNE.MVD +
PHNE
208 START.PHNE. VU START.PHNE 7 S142:
PVNE.MVU PHNE.PVNE.MVU +
PHNE
209 START.PHNE. 0 START.PHEI. D4 S143:
PVNE.PHEI PVNE PHNE.PVNE.PHEI
Using Se1, Sog + PHEI.PVNE
210 START.PHNE. 0 START.PHEO. D4 S144:
PVNE.PHEO PVNE PHNE.PVNE.PHEO
Using Se2, Sog + PHEO.PVNE
211 START.PHNE. 0 START.PHNE. D4 S145:
PVNE.PHNE PVNE PHNE.PVNE.PHNE
Using Se3, Sao + PHNE.PVNE
212 START.PHNE. 0 START.PHNE. D4
PVNE.PVED PVED
Using Se4
213 START.PHNE. 0 START.PHNE. D4
PVNE.PVEU PVEU
Using Ses
214 START.PHNE. 0 START.PHNE. D4
PVNE.PVNE PVNE
Using Ses
215 START.PHNE. 0 START.SM Us-| D5, D7, D8
PVNE.SM ing S67, S31
216 START.PHNE. 0 START 2,D2,D6 S146
PVNE.START
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